

Ad hoc Positioning System (APS)

Dragos Niculescu, Badri Nath {dnicules, badri} @cs.rutgers.edu Rutgers University

summary

- motivation
- GPS review
- APS outline
- APS propagation methods
- simulation results
- conclusions

problem statement

- ad hoc deployed nodes should be able to know their location
 - global coordinates
 - low overhead for mobility
 - accuracy comparable with the node communication range
 - disconnected regions should be able to operate independently
 - without predeployed infrastructure

motivation

- reported information has to be associated with location (sensor networks)
- location helps routing with small or no routing tables
 - geographic routing
 - geodesic routing
 - need global naming
- why not use GPS in each node?
 - battery life
 - form factor
 - line of sight
 - precision

related work

- centralized solution Berkeley
- positioning using a grid infrastructure UCLA
- uses radio and ultrasound with ceiling beacons MIT (CRICKET)
- premaps of the radio properties of the region Microsoft (RADAR)
- positioning relative to a chosen node EPFL
- GPS, VOR

GPS review

- Given
 - (imprecise) ranges to at least three satellites, $\hat{\rho}_i$
 - the locations of the satellites $r_i = (x_i, y_i)$
- a node may infer its own location $\hat{r}_u = (x_u, y_u)$
- $(x_i x_u)^2 + (y_i y_u)^2 = \hat{\rho}_i^2$, $i = all \ satellites$
- ullet nonlinear system o solved using an iterative method

GPS review

GPS review

- $\Delta \rho = \hat{\rho}_i \rho_i \simeq -\hat{1}_i \cdot \Delta r$
- $\hat{1}_i = -\frac{r_i \hat{r}_u}{|r_i \hat{r}_u|}$ the unit vector of $\hat{\rho}_i$
- $\Delta r = \hat{r}_u r_u$ the correction to be applied to the current position

• solve the linear system $\begin{bmatrix} \Delta \rho_1 \\ \Delta \rho_2 \\ \Delta \rho_3 \\ \dots \\ \Delta \rho_n \end{bmatrix} = \begin{bmatrix} \hat{1}_{1x} & \hat{1}_{1y} \\ \hat{1}_{2x} & \hat{1}_{2y} \\ \hat{1}_{3x} & \hat{1}_{3y} \\ \dots \\ \hat{1}_{nx} & \hat{1} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$

• repeat until $\Delta r < \epsilon$

APS outline

- a few nodes (landmarks) know their position
- other nodes infer ranges to at least three non-colinear landmarks
- to estimate distances to neighbors, nodes use
 - signal strength measurement
 - hop count
- a hybrid between GPS and distance vector routing
 - like in DV, distances to landmarks are propagated hop by hop
 - like in GPS, each node estimates its own location
- each landmark is treated independently at each node
- may use different methods to propagate distance

APS - distance propagation

- like in DV, neighbors exchange estimate distances to landmarks
- four possible propagation methods
 - "DV-hop" distance to landmark, in hops (this is standard DV)
 - "DV-distance" travel distance, in meters
 - "Euclidean" euclidean distance to landmark
 - "Coordinate" node's own coordinates in landmark's coordinate system

"dv-hop" propagation

- standard DV propagation
- never measures the distance between neighbors → insensitive to SS errors
- each <u>node</u> maintains a table $\{X_i, Y_i, h_i\}$ by running classic DV
- each landmark $\{X_i, Y_i\}$
 - computes a correction $c_i = \frac{\sum \sqrt{(X_i X_j)^2 + (Y_i Y_j)^2}}{\sum h_i}, i \neq j$
 - ...and poods it into the network
- each node
 - uses the correction from the closest landmark
 - multiply its hop distances by the correction

"dv-hop" propagation - example

"dv-hop" propagation - example

corrections computed by the landmarks

-
$$L_1 \rightarrow \frac{100+40}{6+2} = 17.5$$

- $L_2 \rightarrow \frac{40+75}{2+5} = 16.42$
- $L_3 \rightarrow \frac{75+100}{6+5} = 15.90$

- assume A gets its correction from L_2
- its estimate distances(ranges) to the three landmarks would be

- to
$$L_1 \to 3 \cdot 16.42$$

- to
$$L_2 \to 2 \cdot 16.42$$

- to
$$L3 \to 3 \cdot 16.42$$

• A performs GPS triangulation with the above ranges

"dv-hop" propagation

"dv-distance" propagation

- DV propagation using travel distance, in meters
- each <u>node</u> maintains a table $\{X_i, Y_i, d_i\}$
- each landmark $\{X_i, Y_i\}$
 - computes a correction $c_i = \frac{\sum \sqrt{(X_i X_j)^2 + (Y_i Y_j)^2}}{\sum d_i}, i \neq j$
 - ...and poods it to its neighbors
- each node
 - uses the correction from the closest landmark
 - multiply its distances by the correction

"dv-distance" propagation

"euclidean" propagation

- node A
 - measures distances to immediate neighbors B and C
 - learns distance BC from either B or C,
 - or, possibly infers it by mapping all its neighbors
- B and C know their euclidean distances to landmark L
- A has to £nd the diagonal AL

"euclidean" propagation

"coordinate" propagation

• each <u>landmark</u> i chooses a random coordinate system in which its coordinates are the true (X_{Li}, Y_{Li}) , obtained from GPS

"coordinate" propagation

- a <u>node</u> N
 - maintains a table $\{(X_i, Y_i), (X_{Li}, Y_{Li})\}$
 - measures distances to neighboring nodes
 - when having the coordinates of three neighbors, can compute its own coordinates (X_n, Y_n) using the same GPS procedure
- signaling is 50% more than the euclidean method (sends (X_n, Y_n) instead of d_n)
- both Euclidean and Coordinate methods need second hop information

simulation

- ns-2 based
- random topologies 100-300 nodes
 - isotropic¹√
 - anisotropic
 - * connectivity \sqrt{
 - * radio range×
 - * density×
- performance metrics
 - absolute location error√
 - geodesic routing overhead√
 - messaging complexity√

¹the network has the same properties (density, radio range) in all directions

location error - isotropic

location error - isotropic

location error - isotropic - DV-distance

location error - isotropic - Euclidean

location error - anisotropic

location error - anisotropic

- little variance for "Euclidean" across topologies
- anisotropy caused error matters more than measurement error

location error - anisotropic - DV-distanc

location error - anisotropic - Euclidean

number of messages exchanged

• *DV-distance* updates the same path several times under high error

messages exchanged - DV-distance

messages exchanged - Euclidean

number of bytes exchanged

DV-distance

700000 dv-hop .00 ----+---600000 02 ----×----500000 .50 ----⊝---total bytes exchanged 400000 300000 200000 100000 0 0.2 0.4 0.1 0.3 0.5 0.6 0.7 0.8 0.9GPS ratio

Euclidean

- amount of data exchanged depends on the degree of the graph
- *Euclidean* needs second hop information → higher degree

bytes exchanged - DV-distance

bytes exchanged - Euclidean

geodesic routing

- simple, greedy forwarding decision
 - choose the next hop that is <u>closest</u> to destination
 - <u>closest</u> = in euclidean distance
- no routing loops → distance to destination monotonically decreases
- packets may be dropped
 - due to location aberrations
 - intermediate nodes without a computed location
 - destination without a computed location
 - cannot route around obstacles
- can we use geodesic routing with estimated locations?

geodesic routing - reachability

Euclidean

- Euclidean error cumulates with distance
- *DV-based* error cancels out over distance

reachability - DV-distance

reachability - Euclidean

geodesic routing - overhead

• even low overhead makes a difference in the long run

geodesic routing overhead -DV-distanc

geodesic routing overhead - Euclidean

simulation summary

- all methods provide
 - usable locations for geodesic routing
 - location error with accuracy of 5%-50% of the radio range
 - better accuracy with more landmarks

DV-hop	DV-distance	Euclidean
isotropic ×	isotropic×	nonisotropic $\sqrt{}$
high diameter √	high diameter $\sqrt{}$	low diameter×
low GPS ratio √	low GPS ratio√	medium GPS ratio×
immune to error, coarse $\sqrt{}$	error cancels out $\sqrt{}$	error builds up×
	more signaling due to×	more signaling for ×
	measurement errors	better coverage
2 ¤oodings ×	2 ¤oodings×	1 ¤ooding√
high variance ×	high variance ×	predictable perf.√

future work

node mobility

- a moving node needs to
 - * get estimates from its new(static) neighbors
 - * apply triangulation
- a moving landmark
 - * is a new landmark
 - * one pying landmark could be enough for the entire network
- mobile nodes are supported by static nodes

· use AoA instead of signal strength

having three angles to three known points → position

conclusions

- APS = DV + GPS
 - distributed
 - no infrastructure
 - recomputation only for moving nodes
- three propagation methods: *DV-hop*, *DV-distance*, *Euclidean*
 - there is a tradeoff between accuracy and signaling
 - there is a tradeoff between coverage and signaling
 - measurement error may affect signaling (*DV-distance*)
 - each is appropriate for different topologies and precision requirements