
Debugging P4 programs with Vera
Radu Stoenescu Dragos Dumitrescu Matei Popovici Lorina Negreanu

Costin Raiciu

University Politehnica of Bucharest

firstname.lastname@cs.pub.ro

ABSTRACT

We present Vera, a tool that verifies P4 programs using sym-

bolic execution. Vera automatically uncovers a number of

common bugs including parsing/deparsing errors, invalid

memory accesses, loops and tunneling errors, among others.

Vera can also be used to verify user-specified properties in a

novel language we call NetCTL.

To enable scalable, exhaustive verification of P4 program

snapshots, Vera automatically generates all valid header lay-

outs and uses a novel data-structure for match-action pro-

cessing optimized for verification. These techniques allow

Vera to scale very well: it only takes between 5s-15s to track

the execution of a purely symbolic packet in the largest P4

program currently available (6KLOC) and can compute SEFL

model updates in milliseconds. Vera can also explore multi-

ple concrete dataplanes at once by allowing the programmer

to insert symbolic table entries; the resulting verification

highlights possible control plane errors.

We have used Vera to analyzemany P4 programs including

the P4 tutorials, P4 programs in the research literature and

the switch code from https://p4.org. Vera has found several

bugs in each of them in seconds/minutes.

CCS CONCEPTS

•General and reference→ Verification; •Networks→

Network reliability; Programmable networks;

1 INTRODUCTION

Programmable network dataplanes such as those enabled

by P4 [2] promise to help networks meet ever-increasing

application demands. On the downside, unverified changes

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary
© 2018 Copyright held by the owner/author(s). Publication rights licensed

to the Association for Computing Machinery.

ACM ISBN 978-1-4503-5567-4/18/08. . . $15.00

https://doi.org/10.1145/3230543.3230548

to network functionality can introduce bugs that may cause

great damage. Recently, faulty routers in two airline net-

works have grounded airplanes for days (for both Delta and

Southwest Airlines), showing just how disruptive the effects

of incorrect network behavior can be. Given the momentum

behind programmable networks, we expect such faults and

many others will cripple programmable networks.

In this paper, we argue that dataplane programs should

be verified before deployment to enable safe operation. We

present Vera, a verification tool that enables debugging of P4

programs both before deployment and at runtime. At its core,

Vera translates P4 to SEFL, a network language designed for

verification, and relies on symbolic execution with Symnet

[31] to analyze the behavior of the resulting program. Vera

incorporates a set of novel techniques that together enable

scalable and easy-to-use P4 verification.

Vera exhaustively verifies a snapshot of a running P4 pro-

gram (i.e. the program and a snapshot of all its table rules):

it uses the parser of the P4 program to generate all parsable

packet layouts (e.g. header combinations), and makes all

header fields symbolic (i.e. they can take any value). It then

tracks the way these packets are processed by the program,

following all branches to completion. To improve scalabil-

ity, Vera introduces a novel match-forest data structure that

concurrently optimizes both update and verification time.

Vera automatically checks for common problems in P4

programs including loops, parsing/deparsing errors, tunnel-

ing bugs, overflows and underflows, among others. Since

verification is exhaustive, if Vera does not report problems, it

guarantees the P4 program snapshot does not include bugs

from these categories.

Even if a snapshot of a P4 program is bug-free, there is

no guarantee that the same holds for other snapshots (i.e.

sets of table rules). With Vera, users can explore multiple

table snapshots by specifying symbolic table rules instead of

concrete ones. Such exploration is muchmore costly, because

in the extreme it can test all possible dataplane behaviours of
the P4 program, but it is also very powerful: if it finishes, it

can prove that the program does not have any of the bugs

Vera catches, regardless of the dataplane. Symbolic table

entries are also useful in checking whether a P4 program

conforms to some user-specified policy that is specified in a

subset of CTL (§4.1).

1

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary R. Stoenescu et al.

Ingress	 Pipeline	
valid(ipv4)	
&&TTL>0	 Bu

ffe
rs
	 Egress	 Pipeline	

encap	

*	 1.2.3.4	 5.6.7.8	
IN	 OUT	 ipv4_lpm	

10.0.0.0/8	 Ge0	

DE
PA

RS
ER

	

PA
RS

ER
	

Figure 1: Encap: P4 that encapsulates IP packets.

We have used Vera to analyze many P4 programs includ-

ing the P4 tutorials, a load balancer (Beamer [27]), a packet-

trimming switch (NDP [12]), P4xos [7], an implementation of

Paxos, and the complete datacenter switch implementation

provided by p4.org. In seconds, Vera has found bugs in each

of these programs, with little or no specification effort on

our side. In an accompanying technical report, we manually

prove that Vera correctly translates from P4 to SEFL by defin-

ing the operational semantics for both P4 and SEFL and by

proving that core P4 instruction(s) and their SEFL translation

are equivalent [30].

2 BACKGROUND AND MOTIVATION

An example P4-14 program
1
is shown in Figure 1 and has a

few main parts: the parser, the ingress pipeline, the egress

pipeline and the deparser. The parser transforms the packet

from bits into headers according to a parser specification

provided by the programmer (see Fig. 2). The parser specifi-

cation also dictates how packets are deparsed from separate

headers into a bit representation on output. After input pars-

ing, a ingress control function decides how the packet will

be processed; the control instructions in our example are

shown in red. Then, the packed is queued for egress process-

ing. Upon dequeuing, it is processed by an egress control

function and then it leaves the switch.

Both ingress and egress control functions direct the packet

through any number of match-action tables. The control

functions conditionally steer the packet to various tables

based on header values, metadata or table match outcomes;

packet contents cannot be changed in the control function.

In our example, there is one table used on input, ipv4_lpm,
and one table on output called encap. In the ingress control

function, packets with valid IPv4 headers and strictly positive

TTL values are sent to the ipv4_lpm table; on egress, all

packets are matched against the encap table.
Match-action tables are where the bulk of packet process-

ing takes place. The P4 program defines which fields will be

matched in any given table; for instance, the ipv4_lpm table
matches the destination address field in the IPv4 header. The

actual table rules are provided at runtime by a controller or

statically, when the P4 is deployed; in our example, there is

a single rule for prefix 10.0.0.0/8.

When a packet visits a table, it is matched against the

existing table rules and upon a match the action associated

1
Vera only supports P4-14 at this point; adding P4-16 support is part of our

future work.

parser start {
extract(eth);
return select(eth.type){
0x800 : parse_ipv4;
default: ingress;

}}
parser parse_ipv4 {
extract(ipv4);
return ingress;

}

Figure 2: Parser.

action ipip_encap(srcIP,dstIP) {
add_header(inner);
//copy outer to inner header
copy_header(inner, ipv4);
//set outer header addr. and proto
modify_field(ipv4.src, srcIP);
modify_field(ipv4.dst, dstIP);
modify_field(ipv4.proto, 0x5E);

}

Figure 3: Encap action.

with the rule is executed. Actions can change packet contents

(modify fields, add or remove headers) or metadata, drop or

clone the packet. For instance, when a packet destined to

10.0.1.1 visits the ipv4_lpm table, it will match the 10/8 rule

and execute the associated action. This action is not shown

in the example, but it sets the egress_spec metadata to that of

interface “Ge0”, among other changes. After table matching,

packet processing resumes in the control function where the

outcome of the match—the executed action, if any—can be

used to decide how the packet will be processed next.

After ingress processing, if the packet is not dropped, it is

placed in one of the queues for the egress interface based on

the egress_spec metadata (this and other implicit edges are

shown as black arrows in Fig.1). It then continues to egress

processing, as dictated by the egress control function. In

Fig. 1 the packet will visit the encap table where all packets

execute the ipip_encap action (code in Fig. 3) that adds an

inner IP header, copies the outer header to the inner header,

and then modifies the outer header with addresses given as

parameters. On egress, other processing includes changing

the ethernet addresses and computing checksums.

Debugging P4 programs is hard.Despite its apparent sim-

plicity, programming P4 is often counter-intuitive and unex-

pectedly difficult, and debugging P4 programs is particularly

challenging. In traditional programming, hardware traps in-

terrupt the program when a critical error such as unmapped

memory access or division by zero is attempted, and debug-

gers can quickly track the source of such errors. Unfortu-

nately, this is not the case with P4 programmable switches:

when present, errors are handled silently at runtime: the

packet triggering the offending behavior is either dropped

or modified in unspecified ways; in both cases, tracking the

location of the bug is very difficult, even when using the soft-

ware P4 switch (the behavioral mode switch). Loops are also

very difficult to catch: a single looping packet will slightly

decrease the throughput; only when the pipeline fills with

looping packets the throughput will collapse and the effects

will be easily visible externally.

We have discovered a variety of bugs in the P4 programs

we have access to. The most common mistakes seem to be

parser bugs, invalid header accesses and encapsulation bugs,

but we have also seen out-of-bounds register accesses and

loops caused by recirculated packets. Most of these bugs are

facilitated by traits of the P4 language that we discuss next.

2

Debugging P4 programs with Vera SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

An overarching problem of P4 is that it is not memory-

safe. When an uninitialized header field is read, the switch

behavior is unspecified; the packet could be dropped, or

a quasi-random value returned. Since the switch does not

throw any runtime exceptions, catching and fixing such bugs,

especially if they are triggered rarely, is a nightmare.

Another fundamental problem is that P4 programs are

underspecified. First, functionality is split between the P4

program and the match-action rules inserted at runtime. At

compile time only the program is available and, sometimes, a

few static rules that will be inserted in the P4 tables at startup.

The runtime rules are unknown as they will be generated and

inserted by the control plane, a separate piece of software.

The programmer thus has to understand the behavior of a

seemingly underspecified program, which is far from easy.

Secondly, a lot of P4 processing is performed implicitly,

without being explicitly requested by the programmer. In

our example, packets without a valid IPv4 header, or with

zero TTL will arrive at the buffers without the egress_spec
metadata value set, and will be implicitly dropped. Such im-

plicit drop behavior seems convenient, but it can result in

the program dropping useful packets and is difficult to de-

bug. To avoid such errors, the programmer should explicitly

drop unwanted packets instead, but reasoning about all such

packets is difficult at compile time.

Thirdly, dropped packets in the ingress pipeline continue

match-action processing (because of the difficulty of remov-

ing packets from the pipeline), and they maymatch entries in

downstream tables. Such behavior may lead to errors where

packets dropped by one table (e.g. acl) are later revived

unintentionally by another table (e.g. lpm).
Another peculiarity that is unique to P4 is that parsing

must account for all header layouts the P4 program can

accept on input and emit on output, despite the fact that

the code is written in terms of ingress parsing (see Fig. 2).

A common mistake, also present in our example, is when

the header layout of outgoing packets is not captured in

the parser spec: in our case, we do not parse the inner IP

header. At deployment, this bug will make our program

output packets that only contain the outer (encapsulation)

header. Finding the root cause of the bug is quite difficult,

but fixing it is easy enough. For this, the parse_ipv4 code
in Fig.2 could be replaced by:

parser parse_ipv4 {
extract(ipv4);
select (ipv4.protocol){
0x5E: parse_inner_ipv4;
default: ingress;}

parser parse_inner_ipv4 {
extract(inner_ipv4);
return ingress;}

The new code correctly deparses encapsulated packets, but
has an unintended consequence: incoming IP-in-IP packets

will have their inner header overwritten: in the encapsula-

tion action, when a new inner header is added and its fields

modified, they will overwrite the existing inner header. We

can fix this bug by checking that the inner header is invalid

before encapsulation, or by using a header array instead.

encap shows how easy it is to make mistakes even in

very simple P4 programs. Our analysis has found bugs in

all the P4 tutorials (found at https://p4.org/code/), despite

their simplicity and reduced size. As runtime debugging of

P4 programs is tricky, developing even simple, correct P4

programs is a challenging task.

Verification approaches. If P4 is to meet its goal of en-

abling programmable networks that replace today’s reliable,

ossified ones, we must ensure P4 programs are easy to debug

and fix. An ambitious goal is to catch all bugs at compile time.
In verification, there is a fundamental trade-off between

specification effort and verification complexity. Iterative de-

sign and specification approaches such as Cocoon [29] re-

quiremassive input from the programmer/verifier but are fea-

sible computationally and guarantee that the generated code

matches the specification. As network processing changes

quickly, such approaches are both unlikely to keep up and

will be too expensive to use in most networks.

At the other end of the spectrum, we can use testing and

simply inject all the packets that the program’s parser will

accept and then check if their processing leads to problematic

behavior. Such testing requires almost zero specification and

it covers all possible behaviors, but will scale poorly.

Symbolic execution is an excellent middle-ground: it can

potentially explore the processing of all possible packets

and does not require programmer input for verification. For

traditional programs, symbolic execution offers much better

code coverage compared to testing [3], but it rarely explores

all possible paths, and thus it is not exhaustive—it does not

guarantee absence of bugs. Network dataplanes are however

much simpler than standard C code, e.g. they do not include

loops. Exhaustive dataplane symbolic execution has been

shown to be feasible for moderate sized networks [31, 8].

3 VERA: SYMBOLIC EXECUTION FOR P4

We present Vera, a verification tool that uses symbolic exe-

cution to test the behavior of P4 programs for all possible

packets. To run Vera, the user passes as arguments the name

of the P4 source file together with a set of commands that

insert table rules at program startup. Vera first translates

the P4 program together with the provided table rules to the

SEFL language, obtaining an equivalent program (see §3.2

for details). The resulting SEFL program is a collection of

virtual ports, each with associated SEFL instructions.

A sketch of the SEFL version of the encap program is

given in Figure 4, where edges denote how packets may flow

3

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary R. Stoenescu et al.

input	

parser	

control.ingress	

parser.start	

parser.parse_ipv4	

table.lpm.0	

router.buffer	

control.egress	 deparser	

table.encap.0	 output	

Figure 4: Ports generated by Vera for Encap P4.

through the program. Snippets of SEFL code generated by

Vera for encap are given in Figures 6 and 7.

Vera examines the P4 parser state machine and generates

one symbolic packet for each header layout that can be ac-

cepted by the program; in the encap example, it will generate

two possible packets: one containing an ethernet header and

another one containing an ethernet header followed by an

IP header. The symbolic packets have all their fields set to

symbolic values, meaning they take any value in their do-

main. Vera injects these packets into the input port of the
program and uses Symnet [31] for symbolic execution.

In Symnet, one execution path represents one symbolic

packet and its associated metadata, possibly with constraints

for the header or metadata values (we use packet and path

inter-changeably). As long as it has active packets, Symnet

selects one of them and executes the next SEFL instruction

for that packet. All packets are processed until completion.

Completed packets can either be failed or successful. Failed

packets were either dropped or have triggered a bug and

were terminated by Symnet. Successful packets have fields

with feasible constraints or concrete values, and no more

instructions to execute (e.g. at the output port).
When symbolic execution finishes, the output is a list of

packets. For each packet we know if it is failed or successful,

the ports it has visited, the instructions it has run, and the

state of each header field and metadata: concrete values or

constraints for the symbolic header fields.

In Fig. 5 we show the output of Vera when injecting an eth-

ernet/IP packet in the encap program. The initial packet is

shown as a white box. Path constraints are shown as annota-

tions on the different edges. All final states are shown in red

and represent failed packets. Vera finds four different pack-

ets; each of these takes a different path from the input to the

output states in Fig. 5. Three of these paths result in implicit

packet dropping in the buffering mechanism: when eth.type

is set to a value different from 0x800, when ipv4.TTL is zero

or less, and when the destination address does not match

10/8. A single packet makes it to the deparser; its constraints

are eth.type=0x800, ipv4.TTL>0 and ipv4.dst matches 10/8.

Despite this, the packet fails in the deparsing stage because

the inner IPv4 does not exist in the parser specification.

In the rest of this section we describe in more detail why

translating P4 to SEFL is the right choice (§3.1), how the

translation is performed (§3.2), howwe can deal with missing

table entries (§3.4) and how symbolic execution can besped

up by smartly generating the match-action table code (§3.3).

*	
parser.start	

eth.type	
==0x800	

implicit	
drop	

buffer.in	

eth,ipv4	

control.ingress	

ip
v4
.T
TL
<=
0	

ipv4.TTL>0	
table.lpm.0	

ipv4.dst==10/8	

deparser	

deparse	
error	

Figure 5: Symbolic execution of encapfinds four failed
paths for ethernet/ip packets.

3.1 Why Symnet/SEFL?

In principle, any symbolic execution engine can be used

with similar results. We chose SEFL/Symnet because it has

been optimized for network dataplanes, showing superior

performance to llvm/Klee [31]. Secondly, Symnet offers a

memory model very similar to that of P4 (packet headers

and metadata) and, in addition, it offers memory safety—

unallocated or misaligned header accesses are automatically

caught, as are header overlaps. These traits considerably

simplify bug catching during symbolic execution, allowing

us to focus most of our effort a correct translation from P4 to

SEFL. Finally, there already exists a wide range of compilers

that take FIB snapshots, Click modular router configurations

and output SEFL, meaning we can integrate our P4 models in

larger legacy networks and perform network-wide dataplane

verification without any added cost.

3.2 Translating P4 to SEFL

The expressive power of P4 is very similar to that of SEFL.

This is perhaps not surprising as both languages have been

designed to capture data plane processing, albeit for different

end goals: SEFL aims to enable cheap verification while P4

aims to be easily deployable in hardware. Neither SEFL nor

P4 have loop instructions.

SEFL allows creating any number of named ports, which

have associated SEFL instructions. The packet gets directed

to these ports explicitly, by using the forward instruction,

or implicitly, via directional links where each link connects

two ports. Our parser uses ports to preserve the layout of

the P4 program in the SEFL program it outputs.

SEFL has two types of variables: packet headers and meta-

data. Metadata are key/value pairs where the keys are strings

and values can take any type. Packet headers are allocated

in a linear address space, and all fields have absolute starting

addresses. SEFL offers memory safety: any access to unallo-

cated metadata or packet header fields terminate the current

execution path. Additionally, packet header accesses must

always be aligned to be allowed, and field allocation ensures

neighboring fields do not overlap. P4 also has two types of

variables: metadata, which we naturally map to SEFL meta-

data, and packet header fields.

4

Debugging P4 programs with Vera SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

parser.parser_start:	
exists(current,48);	
exists(current+48,48);	
exists(current+96,16);	
eth.src	 =	 @current;	
eth.dst	 =	 @(current+48);	
eth.type	 =	 @(current+96);	
current	 +=	 112;	
valid.eth	 =	 1;	
If	 (eth.type==0x800)	

	 Forward(extract_ipv4);	
Else	 	

	 Forward(control_ingress);	
	

exists(current,4);	
...	
exists(current+128,32);	
ipv4.version	 =	 @current;	
...	
ipv4.dst	 =	 @(current+128);	
current	 +=	 160;	
valid.ipv4	 =	 1;	
Forward(control_ingress);	
	

parser.parse_ipv4:	

Figure 6: Generated code for the P4 parser.

When a packet enters a SEFL-P4 program, it is encoded

as a series of successive header fields (as it is in practice).

Our translation for the P4 parser code generates one port for

each path in the parse tree. The packet is directed from input

to the parser.start port. The current parse location in

the header is remembered as a SEFL tag which is a pointer to

a location in the packet. When the packet enters the P4 box,

we create the current tag as follows: CreateTag(current,
START); START is a tag maintained by SEFL that points to

the beginning of the packet.

A known problem with any verification approach is that

checksums cannot be verified when header fields are sym-

bolic; however this verification is a crucial part of the parsing

process. Instead, we validate headers by checking that header

fields are allocated at the right locations before we extract

a P4 header, as suggested by Symnet [31]. In particular, to

implement the extract call, we generate one check for each
header field to be extracted (see Fig. 6). For this, we use

the exists instruction in SEFL that checks for an allocated

variable of given size at a certain position in the header.

If the packet header does not match the expected lay-

out, one of the exists functions will fail, and the error will

be logged. If all the header fields exist, the parser imple-

mentation in SEFL then proceeds to create a SEFL metadata

value for each parsed header field; the name of the meta-

data is header_instance.field_name. When parsing is condi-

tional, constraints are added as shown in the example for the

eth.type field. After parsing has finished, all parsed headers

are available as SEFL metadata. In addition, the SEFL code

initializes P4 metadata and other information from the parser

(e.g. which headers are valid), and forwards the packet to the

control.ingress port that contains the SEFL code for the

ingress control function. Translating control flow instruc-

tions is straightforward, as there is a one-to-one mapping

between SEFL and P4 instructions here. We show the code

for the ingress pipeline of encap in Fig.7.

To translate match-action table processing, Vera gener-

ates a new port for each apply call and associates with it

the SEFL code implementing match-action processing (e.g.

table.lpm.0 in Fig.7). The port name is guaranteed to be

unique as it is formed by concatenating the table name and

control.ingress:	
If	 (valid.ipv4==1&&ipv4.ttl>0)	

	 Forward(table.lpm.0);	
Else	 	

	 Forward(buffer.in);	

If	 (ipv4.dst	 match	 10/8){	
	 lpm.0.Hit	 =	 1;	
	 lpm.0.action.lpm	 =	 1;	
	 ipv4.ttl-‐-‐;	
	 meta.egress_spec	 =	 1;	

}	 Else	 lpm.0.Hit	 =	 0;	

Forward(control.ingress.1);	

table.lpm.0:	

control.ingress_1:	
Forward(buffer.in);	

Figure 7: Generated code for the ingress pipeline.

a per table sequence number. The parser also creates a new

port in the control function (control.ingress.1 in our ex-

ample), where processing will resume after table processing.

To execute an apply call, we insert in the control function a

forward to the respective table invocation port. Table pro-

cessing will finish with a forward to the control function.

Vera directly translates all P4 primitive actions to SEFL.

Registers are arrays of predefined size , and translating

them is tricky because SEFL does not have array support for

metadata. Vera creates one metadata for each array entry;

the name of each metadata includes its location in the array

(e.g. the variable a[0] holds the first value in the array, a[1]
the second, and so forth). To access a register value, we insert

a series of if/else instructions that successively test the

value of the index at runtime against all possible locations,

and then access the correct array location. While inneficient,

this solution does not increase the number of explored paths

when the index is concrete.

The various clone actions are implemented using the

fork instruction which creates a new execution path that is a

copy of the current path. On the cloned path the instance_type
metadata is set appropriately. and the packet is then redi-

rected either to buffering or parser input. Packet redirection

actions such as resubmit or recirculate are implemented

by forward to the parser input port.

The drop action, when applied on ingress, is implemented

by setting the egress_spec to a predefined value (511). The

packet is only dropped when it reaches the buffering mech-

anism, as per the P4 spec. In the egress pipeline, drop is

implemented using the fail instruction that terminates the

current path and prints an error message.

Whenever a header instance must be added or removed,

our SEFL code first checks that the header is valid (for re-

moval) or invalid (for addition), throwing an exception oth-

erwise. Creating the header instance is easy: we generate

SEFL code to allocate SEFL metadata for each field; the name

will be instance.field, and is guaranteed to be unique by the

P4 compiler. Copying headers is similarly trivial to translate.

Dealing with header arrays, however, is a bit trickier be-

cause SEFL does not have support for arrays. To circumvent

this problem we have implemented a working but inefficient

solution that relies on the fact that header arrays have a

predefined size and additions/removals are always done at

locations known at compile time. Below is the implementa-

tion for add_header(ip[0]) for an array of maximum two

5

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary R. Stoenescu et al.

headers: the code simply treats all possibilities, in parallel.

The first path will succeed if there is no header in the header

array yet, otherwise it will silently fail. The second path will

only succeed when the first header is valid but the second

one is not, and the third will throw an exception when both

headers are allocated and adding a third is not possible.

Fork { Path1: If (!Exists(ip[0])) { ip[0].valid = 1;}
Path2: If (Exists(ip[0]) && !Exists(ip[1])) {

ip[1].valid = 1;copy_header(ip[1],ip[0]);
forall f in fields(ip[0]):
ip[0].f = 0;}

Path3: If (Exists(ip[0]) && Exists(ip[1])){
Fail("Attempting to add header in a full array")}}

While inneficient, this solution works well enough for the

examples we tested, mostly because header array sizes used

in practice are fairly small. A more elegant solution requires

array support in SEFL—we leave this to future work.

The final step in the pipeline, deparsing, is the inverse pro-

cess of parsing. First, the SEFL program searches for a path

through the topologically sorted parse tree which matches

valid header fields. If such a path is not found, a deparsing

exception is raised; otherwise, the P4 spec guarantees that

a single path is possible, and the code simply copies the

metadata to the packet layout, before releasing the packet

to the specified egress interface. The deparser also raises an

error when it finds an extra valid header that does not match

the selected parse tree path. This catches a common class of

deparser bugs, such as those discovered in Beamer (see §5).

Unsupported features. Currently, Vera does not handle

hash computations (e.g. for ECMP). As a result, all checksums

are always set to symbolic values, and header validity does

not validate checksums, using the header field alignment

to detect bad packets instead. Vera does not support ECMP

either; a possible solution is to fork the packet on all possible

ECMP paths, and explore each path independently.

3.3 Fast verification of match-action tables

The match code for match-action processing is easy to trans-

late into a series of If/Else SEFL instructions. The result-

ing code will have at least as many If instructions as table
entries, and this will make symbolic execution explore a sep-

arate execution path for each table entry. With enough table

entries, symbolic execution will be infeasible to use.

To ensure symbolic execution actually scales to large P4

programs, we need to optimize the match code while pre-

serving its functionality. There are two general directions

of optimization: a) reducing the number of paths explored

by symbolic execution and b) reducing the number of con-

straints that need to be checked by the solver on each path.

The first part is fairly easy: we generate exactly one path

for each distinct action invocation in the table rules. For

an ACL table that has two actions (nop and drop), we will
generate the following code:

Figure 8: Match condition forest

Fork { Path1(nop): Constrain(...);
Path2(drop): Constrain(...); drop();}

For routing, the forward action has a parameter that specifies

the output interface. In this case, our code will group all

forward actions that have the same parameter into a single

path, generating in effect one path for each output interface.

The second part of code generation is to ensure the path

constraints are correct. This step is not trivial as the code

must not only include the constraints for the associated rules,

but also negated constraints for higher priority rules. As an

example, the default route should forward a packet only

when no other forwarding rule matches; the constraints in

this case must include the negation of all other forwarding

rules which have higher priority. From a table-wide perspec-

tive, if we have many overlaps, the worst case number of

constraints is quadratic in the number of entries. With FIB

sizes in the order of 100K, this is a show-stopper.

Our solution builds upon existing work [17, 4] and is ap-

plicable to a wide range of matching strategies including

longest-prefix match, range, etc. At the core of our solution

lies a data structure consisting of a forest of trees. To ease

presentation, we show an example that matches a single

field in Fig.8. In the figure, one node represents the match

condition for one table rule and the colors represent rule

priority (red>green>blue). In this data structure any pair of

nodes falls in one of the four situations below:

(1) The nodes are completely independent if their corre-

sponding conditions do not overlap.

(2) Parent-of - a node is the parent of another if the value

domain corresponding to the child is strictly a subset of

the one for the parent (red links). The parent must have

lower priority than the child.

(3) Ancestor-of(dotted line) - when two nodes are con-

nected in the same tree by several ’parent-of’ links.

(4) Neighbor-of(blue) - nodes that have overlapping con-

ditions, but neither condition is fully contained by the

other; and neither node has an ancestor linked to the

other node via a ’neighbor-of’ link. As with ’parent-of’

links, the source has priority lower than the destination.

To add one node to our data structure, we start at the top

of the forest, checking which nodes overlap with the new one

(we implement this efficiently using interval trees). If there

is no overlap, we add the new node as a standalone one. Oth-

erwise, the new node will become either a parent, a child or

6

Debugging P4 programs with Vera SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

PA
RS
ER

	 t_ingress_2	 IN	 meta.f1	 =	 0	 match(meta.f1)	 ac;on	

y	 nop	
resubmit	

resubmit	

x	

y	

meta.f1	 =	 1	

Bu
ffe

rs
	

Figure 9: Using symbolic table entries to analyze the

Resubmit P4 tutorial.

a neighboring node. If it becomes a parent or neighbor node,

the node is inserted at the current level and the appropriate

links are created. If it is a child, then the algorithm continues

recursively in the subtree rooted at its newly found ancestor.

Complexity is logarithmic in the number of nodes.

Given this forest, it is trivial to construct the minimal

constraint required to match any given node: add the node’s

condition and the negated constraints of all its children and

neighbors. We have proven that our algorithm generates

the theoretical minimum number of constraints. Intuitively,

this is because we only add the negated constraints of the

direct children and neighbors, and not those of ancestors.

In figure 8 red nodes have the highest match priority, then

green and lastly blue ones. At first, node [0-10] should add

negated constraints for all its sub nodes, plus all the nodes in

the tree rooted at [5-15]. Looking closer, negated constraints

for [10-15] and [2-3] are redundant since the constraints

corresponding to their ’parent’ nodes mitigate the overlap.

We implemented the forest construction algorithm in its

most general form, that can handle range, longest-prefix and

wild card matching and analyze its scalability in §5.

3.4 Symbolic table entries

Vera provides exhaustive program analysis for any given ta-

ble rule snapshot, but such snapshots do not cover all possible

rules that may be inserted; worse, at compile time the only

available rules are static rules that help test common-case

functionality, so catching difficult bugs requires carefully

chosen rules by the programmer or some form of continu-

ous snapshotting in deployments; the first approach doesn’t

scale, while the latter will lead to faulty dataplanes being

actively used. Worse, even if a P4 program is deemed correct

for many interesting snapshots of its match-action tables, it

may not be correct for other snapshots.

To enable exploring a larger space of possible table snap-

shots, Vera allows the programmer to insert symbolic entries

in match-action rules for both field matches and action pa-

rameters. A symbolic rule uses the same format as its con-

crete counterpart with the difference that both the match

entries and action parameters can take symbolic values.

Consider the example in Fig. 9 where we show a part of

the ingress pipeline of the Resubmit P4 example application.

The match criterion for the table t_ingress_2 is the meta-

data field meta.f1. The corresponding action can either do

nothing (sending the packet to buffering) or resubmit the

packet to the parser, also modifying meta.f1 to 1.

To better understand the behavior of this program, the

programmer has added two symbolic rules in the table, one

for each possible action, and x and y are the respective sym-

bolic match values. When exploring this P4 program, Vera

will treat x and y as any other symbolic variable, collecting

constraints and checking their feasibility. The two correct

paths correspond to the packet directly hitting the nop ac-

tion (x ! = 0, y == 0), or being resubmitted and hitting the

nop action (x==0,y==1). Vera also finds two faults, both cor-

responding to cases where the packet is implicitly dropped

because it doesn’t match any rule; the constraints for the two

faulty paths are {x!=0, y!=0} and {x==0, y!=1} respectively.

Using this information, the developer of the controller

program has valuable insights regarding which rules can

break the intended functionality for the t_ingress_2 table,

and is assured that its code does not loop for any values of x
and y for the existing rules. Note that this does not mean the

program can never loop, regardless of its table entries. If we

add onemore symbolic rule with field z and action resubmit,
Vera finds a loop where x == 0, z == 1 and y! = 0, 1.

Symbolic table entries allow the programmer to explore a

wide range of dataplane behaviors and to reason about the

actions the controller must take without verifying the con-

troller itself (such verification is much more difficult because

the controller is a general-purpose program).

In our example, we have manually inserted rules. Which

rules are needed to explore all possible dataplane behaviors

for generic P4 programs? To answer this question, first con-

sider a program that does not recirculate packets and contains
a single table T1 that has n possible actions a1, a2, ..., an . In
[30], we show that it suffices to add n symbolic entries (one

per action) to explore all possible behaviors. If the program

has another table T2, we can apply the same rule: one sym-

bolic entry per action will explore all possible behaviors. In

fact, as long as we keep adding different tables and there

is no recirculation, adding one symbolic entry per action

per table is guaranteed to explore all possible behaviors. To

achieve the same goal with recirculation, we need to add

one additional symbolic rule for each recirculation. Symbolic

table entries can produce all the possible behaviors of an ar-

bitrary P4 pipeline, without knowledge about the controller

behavior. The resulting constraints on the symbolic rules

can pinpoint what concrete table entries will reproduce the

behavior captured by Vera (see [30] for details).

3.5 Translator correctness

Guaranteeing correctness of code translation is a major pre-

condition for correct software. In our work correctness is

based on the formalization of P4 and SEFL semantics and

7

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary R. Stoenescu et al.

the proof of operational correspondence between the two

semantics. We used the "big-step" operational semantics, for

both P4 and SEFL statements. The semantics defines a re-

lation of the form ⟨S, s⟩ → s ′ where the pre-state s and

post-state s ′ represent the states before and after execution

of the program statement S . The definition of → is given

by the associated semantic rules. The proof relies on the

semantic equivalence of the statements. We consider two

statements to be semantically equivalent if for all states s and
s ′ ⟨S1, s⟩ → s ′ if and only if ⟨S2, s⟩ → s ′. We developed the

"big-step" operational semantics for P4 and SEFL core state-

ments and showed the operational correspondence between

the two semantics. A specification of the semantics of the

relevant statements of P4 and SEFL together with the proof

of the operational correspondence can be found in [30].

4 DEBUGGING P4

By default, Vera inserts checks that capture a wide range of

bugs in P4 programs and flags such bugs to the user as failed

paths. For each failed path, Vera also generates a concrete

packet that matches the path constraints which can be used

to test the bug in P4 switches, be they software or hardware.

Below are the types of errors that Vera catches automatically:

• Implicit drops are flagged when a packet reaches the

buffering mechanism without having an egress_spec set.
Vera catches this by adding an assertion that the egress_spec
must be non-zero when it reaches the buffer.in port.

• Table rules that match dropped packets are flagged as

errors by adding an assertion that eдress_spec , 511 in

the preamble of all actions.

• Invalidmemory accesses are frequent P4mistakes, when

users do not test the validity of a header before using its

fields. Vera relies on Symnet’s memory safety guarantees

to capture these errors; when accessing an unallocated

field, Symnet will fail the current path.

• Header errors Malformed headers are captured during

parsing by using the exists SEFL instruction. Adding an

existing header or removing an inexistent one are also

caught automatically as deparsing errors.

• Scoping and unallowed writes Certain metadata values

are read-only in P4, yet the P4 compiler allows the program

to write them (e.g. the egress_port metadata). Further,

static registers can only be read from one table according to

the spec, yet the compiler allows such reads. Vera catches

such errors during translation.

• Out-of-bounds array accesses are caught automatically

by Vera by adding, before each array access, an out-of-

bounds check for the index. At runtime, the solver will

check if the constraint is satisfiable and if it is the user will

get a failed path providing an example packet that triggers

a possible out-of-bounds access.

• Field overflows/underflows are the only arithmetic ex-

ceptions possible in P4 (because division is not supported)

and Vera catches them by adding a check before each ad-

dition/subtraction operation.

Loops are also caught automatically. The loop detector runs

by default on the parser input port and on the egress in-

put port which are the two places where packets can be

redirected backwards in the P4 pipeline. Whenever a packet

enters one of these ports, Vera remembers the entire mem-

ory state (i.e. the values and constraints or all the metadata

and header fields). When a packet revisits the same port, its

memory state is compared to all the previous saved mem-

ory states. Two memory states are different iff at least one

symbol has a different value in the two states. Note that we

compare not only concrete values, but also symbolic ones:

if a metadata is bound to the same symbolic value in both

states, it is deemed to be equal. Whenever Vera discovers

two memory states that are equal, it fails the current path

with the “loop detected” message. We provide a proof that

our loop detection will always detect loops on the main in-

put port, as long as there is enough memory to remeber all

previous memory states in [30].

We note that even if a P4 program does not have any of

the bugs above, it may not do the job it is supposed to. For

instance, a router that explicitly drops all packets it receives is

bug free but it also doesn’t do anything useful. It is therefore

important to also be able to reason about the correctness

of the P4 program. The correctness properties each box has

to conform to depend on its intended use, and differ among

different network boxes. In the next section we describe a

specification language that enables specifying a wide-range

of correctness properties for network boxes and explain how

Vera automatically verifies whether these properties hold.

4.1 Correctness verification with NetCTL

For any given P4 program, Vera will explore a large number

of paths, many of which are successful. In our evaluation, we

typically see hundreds such paths. Examining themmanually

to decide whether the behavior is correct is time consuming

and error-prone. We wish to specify desirable properties and

have Vera check them automatically.

The specification must combine packet constraints at spe-
cific ports of the P4 switch (or state properties) with constraints
over the possible paths which the packets may take between

ports (or path properties). We can already express state prop-

erties via SEFL instructions. For instance, the property ‘des-
tination IP is always X at port out’ can be verified by placing

the SEFL instruction Dest-IP != X at port out and observing

that no successful paths from port out are possible.

In order to express path properties, we have considered

a wide range of SDN policy languages, e.g. the Kinetic[18]

8

Debugging P4 programs with Vera SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

family, FatTire[28], NetPlumber[14], as well as approaches

relying on logic programming (e.g. FML[13]). We have found

that all such languages are limited in their ability to express

compositional constraints.

We have thus turned to Computation Tree Logic (CTL)

[6]. In CTL, temporal operators such as F (i.e. sometime in

the future) and G (i.e. always in the future) are combined

with path quantifiers: ∃ (on some path) and ∀ (on all paths).

For instance, the policy: ∀FdestTCP == 80 evaluated at some

port P of a box, expresses that on all possible packet paths

from P, destTCP will eventually become 80.

The syntax of NetCTL is given below:

φ ::= SEFL | ¬φ | φ ∧ φ | XYφ

where where X ∈ {∃,∀},Y ∈ {F,G}.

Unlike Merlin, FatTree or NetPlumber, in NetCTL we can

construct more complex properties starting from simpler

ones. For instance, we can express that ‘’whenever the IP
destination of a packet becomes a public address, port P is
reachable” via the formula:

∀G(ip != 192.168.0.0/16 → ∃F port == Internet)

CTL can express many other properties such as invariance

across tunnels and TCP connectivity.

Checking NetCTL with Vera. To check that a property

written in NetCTL holds for a given P4 program, it suffices

to run Vera on that program—i.e. inject all accepted header

layouts, making all fields symbolic, including table entries—

and then check the property against all resulting symbolic

execution paths. Since the reunion of all execution paths ac-

curately describes the behaviour of the P4 program, NetCTL

verification is guaranteed to provide an accurate answer.

However, this approach is quite inefficient because in

many cases we can check a property without exploring all

possible paths; for instance ∃φ is satisfied as soon as the φ
holds on one symbolic execution path, without requiring

further exploration of the remaining paths. That is why Vera

checks NetCTL properties during symbolic execution.

In our implementation, NetCTL verification is performed

as added checks on the packets after each SEFL code block

is executed; the overhead of these checks is very small in

practice. After every check we can decide to prioritize a

certain path or stop execution altogether. Because of this,

in most cases, Vera checks NetCTL properties faster than

exhaustive symbolic execution (see §5). We have proven that

the resulting verifier is correct, i.e. a formula is reported true

by the verifier iff it is true c.f. our NetCTL semantics [30].

In Fig 10, we briefly illustrate NetCTL verification. The

figure describes two symbolic execution traces performed on

the same topology — a simplistic illustration of the P4 NAT

model, described in more detail in the subsequent sections.

Boxes represent SEFL code blocks and solid lines — links

in
ext

∀F	port == cpu

cpu

✗

in ext

∀G	port {in,cpu,ext}

cpu

✗

∉	

✗

✗

Figure 10: NetCTL example

between boxes. Dashed lines describe the paths explored

by our verifier. The formula φ1 = ∀F(port == cpu) (left)
expresses that all paths eventually reach port cpu. In order to
evaluate it, our checker performs symbolic execution starting

at port in. The checker will explore each encountered path

until port == cpu is satisfied, the path ends, or it becomes

unsatisfiable. Suppose the checker explores three paths, as

shown in the figure. Since the formula F(port == cpu) is
true on the first two paths only, φ1 is false.

The formula φ2 = ∀G(port < {in,cpu,ext}) (right) ex-
presses that all packets are dropped by the NAT. To verify it,

our checker will determine if port < {in,cpu,ext} is true
on each execution path, and after each SEFL code-block. In

our example, this is indeed the case, thus the policy is true.

5 EVALUATION

In our evaluation we seek to understand the coverage Vera

provides and its scalability to large P4 programs (LOC) as

well as large match-action tables. Tests where run on a server

with a quad-core i5 processor and 8GB of RAM.

We discuss the bugs we found in a series of available P4

programs in §5.1. We then use NetCTL to express the cor-

rectness properties of a NAT and verify whether the simple

NAT tutorial has these properties in §5.2. Finally, we exam-

ine how verification time scales with the number of rules in

match-action tables in §5.3.

5.1 Bugs caught

We have used Vera to examine many P4 programs, but we

do not claim our evaluation is exhaustive in any way. We

ran tests in two ways: first, with command files supplied by

the authors and using symbolic entries.

A summary of results is shown in Table 11 where the

programs without a citation are from the official P4 code-

base. We list the size of each P4 program, the time it takes

Vera to exhaustively verify it, and the bugs we have found.

Vera has found multiple bugs in each program we have ex-

amined. When using concrete table entries, the verification

time ranges from 1s for all possible packets for toy programs

(P4 tutorial) to around 15 seconds for switch.p4 for one

symbolic packet. With symbolic table entries, the runtime

for all programs except the switch is under 10s; for the switch

with fully symbolic table rules, Vera does not finish in three

hours of running (details below).

9

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary R. Stoenescu et al.

Program Size
(LOC)

Verification
time (sec)

Implicit
drop Parsing Deparsing Header ops. Invalid

access
Underflow
/ overflow Loop

Processing
dropped
packets

copy-to-cpu 70 0.1 • •

resubmit 70 0.4 •

encap 130 0.45 • • •

simple router 145 0.55 •

simple NAT 290 1.25 • •

simple router + ACL 200 0.8 • •

Axon 100 14 • •

Switch 6000 5-15/sym.pkt. • •

Beamer mux[27] 340 1.4 • • •

NDP switch[12] 210 0.8 •

P4xos[7] 650 13.4 • •

Figure 11: Bugs found by Vera in P4 programs available publicly.

The severity of the bugs we found differs: some bugs are

critical and will impact heavily the operation of the program

(for instance out-of-bounds accesses or deparsing errors)

while others are more benign. For instance, implicit drops

are present in many programs, but their severity is not as

high so they can be considered “warnings”.

We now discuss some of the more interesting bugs in more

detail. The copy-to-cpu tutorial is meant to show how a

packet can be forwarded to the controller; a 16 bit cpu_header

is added to the packet and sent to the CPU. The program has

a parser bug in the following piece of code:

return select(current(0, 64)) {
0 : parse_cpu_header;
default: parse_ethernet;

}

Vera found two bugs in this code. When the input packet

contains a single ethernet header, if the first 64 bits are set

to zero this the parser will try to extract the cpu_header

which will fail. However, even when the packet contains a

cpu_header the code is wrong: the header is only 16bits, so

the checkwill also include the ethernet source address.When

the latter is not zero (most often), the parser will assume this

packet is pure ethernet and try to extract the ethernet header,

which will fail. In other tutorials which parse the cpu_header,

the cpu header definition includes a 64bit preamble which

must be zero; updating the header definition would also fix

the copy-to-cpu example.

Beamer [27] is a load balancer: it takes packets, encapsu-

lates them with an IP-IP header, and sends them to a backend

server. In Beamer, Vera has found a typical deparsing bug.

The exact encapsulation depends on the TCP destination port

in packets: if the port is less than 1024, the output packet lay-

out is eth,ip,ipopt,ip, and this is deparsed correctly. If the port
is larger than 1024, the output packet does not include the

ipopt header and this leads to a deparsing error because this

packet is not correctly parsed by Beamer. When we shared

our findings with the Beamer authors, they mentioned that

their prototype also had a deparsing error on the first branch

which they caught after some effort, but they had missed

this bug that was not tested by their unit tests.

P4xos [7] is a P4 implementation of the Paxos protocol.

Vera has found an out-of-bounds static register access in

action read_round in the following instruction:

register_read(local_meta.round, rounds_register, paxos.inst);

The problem is that the inst header field can take any value,

leading to faulty accesses (a todo in the code acks this issue).

Switch is the largest P4 program available today; it imple-

ments the full stack of protocols needed to operate a datacen-

ter top-of-rack switch and is thus a good benchmark for our

verification tool. Verification of a switch.p4 snapshot takes

between 5 to 15 seconds per packet type, when all packets

fields are made symbolic, but the table rules are concrete. As

there are 60.000 possible header layouts given by the parser,

total verification for all header types for one snapshot of

this P4 program would take 170 hours (a week) on a single

machine, but this can be easily parallelized.

We have analyzed, however, only tens of packet headers

because after each run we need to manually check the out-

puts (two-three hundred paths, typically), sift through the

failed paths, and decide which ones are novel bugs and which

represent bugs we already know about. This process is very

time consuming. Exhaustive verification of one snapshot is

therefore feasible computationally, but we need to design

more tools to automatically interpret outputs; this is our

future work.

Overall, the switch code is much cleaner than all the other

examples we have looked at, reflecting the fact that this

is production quality software. Below we discuss three of

the more interesting bugs we found in the switch. The first

bug is in the remove_vlan_double_tagged action which is

triggered in the vlan_decap table:

remove_header(vlan_tag_[0]);
remove_header(vlan_tag_[1]);

The code above first removes the header at position 0 in

the array. This makes all headers at higher indices shift

their position to the left; in other words, vlan_tag_[1]
becomes vlan_tag_[0], and the second remove instruc-

tion fails silently. After the action we are left with one ac-

tive header, instead of having both removed. Depending on

10

Debugging P4 programs with Vera SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

packet processing downstream, this bug will result in outgo-

ing packets having a vlan tag when they shouldn’t have.

Another bug is accessing an invalid field in table l3_rewrite
where both the ipv4 and ipv6 source addresses are matched,

and they can’t be valid simultaneously.

A third bug appears when the data-plane is configured

to allow layer 3 VXLAN encapsulation/decapsulation. The

switch correctly behaves when input an Ethernet/IP/TCP -

i.e. it VXLAN encapsulates the frame. Now, assume a VXLAN

encapsulated frame is input from the non-tunnel interface

of the switch. The expectation is that frames be further en-

capsulated within a new VXLAN header, while keeping the

existing one intact. However, the actual implementation of

the reference switch has a single VXLAN header and the

switch attempts to add a header which is already valid. Vera

quickly discovers the offending operation, while providing

important insights into the error location within the P4 pro-

gram - i.e. match-action table trace, offending table name

and match conditions.

Switch.p4 with symbolic table rules. We injected a fully

symbolic TCP packet into switch.p4, while inserting one

symbolic rule for each action in each tables of switch.p4 (163

tables in total). After some changes (fixing a few bugs and

dumping completed paths on disk to save RAM), Vera using

the default DFS exploration strategy ran for 67 minutes on

one of our testbed machines (16GB of RAM, 100GB of HDD)

until it completely filled the disk with completed states. In to-

tal, Vera explored 900K paths, of which 85K where succesful

and the other ones failed.

To analyze the failures, we simply groupped them by port

and error message; we were surprised to find that only 32

distinct errors where captured by these 800K+ paths. We

also found that overall coverage (port-wise) was quite low.

We manually examined the found errors, and found they

were trivial: header fields being accessed when not present,

because of wrong entries in table rules. For instance, one

failure was reported in the validate_outer_header table when
accessing vlan_tag[x]. When the vlan tags are not valid, any

action that attempts to use the tag will fail. While possible,

this error will only appear with a faulty controller, and can

be considered a controller bug.

To increase the coverage of our exploration, we also experi-

mentedwith breadth-first exploration of paths. Vera achieved

around 30% coverage in around 7 hours of running on a ma-

chine in AWS with 256GB of RAM; in total it reported 7

million failed states, all instances of one of 20 (trivial) bugs.

Increasing coverage with fully symbolic table entries is

an interesting avenue of further development, which will

require adopting techniques to increase coverage from tradi-

tional symbolic execution. Another direction of research is

automating the verification of these bugs beyond grouping.

5.2 Correctness verification of simple NAT

Vigor is a provably correct NAT implementation in C [32]

that required an intense verification effort from networking

researchers. We want to check if the simple NAT implemen-

tation from P4 offers similar correctness guarantees. The first

step is to express the properties a NAT should follow. All

our verification rules specify (i) a port where the symbolic

packet will be injected; (ii) init code: the header layout and

other instrumentation to be performed the initial symbolic
packet and (iii) the appropriate policy in the NetCTL lan-

guage. The NAT defines an interior (in) and exterior port

(ex), as well as a port for packets sent to the controller (cpu).
We also use a meta-variable port which stores the current

port during symbolic execution. The NAT table has hit and
miss actions for the in/ext ports which handle the situation

when mappings exist or don’t exist for the current packet.

We list in Fig. 12 a subset of the policies we have specified

to describe correct NAT behavior , in the form ‘port : φ’,
where port is the input port, and φ is a NetCTL formula.

We omit describing the init code in most cases, as it is less

important for understanding our methodology.

We acknowledge that specification in NetCTL is not an

easy undertaking, especially for programmers not familiar

with CTL. Specifying the required properties and verifying

them using Vera required around one day of work for one

person. The NAT, however, is a fairly simple program and

specifying larger programs will be much more difficult. This

is an area we intend to pursue in the future.

The first policy requires that the NAT drops all packets if

there are no table entries. The policy states: on all execution
paths, at no point does the packet reach any of the NAT output
ports. Vera confirms that this policy holds in 2.2s.

We have checked policies (2-5) with and without symbolic-

table entries, but present only results corresponding to sym-

bolic entries because they have greater coverage and give

insights into the correct behavior of the controller.

The second policy expresses that all packets from the input

ports that do not match hit rules will reach the controller.

To check this policy we add symbolic entries for the miss
actions and Vera confirms the policy is true in around 1s.

The third policy verifies that the NAT translates packets

before sending them to the output interface. To verify it, we

insert symbolic entries for the hit actions and call Vera. Vera

finds an example where this policy is violated: after a hit ac-

tion is executed, the destination IP field is unconstrained and

it can reach both in and ext during the routing phase. Con-

cretely, this means that the NAT will also translate packets

destined for the LAN, which is not intended.

In order to check policies (4-5), we have built a simple TCP

responder in P4which flips the IP and TCP source/destination

11

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary R. Stoenescu et al.

Policy NetCTL formula and input port Verification time and

explored paths

(1) A NAT without entries drops all packets p : ∀G(port < {in,ex,cpu})
where p ∈ {in,cpu}

708 paths in 2234 ms

(2) If only miss entries exist, in-packets reach the controller
and ext-packets are dropped

in: ∀F(port == cpu)
ex: ∀G(port < {in,ex,cpu})

354 paths in 1034 ms

285 paths in 1157ms

(3) With hit entries, matching in- and cpu-packets reach
ext

p : ∀F(port == ex)
where p ∈ {in,cpu}

232 paths in 816 ms

(4) A response to a in-packet reaches in in: ∃F (port==in) 113 paths in 1413 ms

(5) The NAT performs a correct IP mapping in: ∀G (port==in)→ (ini_dstIP == srcIP) 304 paths in 1913 ms

Figure 12: Verification of a P4 NAT

addresses. Policy (4) checks that the NAT enables for bidirec-

tional connectivity. We start with symbolic entries for the hit

action and Vera verifies that bidirectional connectivity exists,

and the successful path shows how the table rules must look

like: a hit-int-to-ext rule must exist which matches the

packet’s 5-tuple and has the is-ext-if fields set to false,

and a hit-ext-to-int rule must exist which matches the

translated packet’s reverse 5-tuple, with the is-ext-if field
set to true. Further, this rule also restricts to possible action

parameters for the hit-int-to-ext rule: the srcIP must be

the IP of the router’s external interface.

Policy (5) further verifies that the translation works cor-

rectly. In order to verify it, in the init code we create a new

variable ini_dstIP which stores the initial destination IP

header field. Thus (5) expresses that whenever the packet

reaches in, the current source IP field must be equal to the

initial destination IP. The actual policy we verified checks

the entire 5-tuple, not just the destination IP.

Taken together, our verification gives a clear controller

spec. When a new connection arrives from the LAN, it will

be sent to the controller (cf. policy 2) which must insert two
hit rules in the NAT table (cf. policy 4) to enable translation;

the contents of the rules are completely specified (except the

source port). Finally, policy (3) specifies that, if we want the

initial packet to be translated too, the controller must inject
it after it inserts the hit-int-to-ext rule. Using these rules
to develop a correct controller is our future work.

Vera partially explores the NAT model for policies 4-5.

Verification stops as soon as a successful path is found, and

this significantly reduces the number of execution paths (100-

200). In contrast, unconstrained symbolic execution explores

more than 2000 paths— twenty-times more—in 3.6s.

5.3 Scalability of match-action processing

All our examples so far were run with a few concrete or

symbolic table entries. Here we want to examine the perfor-

mance of our match-action algorithm at scale, focusing on

table with many concrete rules.

We used the Stanford dataset [15] containing router FIBs of

180K entries and compared the Naive If/Else implementation

with Vera and a SEFL model hand-optimized for routing from

prior work [31]. We show the results in Table 13, highlight-

ing the model generation time and the symbolic execution

time of the resulting P4 program. The naive model chokes at

just 10K entries in the FIB, while Vera and the hand crafted

model give good performance even for large routing tables

containing 180K entries. Compared to [31], Vera is slightly

faster in building the model, and is faster during model up-

dates: it takes just 2.5ms to update a model with 100K entries,

whereas the hand-crafted model takes around 100ms.

Achieving good performance when analyzing longest-

prefix match is possible because the number of actual paths

explored is (roughly) bounded by the number of interfaces

of the router, so these results are not necessarily surprising.

To test more complex match-action processing, we imple-

mented and populated an ACL table that matches on ethernet

and IP addresses, TCP ports, input interface and protocol

type, and inserted this table before lpm in the simple router

P4 tutorial. We then populated the ACL table using rules

from Classbench-ng[24], a tool that generates realistic Open-

flow rules. The time required to build the match-forest data

structure is under 100ms in all cases.

Fig. 14 shows how verification scales with the number

of rules inserted in the ACL table; note that the maximum

number of rules Classbench-ng can create is around 2.2K.

We compare the fork approach, where we create one path

for each possible rule, against the naive if-else implementa-

tion; the results show that if/else does not scale because it

creates one branch for each field of each rule, resulting in an

exponential number of paths.

For 2.2K rules, Vera exhaustively explores all paths in

around 1 minute. This is a worst case because the experiment

assumes each rule has a different action/parameter combina-

tion. In practice, most rules choose between a small number

of actions (e.g. allow or drop); in this case Vera will create a

path per group of rules instead, increasing scalability. In Fig-

ure 15 we vary the number of rules which can be groupped,

measuring the verification time (with a symbolic packet) and

the average time needed to push a concrete packet through

the same SEFL-P4 program. The results show that grouping

rules helps massively, with large 100-rule groups cutting the

runtime to around 1 second. The concrete execution results

12

Debugging P4 programs with Vera SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Algorithm Action 1K 10K 100K 180K

Naive

model 2ms 5ms

symbex 34s 1 hour

Hand-

crafted[31]

model 23ms 1.5s 218s 242s

symbex 220ms 2.7s 12s 16s

Vera

model 36ms 1.5s 83s 178s

symbex 230ms 2.7s 12s 16s

Figure 13: Match-action performance for IP

forwarding.

 1

 10

 100

 1000

 64 128 256 512 1024 2048 4096

R
un

tim
e

(s
ec

on
ds

)

Number of rules

Fork
Naive

Figure 14: (verification time for

Openflow-like rules.

 0.01

 0.1

 1

 10

 100

 1 2 4 8 16 32 64 128

R
un

tim
e

(s
ec

on
ds

)

Grouping factor

Symbolic packet
Concrete packet

Figure 15: Effect of grouping on

verification time.

are shown to contrast the cost of matching symbolic headers

against that of concrete values and as expected the runtime

is much smaller. The anomaly at grouping factor 1 happens

because Symnet special-cases equality, and avoids calling

Z3; when we have groups of rules, this optimization is no

longer applied and Z3 is always called.

6 RELATEDWORK

Network verification research mostly focuses on understand-

ing whether network-wide properties such as reachability

and isolation hold. Dataplane analysis tools such as HSA[15],

NOD[22], Veriflow [17], Anteater[23] and Symnet[31] re-

quire a snapshot of the network dataplane, including the pro-

cessing done by each box, links between boxes and forward-

ing rules, and test whether the desired end-to-end properties

hold. Control plane verification aims to answer the same

network-wide questions but without requiring the dataplane

snapshot: tools like Arc[11], Batfish[9], Minesweeper[1] or

CrystalNet [20] can predict how a control plane change will

affect the dataplane, flagging property violations when they

occur. Vera is complementary to this work: it generates SEFL

models of P4 programs and these can be used in network-

wide dataplane analysis with Symnet [31].

Verifying if the implementation of a networking element

is correct is another area of research. Dobrescu et al. [8]

use symbolic execution with S2e [5] to analyze the C++ im-

plementation of Click modular router elements [19]. Vigor

[32] is a formally verified NAT implementation written in

C. Vera is complementary to these works: it can guarantee

safety of P4 code, and in conjunction with NetCTL it can

also prove the correctness of an implementation according

to some specification (see our NAT example).

Vera is not the first verification effort geared at P4 pro-

grams. Lopez et al. [25] translate P4 to the NOD language

[22] and then perform end to end dataplane reachability

tests, as well as testing a form of header errors they call

“well-formedness”. NOD does not offer support for dynamic

encapsulation, so P4NOD cannot capture many of the header

errors that Vera can. Lopez et al. only examine two small pro-

grams, and do not find problems in the programs themselves,

focusing on end-to-end verification instead.

p4v is concurent work by Foster et al.[21]; p4v proposes

that programmers annotate P4 programs with Hoare logic

clauses (pre and post conditions) to enable static verifica-

tion. Their approach targets catching many of the bugs that

Vera catches automatically without any specification, with

the caveat that Vera cannot currently fully explore all table

snapshots in switch.p4. p4v requires human specification for

the possible table entries thus easing the work of the verifier,

and it scales well. On the downside, human specification is

both cumbersome and error prone.

p4pktgen[26] also uses symbolic execution to generate

test packets and predict the expected processing. It then in-

serts these packets into the bmv2 software switch, and sees

if the behaviour is the expected one. Using this approach

they uncover a number of bugs in the tools (both the com-

piler and the software switch). Such toolstack verification is

complementary to the one we take in Vera.

ASSERT-P4 [10] is another work that was developed con-

currently to Vera. ASSERT-P4 requires programmers to add

assertions to P4 programs, and then translates both program

and assertions to C and checks them via symbolic execution.

While also relying on symbolic execution, Vera does not re-

quire annotations to find many types of bugs, easing the job

of the programmer.

Rosu et al [16] have created an executable formal seman-

tics in K for P4 that allows verification with a number of

tools including symbolic execution.

7 CONCLUSIONS

P4 promises to enable truly flexible networks that can adapt

to application needs, but P4 programming is not as easy as

it may seem at first sight due to language features stemming

from its close relationship to switch hardware.

In this paper we have implemented Vera, a tool that uses

symbolic execution to exhaustively verify snapshots of large

P4 programs. Vera relies on a number of innovations includ-

ing automatic policy verification and a novel match-action

data structure, and can explore a multitude of table snapshots

via symbolic rules. Together, these have helped Vera to catch

many interesting bugs in all programs we have analyzed,

with modest runtimes. Full exploration of large P4 programs

with symbolic rules is still not possible, and more work is

needed to increase coverage.

13

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary R. Stoenescu et al.

ACKNOWLEDGEMENTS

This work was jointly funded by CORNET H2020, a research

grant of European Research Council (no. 758815) and by

SUPERFLUIDITY H2020 (no. 671566).

REFERENCES

[1] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David

Walker. “A General Approach to Network Configura-

tion Verification”. In: SIGCOMM. 2017.

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick

McKeown, Jennifer Rexford, Cole Schlesinger, Dan

Talayco, Amin Vahdat, George Varghese, and David

Walker. “P4: Programming Protocol-independent Packet

Processors”. In: SIGCOMMComput. Commun. Rev. 44.3
(July 2014).

[3] Cristian Cadar, Daniel Dunbar, and Dawson Engler.

“KLEE: Unassisted and Automatic Generation of High-

coverage Tests for Complex Systems Programs”. In:

Proc. OSDI’08.
[4] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan

Kostić, and Jennifer Rexford. “A NICE Way to Test

Openflow Applications”. In: Proc. NSDI’12.
[5] Vitaly Chipounov, Volodymyr Kuznetsov, and George

Candea. “S2E: A Platform for In-vivo Multi-path Anal-

ysis of Software Systems”. In: Proceedings of the Six-
teenth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems. ASPLOS XVI. Newport Beach, California, USA:
ACM, 2011, pp. 265–278. isbn: 978-1-4503-0266-1. doi:

10.1145/1950365.1950396. url: http://doi.acm.org/10.

1145/1950365.1950396.

[6] Edmund M. Clarke Jr., Orna Grumberg, and Doron

A. Peled. Model Checking. Cambridge, MA, USA: MIT

Press, 1999. isbn: 0-262-03270-8.

[7] Huynh Tu Dang, Marco Canini, Fernando Pedone, and

Robert Soule. “Paxos Made Switch-y”. In: SIGCOMM
Comput. Commun. Rev. 46.2 (May 2016).

[8] Mihai Dobrescu and Katerina Argyraki. “Software Dat-

aplane Verification”. In: Proc. NSDI’14. NSDI’14.
[9] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-

Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd

Millstein. “A General Approach to Network Configu-

ration Analysis”. In: NSDI. 2015.
[10] Lucas Freire,Miguel Neves, Lucas Leal, Kirill Levchenko,

Alberto Schaeffer-Filho, and Marinho Barcellos. “Un-

covering Bugs in P4 Programs with Assertion-based

Verification”. In: Proceedings of the Symposium on SDN
Research. SOSR ’18. Los Angeles, CA, USA: ACM, 2018,

4:1–4:7. isbn: 978-1-4503-5664-0. doi: 10.1145/3185467.

3185499. url: http://doi.acm.org/10.1145/3185467.

3185499.

[11] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya

Akella, and Ratul Mahajan. “Fast Control Plane Analy-

sis Using an Abstract Representation”. In: SIGCOMM.

2016.

[12] Mark Handley, Costin Raiciu, Alexandru Agache, An-

drei Voinescu, AndrewW. Moore, Gianni Antichi, and

MarcinWójcik. “Re-architecting Datacenter Networks

and Stacks for Low Latency and High Performance”.

In: Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. SIGCOMM

’17.

[13] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado,

John C. Mitchell, and Scott Shenker. “Practical Declar-

ative Network Management”. In: Proceedings of the
1st ACM Workshop on Research on Enterprise Network-
ing. WREN ’09. Barcelona, Spain: ACM, 2009, pp. 1–

10. isbn: 978-1-60558-443-0. doi: 10 .1145/1592681 .

1592683. url: http://doi.acm.org/10.1145/1592681.

1592683.

[14] PeymanKazemian,Michael Chang, Hongyi Zeng, George

Varghese, Nick McKeown, and Scott Whyte. “Real

Time Network Policy Checking Using Header Space

Analysis”. In: Proc. NSDI’13.
[15] Peyman Kazemian, George Varghese, and Nick McK-

eown. “Header Space Analysis: Static Checking for

Networks”. In: Proc. NSDI’12.
[16] Ali Kheradmand and Grigore Rosu. Executable Formal

Semantics of P4 and Applications. 2017.
[17] AhmedKhurshid, Xuan Zou,Wenxuan Zhou,Matthew

Caesar, and P. Brighten Godfrey. “VeriFlow: Verify-

ing Network-wide Invariants in Real Time”. In: Proc.
NSDI’13.

[18] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muham-

mad Shahbaz, Nick Feamster, and Russ Clark. “Kinetic:

Verifiable Dynamic Network Control”. In: Proceedings
of the 12th USENIX Conference on Networked Systems
Design and Implementation. NSDI’15. Oakland, CA:
USENIX Association, 2015, pp. 59–72. isbn: 978-1-

931971-218. url: http : / /dl . acm.org/citation .cfm?

id=2789770.2789775.

[19] Eddie Kohler, Robert Morris, Benjie Chen, John Jan-

notti, and M. Frans Kaashoek. “The click modular

router”. In: ACM Trans. Comput. Syst. 18.3 (Aug. 2000),
pp. 263–297. issn: 0734-2071. doi: 10 .1145/354871 .

354874. url: http : / /doi . acm.org /10 .1145 /354871 .

354874.

[20] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin

Cao, Sri Tallapragada, Nuno P. Lopes, Andrey Ry-

balchenko, Guohan Lu, and Lihua Yuan. “CrystalNet:

Faithfully Emulating Large Production Networks”. In:

Proc. of the 26th Symposium on Operating Systems Prin-
ciples (SOSP).

14

Debugging P4 programs with Vera SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

[21] Jed Liu, William Hallahan, Cole Schlesinger, Milad

Sharif, Jeongkeun Lee, Robert Soule, Han Wang, Calin

Cascaval, Nick McKeown, and Nate Foster. “p4v: Prac-

tical Verification for Programmable Data Planes”. In:

Proceedings of ACM SIGCOMM 2018.
[22] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid,

Karthick Jayaraman, and George Varghese. “Checking

Beliefs in Dynamic Networks”. In: Proc. NSDI’15.
[23] HaohuiMai, AhmedKhurshid, Rachit Agarwal,Matthew

Caesar, P. Brighten Godfrey, and Samuel Talmadge

King. “Debugging the data plane with anteater”. In:

Sigcomm. 2011.

[24] Jiří Matoušek, Gianni Antichi, Adam Lučanský, An-

drewW. Moore, and Jan Kořenek. “ClassBench-ng: Re-

casting ClassBench After a Decade of Network Evolu-

tion”. In: Proceedings of the Symposium onArchitectures
for Networking and Communications Systems. ANCS
’17. Beijing, China: IEEE Press, 2017, pp. 204–216. isbn:

978-1-5090-6386-4. doi: 10.1109/ANCS.2017.33. url:

https://doi.org/10.1109/ANCS.2017.33.

[25] Nick McKeown, Dan Talayco, George Varghese, Nuno

Lopes, Nikolaj Bjorner, and Andrey Rybalchenko. Au-
tomatically verifying reachability and well-formedness
in P4 Networks. Tech. rep. Sept. 2016. url: https : / /
www.microsoft .com/en- us/research/publication/

automatically-verifying-reachability-well-formedness-

p4-networks/.

[26] Andres Nötzli, Jehandad Khan, Andy Fingerhut, Clark

Barrett, and Peter Athanas. “P4Pktgen: Automated

Test Case Generation for P4 Programs”. In: Proceedings
of the Symposium on SDN Research. SOSR ’18. Los

Angeles, CA, USA: ACM, 2018, 5:1–5:7. isbn: 978-1-

4503-5664-0. doi: 10.1145/3185467.3185497. url: http:

//doi.acm.org/10.1145/3185467.3185497.

[27] Vladimir Olteanu, AlexandruAgache, Andrei Voinescu,

andCostin Raiciu. “Stateless Datacenter Load-balancing

with Beamer”. In: 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18).

Renton, WA: USENIX Association, 2018. url: https:

//www.usenix.org/conference/nsdi18/presentation/

olteanu.

[28] Mark Reitblatt, Marco Canini, Arjun Guha, and Nate

Foster. “FatTire: Declarative Fault Tolerance for Software-

defined Networks”. In: Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software De-
fined Networking. HotSDN ’13. Hong Kong, China:

ACM, 2013, pp. 109–114. isbn: 978-1-4503-2178-5. doi:

10.1145/2491185.2491187. url: http://doi.acm.org/10.

1145/2491185.2491187.

[29] Leonid Ryzhyk, Nikolaj Bjørner, Marco Canini, Jean-

Baptiste Jeannin, Cole Schlesinger, Douglas B. Terry,

and George Varghese. “Correct by Construction Net-

works Using Stepwise Refinement”. In: 14th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 17). Boston, MA: USENIX Associa-

tion, 2017, pp. 683–698. isbn: 978-1-931971-37-9. url:

https://www.usenix.org/conference/nsdi17/technical-

sessions/presentation/ryzhyk.

[30] Radu Stoenescu, Matei Popovici, Lorina Negreanu,

and Costin Raiciu. Debugging P4 Programs with Vera.
Tech. rep. June 2018. url: http://nets.cs.pub.ro/~costin/

files/vera-tr.pdf.

[31] Radu Stoenescu,Matei Popovici, Lorina Negreanu, and

Costin Raiciu. “SymNet: Scalable symbolic execution

for modern networks”. In: SIGCOMM. 2016. doi: 10.

1145/2934872.2934881. url: http://doi.acm.org/10.

1145/2934872.2934881.

[32] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Ka-

terina Argyraki, and George Candea. “A Formally Ver-

ified NAT”. In: Proceedings of the Conference of the
ACM Special Interest Group on Data Communication.
SIGCOMM ’17. Los Angeles, CA, USA: ACM, 2017,

pp. 141–154. isbn: 978-1-4503-4653-5. doi: 10.1145/

3098822.3098833. url: http://doi.acm.org/10.1145/

3098822.3098833.

15

