
1 communications of the acm | july 2019 | vol. 62 | no. 7

To keep up with demand and ensure us-
ers get quick access to information on
the World Wide Web, Internet Service
Providers have been adding capacity
continuously, interconnecting more
users and companies and at faster
speeds. For home users, the progres-
sion has seen capacity increase from
dial-up (56kbps) to fiber (1Gbps), while
for mobile users cellular speeds have
increased from GPRS (~100Kbps) to
LTE (~100Mbps).

As with Moore’s Law for computing,
and despite continuous investment
in capacity, we have reached a point
where adding more capacity will not
necessarily make the Web faster. The
fundamental reason is that propaga-
tion latency, the time it takes informa-
tion to travel from one point to another
on the Internet, is lower bounded by
the time it takes light to travel the same
distance, and thus cannot be lowered.

The time required to download a
small Web page is dominated by prop-
agation latency between the client and
the server, and not throughput. If a
client from Bucharest wishes to visit a
Web page hosted in Silicon Valley, the
download time will be lower bounded
by round-trip time, which is the laten-
cy to cross the Atlantic twice and can-
not be faster than 100ms. In practice,
latency is quite a bit higher than this
theoretical optimum.

To reduce this latency, content dis-
tribution networks (such as Akamai)
appeared around 2000 that placed
servers all around the globe to move
content physically closer to users. In
my example, the content hosted in Sili-
con Valley would be replicated on CDN
servers in Romania such that the client
can reach the content in tens instead
of hundreds of milliseconds. CDNs are
now ubiquitous, but they do not solve
the latency problem completely: they
work really well for static content, but
less so for dynamically generated one.

More importantly, the protocols
sending information over the Internet

have not been optimized for latency,
and require many round-trip times
between the client and the server to
download a Web page. In fact, to down-
load a small Web page over the preva-
lent transport protocol stack (HTTP2
running over TLS version 1.2 over TCP)
requires at least four RTTs, severely
inflating Web latency. Higher laten-
cies lead to disgruntled users and less
business, so there is a strong push to
reduce Web latency.

To reduce the number of RTTs and
thus Web latency, non-trivial changes to
the base protocols (HTTP, TLS, and TCP)
are required. While capacity enhance-
ments or CDN deployments were imple-
mented by a single entity (for example,
ISPs), protocol changes require multiple
stakeholders to agree as they first require
standardization, then implementation
by multiple operating systems and fi-
nally deployment on user devices. Fol-
lowing this approach, changes to TCP
were introduced over the past six years
to allow zero-RTT connection setup and
TLS version 1.3 is significantly faster
than 1.2. Unfortunately, such changes to
existing protocols have limited impact
because they must obey the layered ar-
chitecture (HTTP/TLS/TCP), they need
to support legacy applications, and re-
quire huge development resources and
many years to get deployed.

QUIC is a novel protocol proposed by
Google that reduces latency by replacing
the entire HTTP/TLS/TCP stack with a
single protocol that runs on top of UDP.
The key benefit of running atop UDP is
the protocol stack can be implemented
as a user-space application, rather than
in the kernel as needed when chang-
ing TCP, for instance. This implies that
QUIC protocol changes can be pushed
as easily as changing an application.

Google’s QUIC approach is radi-
cal because it bypasses all the hurdles
faced by incremental protocol chang-
es: as Google controls both the servers
and the client stack it can simply imple-
ment the protocol and deploy it both

on its servers and the clients (through
Chrome), as often as it wishes, without
external factors delaying the process.
QUIC was first deployed in 2012 and
has since been continuously updated.
Today, QUIC is widely used and it car-
ries a large fraction of Google’s traffic;
it is also undergoing standardization
to enable other companies to use it,
but standardization follows deploy-
ment, not the reverse.

QUIC’s organic development has
left heads scratching both in the re-
search and standardization commu-
nities. QUIC’s advocates point to im-
pressive performance numbers in its
favor, mostly reported by Google. Its
detractors complain about the lack of
justification for the chosen protocol
mechanisms, and in general the lack
of understanding of the reasons why
QUIC outperforms TCP; the argument
is that without such understanding,
QUIC’s gains could prove elusive when
the network evolves in the future.

The following paper is a bold at-
tempt to unearth the reasons why
QUIC works better than TCP. The au-
thors provide a unique and compre-
hensive insight into QUIC’s behavior
and how it compares to HTTP2/TLS/
TCP. In contrast to many other stud-
ies of QUIC’s performance, the work
by Kakhki et al. does not only focus
on the latest version of QUIC, but ex-
amines all versions comparatively,
contrasting code changes to varying
performance. Furthermore, the pa-
per fights the lack of documentation
by extracting the QUIC state machine
from the code itself. The work is inter-
esting because it sets the basis for a
thorough understanding of why QUIC
works so well and it should be equally
interesting for computer science re-
searchers outside networking.	

Costin Raiciu is an associate professor in the Computer
Science Department at the University Politehnica of
Bucharest, Romania.

Copyright held by author/owner.

Technical Perspective
Do You Know Why Your Web
Pages Load Faster?
By Costin Raiciu

To view the accompanying paper,
visit doi.acm.org/10.1145/3330336 rh

research highlights

doi:10.1145/3330338

