

Localized Positioning in Ad Hoc Networks¹

Dragoş Niculescu and Badri Nath

RUTGERS University

¹supported in part by DARPA and NSF

- O node centric
 - proactiveDSDV [Perkins94]
 - reactiveDSR [Johnson96],AODV [Perkins99]
- O data centric
 - diffusion [Intanago00]
- O position centric
 - Cartesian [Finn87],GPSR[Karp00]
 - LAR [Ko98]
 - TBF [Niculescu02]

O position centric

- better scalability
- no routing tables
- independent of mobility
- dependent on a location database

- Cartesian+source based routing
- O forward along curves
- O "continuous" routes
- O assumptions
 - dense network
 - GPS enabled

- O GPS is not available in each node
 - LOS indoors
 - cost, power, size
- O solutions (distributed)
 - infrastructure based
 - grid of beacons [Bulusu00]
 - Cricket [Priyantha00,01]
 - infrastructure free
 - SPA [Capkun01]
 - **APS** [Niculescu01]
 - AhLOS [Savvides01]
 - large scale collaboration

- O localized collaboration
 - on demand only participating nodes
 - lazy -
 - relative to the source node
- O no GPS in the network, but
- O use available capabilities
 - ranging
 - AoA (angle of arrival)
 - compass
 - accelerometer

O nodes build local coordinate systems (CS)

- 0
- localized procedure
- independent
- randomly oriented
- O align CS on the fly
- O all nodes work in the CS of the source

- O registration = alignment of CS
- O uses
 - capabilities (ranging, AOA, ...)
 - common neighbors
- O given coordinates of:
 - A, B, C, and D in both systems S_a and S_b
 - find $\overline{M_{a\rightarrow b}}$, such that $X_b=X_aM_{a\rightarrow b}$, where X=A,B,C,D

Capability	Transformations
Range	${f T},{f R},{f M}$
AoA	$\mathrm{T,R,S,(M)}$
AoA+Compass	T, S , (M)
AoA+Range+Compass	T, (M)

$$M_{A,B} = \left[egin{array}{cccc} sr_1 & sr_2 & t_x \ sr_3 & sr_4 & t_y \ 0 & 0 & 1 \end{array}
ight]$$

- O packet overhead
 - coordinates of common nodes
 - transformation matrix
- O depends on capabilities
- O static networks \rightarrow reduced overhead

- O CPU overhead
 - registration
 - translation

Local Positioning System(LPS)

- O no GPS in the network
- O need some capabilities
 - ranging, AoA, compass, accelerometer
- O positioning
 - localized
 - on demand
 - relative in the CS of the source
- O better in static networks

Q & A

- O routing in dense networks
- O TBF outline
- O positioning problem
- O goals outline
- O LPS
 - node capabilities
 - basic idea
 - LPS example
 - registration
 - overhead
- O LPS summary