
Debugging P4 programs with Vera

Radu Stoenescu Dragos Dumitrescu Matei Popovici Lorina Negreanu
Costin Raiciu

University Politehnica of Bucharest
firstname.lastname@cs.pub.ro

Abstract

We present Vera, a tool that exhaustively verifies P4 program snapshots using
symbolic execution. Vera automatically uncovers a number of common bugs in-
cluding parsing/deparsing errors, invalid memory accesses, loops and tunneling
errors, among others. Vera can also be used to verify user-specified properties
in a novel language we call NetCTL.

This technical report is complementary to the Sigcomm 2018 paper titled
“Debugging P4 Programs with Vera” that describes the main components of
Vera and presents its evaluation. The present technical report must be read
together with the conference paper: it is not a self-contained document as it
does not describe the core functionality of Vera.

This technical report describes different aspects of Vera that were not fully
captured in the conference paper. These aspects include the operational se-
mantics we have developed for SEFL and P4, a formal description of NetCTL
and the guarantees it offers, a discussion of symbolic match-action rules and
the coverage they provide. The report also includes proofs that Vera’s loop-
detection algorithm is correct and that the match-action forest data-structure
enables cheap symbolic execution.

1 Introduction

Programmable network dataplanes such as those enabled by P4 [1] promise to
help networks meet ever-increasing application demands. On the downside, un-
verified changes to network functionality can introduce bugs that may cause
great damage. Recently, faulty routers in two airline networks have grounded
airplanes for days (for both Delta and Southwest Airlines), showing just how
disruptive the effects of incorrect network behavior can be. Given the momen-
tum behind programmable networks, we expect such faults and many others
will cripple programmable networks.

We argue that dataplane programs should be verified before deployment
to enable safe operation. In the Sigcomm 2018 paper called “Debugging P4

1

Programs with Vera”, we have presented Vera, a verification tool that enables
debugging of P4 programs both before deployment and at runtime. At its core,
Vera translates P4 to SEFL, a network language designed for verification, and
relies on symbolic execution with Symnet [11] to analyze the behavior of the
resulting program. Vera incorporates a set of novel techniques that together
enable scalable and easy-to-use P4 verification.

Vera exhaustively verifies a P4 program snapshot: it uses the parser of the P4
program to generate all parsable packet layouts (e.g. header combinations), and
makes all header fields symbolic (i.e. they can take any value). It then tracks
the way these packets are processed by the program, following all branches to
completion. Vera automatically checks for common problems in P4 programs
including loops, parsing/deparsing errors, tunneling bugs, overflows and under-
flows, among others. Since verification is exhaustive, if Vera does not find such
problems it guarantees the P4 program is bug-free.

This technical report completes the conference publication by detailing the
theoretical foundations of Vera. In §2, we manually prove that Vera correctly
translates from P4 to SEFL by defining the operational semantics for both P4
and SEFL and by proving that P4 instruction(s) and their SEFL translation
are equivalent.

Upon deployment, P4 programs are incomplete (they lack table entries).
Vera can analyze such P4 programs by using symbolic table entries instead
of requiring concrete table entries. In §3 we show that one symbolic rule per
possible action in each table is enough to explore all possible dataplanes, as long
as there are no loops.

At runtime, controllers will insert rules in the P4 program, and these must be
checked against the policy of the network (which involves network-wide verifica-
tion). Here, the time available for verification is constrained. Vera introduces a
match forest data structure that concurrently optimizes both update time and
verification time. We describe it in more detail and show it yields the minimum
number of constraints in §4.

Additionally, Vera can check user-provided functional properties and thus
prove the box conforms to a user-specification. In §6 we provide a detailed
presentation of NetCTL, a novel specification language that allow user-specified
policies. NetCTL uses the specification to drive symbolic execution, ensuring
the checked properties always hold while reducing exploration time.

2 Operational semantics for SEFL and P4

The following section presents the ”big-step” operational semantics for some
relevant statements of P4 and SEFL as well as the proof of semantics preser-
vation through the translation process. The semantics defines a relation of the
form 〈S, s〉 → s′ where the pre-state s and post-state s′ represent the states be-
fore and after execution of the program statement S. The state includes header
variables and metadata. The definition of → is given by the semantics rules,
written as inferences where a horizontal line separates premises (above) from

2

the conclusion (below). The meaning of statements is summarized as a function
S : Stm→ (State→ State), specified as SP for P4, and SS for SEFL.

The rules for most of the statements either rewrite the state by updating
a header field (variable) or invoke a control state. In order to deal with the
transformations in terms of variables we represent the states with two mappings:
a variable environment that associates a location with a variable and a store
that associates a value with a location. The variable environment envV is an
element of Envv = V ar → Loc, where Loc is the set of locations. A store sto is
an element of Store = Loc→ N. Under these assumptions a state is defined as
s = sto ◦ envV [4].

2.1 Operational semantics for SEFL

The SEFL statements can create header fields and metadata (Allocate,Deallocate),
assign the result of an evaluated expression to a variable (Assign), manipulate
tags to simplify access to header fields (CreateTag,DestroyTag). The control
statements are Fork and If . SEFL includes two statements that constrain the
execution of the current path, Fail and Constrain. For a full specification of
the SEFL language, please see [11].

The statements Allocate and Deallocate update the variables environment
and store.

[alloc] 〈Allocate(v), envV , sto〉 → (envV [v 7→ l], sto[l 7→ ε])

where l is the next available location.

[dealloc]
〈Deallocate(v), envV , sto〉 → (envV [v → ε], sto[l→ ε])

where l = envV v

We used the notation envV [x 7→ y] to denote that the environment envV [x 7→
y] is the same as envV except for the association x to y. Similar for the store.
The symbol ε is the semantic equivalent of null.

The statements CreateTag and DestroyTag update only the variables envi-
ronment, a tag being an alias for a location. A, defined as a total function,
denotes the meaning of arithmetic expressions, A : Aexp→ (State→ Z).

[create]
〈CreateTag(t, e), envV , sto〉 → (envV [v 7→ l], sto)

where l = A[e](sto ◦ envV)

[destroy]
〈DestroyTag(t), envV , sto〉 → (envV [v 7→ ε], sto)

3

The semantics of the next statements is related to the variables environment,
therefore we use the notation envV ` 〈S, s〉 → s′ in order to emphasize the
presence of the environment.

The statement Assign(v,a), assigns the result of the evaluation of the ex-
pression a to the variable v.

[assignt]
envV ` 〈Assign(v, a), sto〉 → sto[l 7→ a]

where l = envV v and a = A[a](sto ◦ envV)

If the variable is not allocated then an error will be issued.

[assignf]
envV ` 〈Assign(v, a), sto〉 → 〈Errl(msg), sto〉

where l = envV v and l = ε

The next semantic rules describe the sequential composition and If state-
ments. The values of boolean expressions are true values. Their meaning is
defined by the total function B : Bexp→ (State→ T).

[seq]

envV ` 〈S1, sto〉 → sto′

envV ` 〈S2, sto′〉 → sto′′

envV ` 〈S1;S2, sto〉 → sto′′

[ift]
envV ` 〈S1, sto〉 → sto′

envV ` 〈if b then S1 else S2, sto〉 → sto′

ifB[b](sto ◦ envV) = t

[iff]
envV ` 〈S2, sto〉 → sto′

envV ` 〈if b then S1 else S2, sto〉 → sto′

ifB[b](sto ◦ envV) = f

The Fork instruction can be expressed as a parallel execution with packet
duplicates.

The Constrain statement ensures that the variable satisfies the specified
constrain. The execution path fails if it doesn’t.

[constrt]
envV ` 〈Constrain(v, c), sto〉 → sto

if B[c](sto ◦ envV) = t

[constrf]
envV ` 〈Constrain(v, c), sto〉 → fail
ifB[c](sto ◦ envV) = f

[fail] envV ` 〈Fail(msg), sto〉 → fail

where fail is the fail state.

4

2.2 Operational semantics for P4

The P4 statements follow the behavior already introduced. They rewrite the
state by updating a field or invoke a control state in the parser, table or action
component.

The modify field statement sets the field using a passed parameter or a
field in the metadata. In our case the environment keeps the variables (including
local) as well as the metadata and their values, therefore the semantics evaluates
the expression in the environment.

[mod fieldt]
envV , envA ` 〈modify field(x, a), sto〉 → sto[l 7→ v]

where l = envV x and v = A[a](sto ◦ envV)

If the parent header instance of the field is not valid the action has no effect.
The metadata is always valid.

[mod fieldf]
envV , envA ` 〈modify field(x, a), sto〉 → sto

where l = envV x and l = ε

In order to specify the semantics of actions we introduce the action environ-
ment envA, which is an element of EnvA = Aname ↪→ Stm × EnvV × EnvA.
The action environment allows us to associate action names with their body
as well as the action environment and variable environment at the point of the
declaration. The transitions will have the form envV , envA ` 〈S, sto〉 → sto′.

[act]
env′V , env′A ` 〈S, sto〉 → sto′

envV , envA ` 〈action a, sto〉 → sto′

where envA a = (S, env′A, env′V)

Actions that modify fields can be combined in parallel or sequentially. The
semantic rules follow:

[seq]

envV , envA ` 〈S1, sto〉 → sto′

envV , envA ` 〈S2, sto〉 → sto′′

envV , envA ` 〈S1;S2, sto〉 → sto′′

[par]
envV , envA ` 〈S1, sto〉 → sto′, 〈S2, sto

′〉 → sto′′

envV , envA ` 〈S1 par S2, sto〉 → sto′′

envV , envA ` 〈S2, sto〉 → sto′, 〈S1, sto
′〉 → s′′

envV , envA ` 〈S1 par S2, sto〉 → sto′′

The apply(table) statement applies the actions in the initial state followed
by the control statements in the modified state.

5

[apply]

envV , envA ` 〈S, sto〉 → sto′

env′V , env′A ` 〈S′, sto′〉 → sto′′

envV , envA ` 〈apply(table), sto〉 → sto′′

where table = (r, a)
and envA a = (S, env′V , env′A)
and S′ ∈ {apply, noop}

[ift]
envV , envA ` 〈S1, sto〉 → sto′

envV , envA ` 〈if b then S1 else S2, sto〉 → sto′

if B[b](sto ◦ envV) = t

[iff]
envV , envA ` 〈S2, sto〉 → sto′

envV , envA ` 〈if b then S1 else S2, sto〉 → sto′

if B[b](sto ◦ envV) = f

2.3 Correctness of the translation

We introduced the semantics of the SEFL and P4 languages in order to prove
that the translation process ensures the semantics preservation. The correctness
of the translation amounts to show that if we translate a P4 statement into SEFL
code and execute that code, then we obtain the same result as specified by the
operational semantics of P4.

The translation of P4 statements into SEFL code is given by the function
T S : StmP → StmS .

We give the translation rules for non trivial P4 statements:
T S[modify filed(x, a)] = Assign(x, a)
T S[apply(table ≡ (S, S′))] = T S[S]; T S[S′]
T S[S1;S2] = T S[S1]; T S[S2]

Theorem
For every statement S of P4, SP [S] = SS [S].

The theorem relates the behavior of statements in P4 and SEFL under the
”big-step” operational semantics. It expresses the property that if the execu-
tion of statement S from some state terminates in one of the semantics it also
terminates in the other and the resulting states will be equal. In order to prove
the theorem we must first prove the following Lemma.

Lemma
For every statement S of P4 and states s and s′, if 〈S, s〉 → s′ then 〈T S[S], s〉 →
s′.

Proof : the proof is by induction on the shape of the derivation tree for 〈S, s〉 →
s′.
The case [mod fieldt]: we assume that

〈modify field(x, a), s〉 → s′, where s′ = s[x 7→ A[a]s].

6

From the translation rules we have
T S[modify field(x, a)] = Assign(x, a)

According to the Assign semantic rule
〈Assign(x, a), s〉 → s′ where s′ = s[x 7→ A[a]s].

Therefore the resulting states are equal.
The case [mod fieldf]: we assume that

〈modify field(x, a), s〉 → s, meaning that the field is not allocated (par-
ent header instance is invalid)
From the translation rules we have

T S[modify field(x, a)] = Assign(x, a)
According to the Assign semantic rule for the situation in which the variable is
not allocated:

〈Assign(x, a), s〉 → s.
Therefore the resulting states are equal.
The case [apply]: we assume that

〈apply(table), s〉 → s′′ holds, where table = (r, a), because 〈S;S′, s〉 →
s′′ holds, where envA[a 7→ S] and S′ ∈ {apply, noop}.
From the translation rules we have that T S[S;S′] = T S[S]; T S[S′].
The case [seq]: we assume that

〈S1;S2, s〉 → s′′ holds because
〈S1, s〉 → s′ and 〈S2, s

′〉 → s′′.
From the translation rules we have T S[S1;S2] = T S[S1]; T S[S2]. By apply-
ing the induction hypotesis on the premises, we have 〈T S[S1], s〉 → s′ and
〈T S[S2], s′〉 → s′′.

This proves the Lemma.

3 Symbolic match-action rules and coverage

Vera can quickly explore snapshots of P4 programs where a snapshot includes
the P4 code and the concrete match-action rules for all the tables in the program.
Unfortunately, though, verifying a single (or a few) snapshot to be bug free does
not mean the P4 program behaves correctly for other table rules.

Vera allows users to insert symbolic match-action rules where both the
matching fields and the parameters for the actions can be unconstrained sym-
bolic variables. Intuitively, by adding enough symbolic rules, it should be pos-
sible to explore all possible dataplanes, thus achieving the goal of exhaustively
verifying a P4 program, without verifying the controller program itself (a very
difficult task since the controller is a general-purpose program).

What is the minimum number of rules that must be inserted to achieve
exhaustive verification? We answer this question in this section.

To guide the exposition we use the running example in figure 1 that shows
a P4 match-action table. with two actions: rewrite the IPv4 source field to a
value specified as an action parameter, or drop the packet. This table matches
exactly on the IPv4 destination field. The table has two entries: i. one matching

7

match-acton tablematch-acton table

match(ip.dst) acton

drop

modify_feld(ip.src, 1.1.1.1)8.8.8.8

9.9.9.9

Figure 1: Concrete match-action table

match-acton tablematch-acton table

match(ip.dst) acton

drop

modify_feld(ip.src, *)

9.9.9.9

8.8.8.8

Figure 2: Symbolic action parameter

match-acton tablematch-acton table

match(ip.dst) acton

drop

modify_feld(ip.src, *)*

9.9.9.9

Figure 3: Fully symbolic table entry

match-acton tablematch-acton table

match(ip.dst) acton

modify_feld(ip.src, *)*
modify_feld(ip.src, *)*

Figure 4: Duplicated symbolic entry

the address ’8.8.8.8’ in which case it rewrites the IPv4 source field to ’1.1.1.1’
ii. another matching the address ’9.9.9.9’ in which case the traffic is dropped.

Based on this concrete example we state the following:

1. A single symbolic table entry per action can model the behavior of the
whole set of concrete entries that employ the same action.

In our example (figure 2), if we swap the concrete value of the parameter
for ’modify field’ action for a symbolic one and then perform symbolic ex-
ecution we will get back a set of symbolic execution paths. Each resulting
execution path will state a different branching condition on the rewritten
source address field, covering the entire space of possible values.

Furthermore (figure 3), we can make the match value symbolic instead of
’8.8.8.8’. This will now match any packet. While this may seem useless,
as the constraint ’IPv4.dst == *’ will always be satisfiable, looking closer,
it has a subtle, yet very important side-effect: from this point until the
field gets rewritten, any subsequent constraint imposed on the ’IPv4.dst’
field will be transitively imposed on the symbolic match value from the
symbolic table as well. In the end, this will partition the space of the
possible match values according to the symbolic paths discovered.

2. There is no need to use multiple symbolic entries for the same action,
when recirculation is not used.

To see why it suffices to use one symbolic entry per type of action, let
us consider the case in which we added another extra one, with different
symbolic entries for the same type of action. In figure 4 the first entry
will behave the same as before. In the case of the second one, the action
effects will be indistinguishable from the ones belonging to the first entry
as they both rewrite the source address to an unconstrained symbolic
value. When it comes to the symbolic match value, there will be an extra

8

match-acton tablematch-acton table

match(ip.dst) acton

modify_feld(ip.src, *)*
drop*

Figure 5: Symbolic table rules
with one rule per action.

PA
RS
ER

	 t_ingress_2	 IN	 meta.f1	 =	 0	 match(meta.f1)	 ac;on	

y	 nop	
resubmit	

resubmit	

x	

y	

meta.f1	 =	 1	

Bu
ffe

rs
	

Figure 6: Using symbolic table entries to ana-
lyze the Resubmit P4 tutorial.

constraint that the two symbolic values must be different (to avoid an
overlap), which brings no information, since this is already part of the P4
spec itself. Thus we conclude there is no information gain from deploying
multiple symbolic entries per type of action.

On the other hand, a second symbolic entry corresponding to the ’drop’
action will suffice to cover all the possible behavior for this table (figure
5).

3. When recirculation is used, one rule per symbolic table per action is in-
sufficient for exhaustive exploration.

Consider now the match-action table in Figure 6 where the parameter-
less resubmit action overwrites meta.f1 to 1 and recirculates the packet,
sending it to parser input. A valid question about programs using recircu-
lation is whether they can have loops, as loops are very difficult to debug
in practice.

Symbolic table entries are perfect to explore this question, but if we simply
apply the rule above and insert one rule per action, we might reach the
wrong conclusion. In our example, when we insert any symbolic packet
it will reach the t ingress 2 table with the metadata field set to zero.
Then, it will either miss the resubmit entry and be dropped (explicitly or
implicitly), or match the resubmit entry which implies that the symbolic
entry x must be equal to 0. In the resubmit action, f1 is set to 1 and
cannot match the same entry again, thus there can be no loop with the
current table rules.

Consider now what would happen if we add a different symbolic rule for
the same resubmit action; say the symbolic variable is called z. When the
packet gets recirculated, we know that x must be zero and that f1 is set to
1; the second resubmit rule will be matched if z=1 (a satisfiable constraint
since z is unbound), and then we will have a loop.

The take away is that to exhaustively explore P4 programs that use recir-
culation in an action, we need to add at least symbolic rules for the said
action, as well as for all actions that can be matched before the recircula-
tion (i.e. in other preceding tables).

4. Any action can act as the default but there is no need to model this explic-
itly by further insertions of symbolic table entries.

9

The rationale behind this can be regarded as a corollary of the previous
observation. This default action will collect the negated constraints of all
previous symbolic match values - which states nothing more than what
the definition of the default action in the P4 spec already does.

Known modeling limitations:

1. Only parameters of immediate value type can be substituted by symbolic
values. We mention that no production-grade P4 program we used for
evaluation broke this assumption.

2. In the case of overlapping match conditions different entries must state
different priorities. Our model does not cover such cases which means in
practice, a symbolic path explored by the analysis might not be executed
in reality, being shadowed by another one. In other words, multiple exe-
cution paths carry overlapping match conditions, the one executed in the
concrete case is the one with the highest priority and this behavior should
be considered as an additional post-symbolic execution step.

3. Even if a concrete table entry is validated according to Vera, it might get
rejected by the switch at runtime because it either overlaps another entry
with the same priority, or the table is full. Such corner-cases should also
be considered outside Vera.

4 Fast verification of match-action tables

To ensure symbolic execution actually scales to large P4 programs, we need to
optimize the match code while preserving its functionality. Consider a router
FIB where we run symbolic execution with a symbolic destination address. If
we generate code with one if/else per FIB entry, this will result in an infeasible
number of paths. There are two general directions of optimization: a) reducing
the number of paths explored by symbolic execution and b) reducing the number
of constraints that need to be checked by the solver on each path. We discuss
this second part below. To achieve for the router (a) we can create a path per
output port (i.e. groupping all packets that might leave on any given port); we
can do this by forking the packet, and then applying the appropriate constraints.

Part (b) minimizes the number of constraints while ensuring the overall be-
haviour is equivalent to the if/else case. This step is not trivial as the code
must not only include the constraints for the associated rules, but also negated
constraints for higher priority rules. In the router example, for instance, the de-
fault route should forward a packet only when no other forwarding rule matches;
the constraints in this case must include the negation of all other forwarding
rules which have higher priority. Looking at the entire FIB, if we have many
overlapping prefixes, the worst case number of constraints is quadratic in the
number of entries. With FIB sizes in the order of 100K, this is a show-stopper.

This looks very discouraging given the commonality of FIBs with sizes in the
hundreds of thousands. An additional complication comes from P4’s support

10

Figure 7: Match condition forest

for matching on multiple fields at once. Even the way matching can be specified
evolved, ranging from exact matching to more complex matching schemes, such
as: bit masks, longest-prefix matching, ranges. Furthermore any modelling
technique must work well in the dynamic context in which data planes operate
in production. Model computation should happen at the same time scales as
table updates occur.

Our solution builds upon existing work [8, 2] and is applicable to a wide range
of matching strategies including longest-prefix match, range, etc. We could not
use an off-the-shelf solution coming from the study of packet classification algo-
rithms because our optimization criteria are different. While data plane packet
classification algorithms look to optimize classification speed while maintaining
the feasibility of hardware-based implementation, in our case we try to reduce
the number of symbolic constraints while preserving model correctness.

At the core of our solution lies a data structure consisting of a forest of trees.
To ease presentation, we show an example that matches a single field in Fig.7.
In the figure, one node represents the match condition for one table rule and
the colours represent rule priority (red¿green¿blue).

In this data structure any pair of nodes falls in one of the four situations
below:

1. The nodes are completely independent if their corresponding conditions do
not overlap. (disconnected nodes in the figure).

2. Parent-of - a node is the parent of another if the value domain corresponding
to the child is strictly a subset of the one for the parent (red links). The
parent must have lower priority than the child.

3. Ancestor-of(dotted line) - when two nodes are connected in the same tree
by several ’parent-of’ links.

4. Neighbor-of(blue) - nodes that have overlapping conditions, but neither
condition is fully contained by the other; and neither node has an ancestor
linked to the other node via a ’neighbor-of’ link. As with ’parent-of’ links,
the source has priority lower than the destination.

To add one node to our data structure, we start at the top of the forest,
checking which nodes overlap with the new one (we implement this efficiently
using interval trees). If there is no overlap, we add the new node as a stan-
dalone one. Otherwise, the new node will become either a parent, a child or a
neighboring node. If it becomes a parent or neighbor node, the node is inserted

11

at the current level and the appropriate links are created. If it is a child, then
the algorithm continues recursively in the subtree rooted at its newly found
ancestor. Complexity is logarithmic in the number of nodes.

Given an instance of this data structure, it is trivial to construct the minimal
constraint required to match any given node but no other node of lower priority:
add the node’s constraint and the negated constraints of all its children and
neighbors.

This data structure holds two benefits regarding model construction and
update, while ensuring model optimality(fewest number of constraints being
generated): i. constraint computation efficiency - given a reference to the subject
node - the minimal set of conditions that have to be considered requires no tree
traversal, thus requiring constant time (assuming the ’child-of’ and ’neighbor-
of’ collections are attributes of every node and require a constant number of
memory accesses). ii. tree construction efficiency - ’neighbor-of’ links will not
span across tree boundaries, they can only link nodes in the same tree, situated
at the same level. This reduces the number of nodes to be checked for overlaps,
making the node inserts very efficient in practice.

Next we show that our algorithm generates the theoretical minimum number
of constraints. Given a match-action table entry (C,A) where C is the set of
conditions that must be true in order to apply action A, we determine a set
O = {(C1, A1), ..., (Cn, An)} such that C overlaps with every Ci (for every given
i, there is a packet P such that both C and Ci hold) and every math-action pair
in O has a higher priority than (C,A). To mitigate the overlaps of a condition
C, we could compute O and then the formula FO = ¬C1 ∧ ¬C2∧, ...,∧¬Cn. In
this complete set O, however, there are constraints that can fully overlap others,
we say this is the case with two constraints Ci, Cj when Ci =⇒ Cj for any
packet P . An example of such a case is Ci being TCPPort ∈ [1, 512] and Cj

being TCPPort ∈ [1, 1024]. Taking this into consideration, in the equivalent
form 6 Cj =⇒ 6 Ci, we can simplify FO by removing Ci, for every pair (Ci, Cj)
while preserving equivalence. This relation between C and Ci is reflected in our
data structure by the ancestor-of links, which are not considered when building
the reduced logical formula for mitigating overlaps.

For example, in figure 7 red nodes have the highest match priority, then green
and lastly blue ones. At first, node [0-10] should add negated constraints for
all its sub nodes, plus all the nodes in the tree rooted at [5-15]. Looking closer,
negated constraints for [10-15] and [2-3] are redundant since the constraints
corresponding to their ’parent’ nodes mitigate the overlap.

5 Loop detection

Loop detection in programs is already a well-known and thoroughly investi-
gated problem [6]. The trivial solution is to perform symbolic execution on the
program at hand and store a snapshot of the memory state, together with the
program instruction that ran to produced it. Whenever an instruction is exe-
cuted again, the new state is compared against all the states observed in the

12

past. The state comparison routine iterates over all the program variables that
make up the program state and checks whether they differ or not. Program
variable x differs in two program states if x is bound to symbolic expression e1
in one state, to e2 in the other and the symbolic expression e1 6= e2 is satisfiable.
To perform this test we rely on a SMT solver, namely Z3[2].

The above procedure is guaranteed to terminate for SEFL models of P4
programs: program variables model header fields and metadata over a finite set,
whose size is known in advance. The input of a P4 program (i.e. valid packet
layouts) and the auxiliary per-packet variables (meta-data fields) are already
known from the parser section of the P4 program and cannot be arbitrarily
large (tens of primitive variables, in practice). Also, each header field has a fixed
size, hence it can carry a limited number of values. Symbolic expressions (e.g.
e1) model sets of possible header field values. Thus, when running symbolic
execution with loop detection, worst-case, all possible value-sets (encoded by
symbolic expressions) will be explored for each variable. At this point it is
guaranteed that a newly-constructed program state was already encountered,
and the algorithm will terminate by reporting a loop.

The clear downside of this approach is complexity. Assuming the loop occurs
after executing N instructions, the worst case time and space and complexity is
quadratic w.r.t N.

However, SEFL models of a P4 program follow a structure that offers great
room for optimization:

• loops cannot have arbitrary structure - there are a select few instructions
that can cause loops (resubmit, recirculate). This insight can greatly
reduce complexity. We only check memory state snapshots when these
instructions are executed;

• in order to detect the loop formed by instructions i0, i1, . . . , in, i0, it is not
necessary to start symbolic execution with instruction i0. One can choose
any instruction of the loop and invoke the store and compare routine there,
instead of calling it across the whole loop. In our particular case, we know
what P4 instructions can cause loops and the symbolic executor is altered
to check for loops only there.

In the table below we show real-world benchmark results for the loop de-
tection algorithm applied on a model containing a loop. The loop size is larger
than 10 instructions and it can be detected by applying the loop detection check
in any of its instructions. However, to emphasize the economy that is achieved
by limiting the number of instructions considered for loop detection, we have re-
ported the run time of the algorithm when using between 1 and 10 instructions.
In this example, one can see that even for relatively small loops (10 instructions)
a 10x improvement can be achieved.

Instructions 1 2 3 4 5 6 7 8 9 10

Time(ms) 165 261 373 498 632 774 924 1080 1242 1410

13

6 Correctness verification with NetCTL

For any given P4 program, Vera will explore a large number of paths, many of
which are successful. In our evaluation, we typically see hundreds such paths.
Examining them manually to decide whether the behavior is as intended is time
consuming and error-prone. We wish to specify desirable properties and have
Vera check them automatically.

The specification must combine packet constraints at specific ports of the P4
switch (which we call state properties) with constraints over the possible paths
which the packets may take between ports (henceforth called path properties).
We can already express state properties via SEFL instructions. For instance,
the property ‘destination IP is always X at port out ’ can be verified by placing
the SEFL instruction Dest-IP != X at port out and observing that no successful
paths from port out are possible.

To express path properties, we have considered a wide range of SDN policy
languages, e.g. the Kinetic [9] family, FatTire [10],
NetPlumber [7], as well as approaches relying on logic programming (e.g. FML [5]).
We have found that all such languages are limited in their ability to express
compositional constraints.

We have thus turned to Computation Tree Logic (CTL) [3]. CTL is a log-
ical language designed for expressing properties over computation trees, which
traditionally model all possible behaviours of a finite-state system. The main
ingredients of the language are branching operators e.g. ∃ϕ which states that
on some execution trace of the system ϕ is true, and temporal operators e.g. Fϕ
which states that in some state of the execution trace ϕ is true. NetCTL uses the
very same temporal and branching operators together with SEFL instructions,
in order to express state properties. For instance, the policy: ∀FdestTCP == 80

evaluated at some port P of a box, expresses that on all possible packet paths
from P, destTCP will eventually become 80.

Unlike Merlin, FatTree or NetPlumber, NetCTL is compositional: starting
from simple properties, we can construct more complex ones. For instance,
we can express that ‘’whenever the IP destination of a packet becomes a pub-
lic address, port P is reachable” via the formula: ∀G(ip != 192.168.0.0/16 →
∃F port == Internet). NetCTL can express many other properties including
TCP connectivity and invariance across tunnels.

Although not as expressive as other temporal logics (e.g. CTL*), CTL ben-
efits from fast model checking algorithms which run in linear time with respect
to the size of the formula and to that of the modelled system. NetCTL inherits
the same traits, although it does not explicitly rely on model checking.

The rest of this section is organised as follows: we first discuss the “state-
explosion problem”, and explain how our approach avoids it and how it is dif-
ferent from standard model checking. Next, we formally review the syntax of
CTL and introduce a semantics on finite computation trees — this semantics
is almost identical to the traditional one (defined over finite-state systems) and
it allows us to prove that our NetCTL verification algorithm is correct. Fi-

14

nally, we discuss two algorithm optimizations: “lazy-symbolic execution” and
“conjunction verification”.

6.1 NetCTL and the state explosion problem

Model checking (with CTL or other temporal logics) is known to suffer from
the “state-explosion problem” — describing programs, especially ones which in-
volve concurrency, as finite-state systems requires a huge number of states. CTL
model checking must process all of these states even though some may prove to
be irrelevant for the truth-value of the formula. Symbolic model checking is a
considerable improvement: it puts forth a compact representation for models —
Ordered Binary Decision Diagrams (OBDD). In a nutshell, OBDDs use boolean
encodings for states, thus scaling to models with hundreds of different param-
eters per state. While this adds an order of magnitude to the size of verifiable
models it does not scale to arbitrary programs.

A different approach - Bounded Model Checking (BMC), unrolls the model
under scrutiny for a number of k transitions, and describes it as a SAT formula.
While BMC is fast, it sacrifies precision — unrolling only k transitions may not
cover the complete behaviour of the model.

Our approach avoids the state-explosion problem altogether by relying on
symbolic execution. Instead of building a finite-state system to exhaustively
cover all possible behaviours of the program, we use symbolic execution to find
only those behaviours which may actually occur at runtime. Moreover, we take
a lazy approach in building and exploring those behaviours. The following
example is an informal illustration:

void f (int x) {

if (x>1)

x = x - 1;

if (x < 0)

return x;

else return 0;

else return 1;

}

The program contains two imbricated if statements, and without making
any reasoning on the possible values of x, we have three possible output states
once f is called. Using symbolic execution, we can infer that the then branch of
the inner if cannot be reached at execution, and thus rule it out as a possible
state altogether. Moreover, if our aim is to find whether f can return 0, we can
stop symbolic execution once the else branch of the inner if (i.e. return 0;)
is explored.

To conclude, NetCTL verification differs from standard model checking in
that: (i) we handle the state explosion problem by relying on symbolic execution
to reveal all program states which may be realized at execution and (ii) we
explore only those states which are relevant for the formula (property) under
scrutiny.

15

The rest of the section is organized as follows. First, we present the standard
CTL syntax and semantics. Next, we introduce an algorithm which performs
CTL verification on finite computation trees. The latter are obtained by per-
forming symbolic execution on SEFL programs. We show the algoritm to be
correct. Finally, we show how our algorithm is deployed for NetCTL verification
— we show how state properties are verified and explain lazy symbolic execution.
This optimization allows verification to stop once the formula is found true (or
false), without exploring the entire symbolic execution tree of the program.

6.2 Background: CTL syntax and semantics

Let Props be a finite set of propositions. The syntax of CTL is recursively
defined as follows:

ϕ ::= p ∈ Props | ¬ϕ | ϕ ∧ ϕ | Y Z[ϕ] | Y [ϕUϕ]

where Y ∈ {∃,∀} and Z ∈ {X,F,A}

whenever the scoping of operators is clear (e.g. as in ∃Fp), we omit the square
brackets. ∃ and ∀ are the standard branching operators, while X (next), F
(future, or sometime), A (always) and U (until) are temporal operators.

Traditionally, the semantics of CTL is given over finite-state labelled tran-
sition systems. These objects are models of programs. Thus, in the (standard)
entailment M |= ϕ, the formula ϕ is a property of a program M . Instead, we
define the CTL syntax over finite computation-trees T obtained by the symbolic
execution of a SEFL program P , on a symbolic input packet σ0. Thus, in the
entailment T |= ϕ, the formula ϕ is a property of the symbolic execution of
program P , and not P itself. In SEFL, different symbolic input packets (e.g.
with different header layouts) may produce different execution trees on the same
SEFL program.

Also, note that, formally - transition systems are compact representations of
infinite computation trees. In our semantics, computation trees are finite, since
the SEFL programs on which we perform symbolic execution are expected to
always terminate. Technically, we could easily construct an infinite computation
tree from a finite one by adding loop-transitions on each leaf state, however this
is not useful for our framework.

While the interpretation of a model has slightly changed in NetCTL, the
underlying intuition of the operators remains the same. We continue with a few
preliminary definitions.

A finite computation tree is a tuple T = (Props,Q, L, next, q0) where Q is
a finite set whose elements we call states, L : Q → 2Props is a state labelling
function, next : Q→ 2Q is a successor function - next(q) ⊆ Q are the children
states of q and q0 ∈ Q is the initial state. If next(q) = ∅ then q is a leaf-state.

A trace in a tree T is a maximal finite sequence q1 . . . qn (i.e. qn is a leaf
state) such that qi+1 ∈ next(qi) for each 1 ≤ i ≤ n− 1. A trace models a path
discovered by symbolic execution of a program. Such a path is maximal, in the
sense that symbolic execution either ends successfully or by reporting an error

16

(e.g. a constraint violation). Let ΛT (q) denote the set of traces in T starting
with state q. The CTL semantics is given below:

T, q |= p iff p ∈ L(q)

T, q |= ¬ϕ iff T, q |= ϕ is false

T, q |= ϕ1 ∧ ϕ2 iff T, q |= ϕ1 and T, q |= ϕ2.

T, q |= ∃Xϕ iff there exists q′ ∈ next(q) such that T, q′ |= ϕ

T, q |= ∀Xϕ iff T, q′ |= ϕ for all q′ ∈ next(q)

T, q |= ∃Fϕ iff there exists q1 . . . qn ∈ ΛT (q) such that T, qi |= ϕ for some
1 ≤ i ≤ n

T, q |= ∀Fϕ iff for all traces q1 . . . qn ∈ ΛT (q), T, qi |= ϕ for some 1 ≤ i ≤ n

T, q |= ∃Aϕ iff there exists q1 . . . qn ∈ ΛT (q) such that T, qi |= ϕ for all
1 ≤ i ≤ n

T, q |= ∀Aϕ iff for all traces q1 . . . qn ∈ ΛT (q) we have T, qi |= ϕ for all
1 ≤ i ≤ n

T, q |= ∃[ϕ1Uϕ2] iff there exists q1 . . . qn ∈ ΛT (q) such that T, qi |= ϕ2 for
some 1 ≤ i ≤ n, and T, qj |= ϕ1 for each 1 ≤ j ≤ i− 1

T, q |= ∀[ϕ1Uϕ2] iff for all traces q1 . . . qn ∈ ΛT (q), there exists an index
1 ≤ i ≤ n such that T, qi |= ϕ2 and T, qj |= ϕ1 for each 1 ≤ j ≤ i− 1

Note that the above semantics also covers the leaf-state case. For instance,
consider evaluating ∀Ap in a leaf state q from a computation tree T . Also, let p
be true in state q. Then ΛT (q) is a singleton set which contains the single-state
trace q. Since T, q |= p, by our definition it follows that T, q |= ∀Ap.

6.3 An algorithm for NetCTL verification

We introduce an algorithm which performs CTL verification on finite com-
putation trees (i.e. checks T, q |= ϕ). We first introduce the procedures
check∃, check∀ and check next, which are later used in our verification. We
later show how symbolic execution can be used construct computation trees.

Algorithm 1: CTL verification of the ∃ path quantifier

Data: check∃(T, q0, ϕ)
Result: Verifies if ϕ is true on some trace starting in q0

1 for q ∈ next(q0) do
2 if check(T, q, ϕ) = true then
3 return true
4 end

5 end
6 return false

17

Algorithm 1 takes as input a tree T , initial state q0 and formula ϕ and
returns true if ϕ holds on some path starting at q0.

Algorithm 2: CTL verification of the ∀ path quantifier

Data: check∀(T, q0, ϕ)
Result: Verifies if ϕ is true on all traces starting in q0

1 for q ∈ next(q0) do
2 if check(T, q, ϕ) = false then
3 return false
4 end

5 end
6 return true

Conversely, Algorithm 2 takes as input a tree T , initial state q0 and formula
ϕ and returns true if ϕ holds on all paths starting at q0.

Algorithm 3: CTL verification of path quantifiers

Data: check next(T, q0, ϕ)
Result: Verifies if ϕ is true on some or all traces starting in q0,

depending on the path quantifier in scope from ϕ
1 case ϕ ≡ ∃ψ do
2 return check∃(T, q0, ϕ)
3 end
4 case ϕ ≡ ∀ψ do
5 return check∀(T, q0, ϕ)
6 end

Finally, Algoritm 3 checks the temporal operator in scope, from the input
formula ϕ, by relying on check∃ and check∀.

The following is our algorithm for CTL verification on trees:

18

Algorithm 4: CTL verification on trees

Data: check(T, q0, ϕ)
Result: T, q0 |= ϕ

1 case ϕ ≡ p do
2 return p ∈ L(q0)
3 end
4 case ϕ ≡ ¬ψ do
5 return check(T, q0, ψ) == false
6 end
7 case ϕ ≡ ψ1 ∧ ψ2 do
8 return check(T, q0, ψ1) and check(T, q0, ψ2)
9 end

10 case ϕ ≡ YXψ with Y ∈ {∃,∀} do
11 if next(q0) = ∅ then return false;
12 else
13 case ϕ ≡ ∃Xψ do
14 return check∃(T, q0, ψ)
15 end
16 case ϕ ≡ ∀Xψ do
17 return check∀(T, q0, ψ)
18 end

19 end

20 end
21 case ϕ ≡ Y Fψ with Y ∈ {∃,∀} do
22 if check(T, q0, ψ) = true then return true;
23 else
24 if next(q0) = ∅ then return false;
25 else
26 return check next(T, q0, ϕ)
27 end

28 end

29 end
30 case ϕ ≡ YAψ with Y ∈ {∃,∀} do
31 if check(T, q0, ψ) = false then return false;
32 else
33 if next(q0) = ∅ then return true;
34 else
35 return check next(T, q0, ϕ)
36 end

37 end

38 end
39 case ϕ ≡ Y [ψ1Uψ2] with Y ∈ {∃,∀} do
40 if check(T, q0, ψ2) = true then return true;
41 else
42 if check(T, q0, ψ1) = true and next(q0) 6= ∅ then return

check next(T, q0, ϕ) ;
43 else
44 return false
45 end

46 end

47 end

19

The algorithm relies on the observation that, on trees, the formula Y Fψ is
true iff:

(i) ψ is true in the current state q or

(ii) Y Fψ is true on some (for Y = ∃) or all (for Y = ∀) children states of q.

Similarly, YAψ is true iff:

(i) ψ is true in the current state q and

(ii) YAψ is true on some (for Y = ∃) or all (for Y = ∀) children states of q.

The operator U receives the very same treatment. Note that, to verify YXψ
in state q it suffices to verify ψ in some or all children of q. For this reason,
on lines 12-17 of the Algorithm, we call check∃ (resp. check∀) with the inner
formula ψ. We do not use check next, since this call will trigger the verification
of YXψ in the children states of q as well, thus violating the semantics of the
X operator.

In order to prove correctness, we rely on a few observations captured by the
following lemma.

Lemma 1 Let T be a finite computation tree and q0 . . . qk . . . qn ∈ ΛT (q0) be a
trace. If check(T, qk,∃Fψ) returns true for some state qk, then check(T, q0,∃Fψ)
also returns true.

Lemma 1 states that if our algorithm reports the formula ∃Fφ as being true on
some state qk along a trace, it will also report it to be true at the beginning of
the trace.

Proof: It is sufficient to prove the implication

check(T, qi,∃Fψ) = true =⇒ check(T, qi−1,∃Fψ) = true

for all 0 < i ≤ n. Suppose check(T, qi,∃Fψ) returns true. Then, the call
check(T, qi−1,∃Fψ) will either return true if check(T, qi−1, ψ) (and the lemma
follows) or trigger the call check next(T, qi−1,∃Fψ) and followed by the call
check∃(T, qi−1,∃Fψ). Subsequently, c.f. Algorithm 1, the call check(T, q,∃Fψ)
is evaluated for the succesor states q of qi−1. As long as this latter call returns
false, verification continues with another succesor state. Since qi is a succesor
of qi−1 and check(T, qi,∃Fψ) returns true, it follows that check∃(T, qi−1,∃Fψ)
returns true.

By using the implication for i = k, k − 1,≤ 1, the lemma follows. �

Proposition 6.1 (correctness) The procedure check(T, q0, ϕ) always termi-
nates and is correct.

Proof: Part 1 — termination: The algorithm performs a deph-first search of
the tree T . Each state in T will be explored by a number of times bounded
by the size of the formula (e.g. to check the conjunction ψ1 ∧ ψ2, we need to

20

check both ψ1 and ψ2 in the current state). Thus, the algorithm is guaranteed
to terminate for any tree and initial state.

Part 2 — correctness: We prove T, q0 |= ϕ ⇐⇒ check(T, q0, ϕ) = true, by
induction over the formula structure of ϕ.

Basis: ϕ = p - straightforward.
Induction step: ϕ = ∃Fψ. Direction “⇒”. Suppose T, q0 |= ∃Fψ. By

the semantics definition, there exists q0q1 . . . qn ∈ ΛT (q0) such that T, qi |= ψ
for some 0 ≤ i ≤ n. By induction hypothesis, the call check(T, qi, ψ) returns
true. Then, the call check(T, qi,∃Fψ) will also return true by lines 20-21 of the
algorithm. By Lemma 1, we have that check(T, q0,∃Fψ) returns true, since qi
is some state from the trace q0 . . . qn.

Direction “⇐”. Suppose check(T, q0,∃Fψ) = true. Then, either we have (i)
check(T, q0, ψ) = true, and by induction hypothesis T, q0 |= ψ thus T, q0 |= ∃Fψ
by the semantics definition, or (ii) check(T, q1,∃Fψ) = true, for some state
q1 ∈ next(q). The same line of reasoning follows for q1: either check(T, q1, ψ)
returns true or check(T, q2,∃Fψ) returns true, where q2 is some successor state of
q1. The sequence of check calls must terminate, therefore check(T, qi, ψ) = true
for some state qi which is the ith successor of q0. The sequence q0 . . . qi is not
necessarily maximal, but we can extend it to q0 . . . qiqi+1 . . . qn by arbitrarily
selecting successor states qk ∈ next(qk−1) for i + 1 ≤ k ≤ n. By induction
hypothesis, we have T, qi |= ψ. Finally, by the CTL semantics T, q0 |= ∃Fψ.

The induction steps corresponding to other formulae can be shown in the
exact same way. �

Theorem 1 (Complexity) check(T, q0, ϕ) takes O(|T | · |ϕ|) time to complete.

Proof: Worst-case, the algorithm will construct all possible paths from ΛT (q0).
For each temporal formula, the algorithm first proceeds to examine the subfor-
mula at hand in the current-state and then may continue the verification of the
formula, in the next-state. Thus, for each state, at most |ϕ| verifications may
be performed. Informally, this amounts to performing symbolic execution once
for each subformula of ϕ. �

6.4 Algorithm implementation

Propositions in NetCTL. A proposition in NetCTL expresses a state-property,
i.e. a propery of a packet at a specific location in the network. We use
a subset of SEFL to express such properties. For instance, the instruction
Constrain(IPDst,==10.0.0.1) is used to check if the IP destination field satis-
tifies the respective constraint. Thus, propositions p ∈ Props are abstractions
for such instructions. In order to check p ∈ L(q) (i.e. p is true in state q), we
proceed as follows. Suppose p is a SEFL instruction and q is a state obtained via
symbolic execution. We construct the complement p of p, by adding negation
to the constraint from p. We then perform symbolic execution on program p in
symbolic state q. If this yields successful paths, then it is possible for some con-
crete packet to satisfy the constaints in p. Thus p is false in state q. Conversely,
if no succesful paths are found, p is true.

21

Lazy state exploration. First, note that Algorithm 4 works on the symbolic
execution tree T . Building it in advance is not always useful — some traces
may not be explored during verification, hence there is no need to produce
them. Second, note that our algorithm does not deal specifically with how
symbolic execution is performed — this is actually hidden by how the set next
of succesor states is built.

To make NetCTL fast, we construct the symbolic execution tree T step-by-
step. For a given current state q, each successor state q′ ∈ next(q) is obtained
per-need basis. Symbolic execution executes the program at hand until some
successor q′ is found, and then stops and stores the current execution context.
A successor is found when:

• a Forward instruction is executed (i.e. the packet is forwarded to some
port of the network)

• symbolic execution stops with failure

• the current program terminates (e.g. the packet is not forwarded or no
links to the forwarding port exist)

If verification does not complete for q′, then symbolic execution continues
from the current execution context, and a new succesor state is built. In this
way, instead of instrumenting a complete execution tree T , our implementation
only stores a stack of execution contexts.

Checking conjunctions efficiently. In order to verify properties containing
binary boolean operations e.g. ψ1 ∧ ψ2 in state q, Algorithm 4 would perform
verifications check(T, q, ψ1) and check(T, q, ψ2). This amounts to performing
two symbolic executions from state q, one for each subformula. This is inefficient
since some successor states may be constructed and examined twice. To avoid
this, we keep a flag for each boolean operator of the formula at hand. If,
for instance, ψ1 (resp.ψ2) is found true in the current state, then verification
continues with ψ2 (resp. ψ1). If ψ1 or ψ2 is false, verification stops. If ψ1 and ψ2

require building a successor state (i.e. they contain temporal operators), then
verifying the conjunction continues.

7 Conclusions

P4 promises to enable truly flexible networks that can adapt to application
needs, but P4 programming is not as easy as it may seem at first sight due
to language features stemming from its close relationship to switch hardware.
Vera is a tool that translates P4 to SEFL and then uses symbolic execution to
find potential bugs. Vera can also check correctness of properties expressed in
NetCTL.

In this technical report, we have provided detailed information about certain
aspects of Vera that are not thoroughly captured in the conference publication.
These aspects include the “big-step” operational semantics for P4 and SEFL,

22

correctness of translation, a description of the loop detection algorithm, further
details on the match-action data structure and a formal explanation of NetCTL.

References

[1] Pat Bosshart et al. “P4: Programming Protocol-independent Packet Pro-
cessors”. In: SIGCOMM Comput. Commun. Rev. 44.3 (July 2014).

[2] Marco Canini et al. “A NICE Way to Test Openflow Applications”. In:
Proc. NSDI’12.

[3] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model
Checking. Cambridge, MA, USA: MIT Press, 1999. isbn: 0-262-03270-8.

[4] Flemming Nielson Hanne Riis Nielson. “Semantics with Applications: An
Appetizer”. In: Springer Verlag, London, 2007.

[5] Timothy L. Hinrichs et al. “Practical Declarative Network Management”.
In: Proceedings of the 1st ACM Workshop on Research on Enterprise Net-
working. WREN ’09. Barcelona, Spain: ACM, 2009, pp. 1–10. isbn: 978-
1-60558-443-0. doi: 10.1145/1592681.1592683. url: http://doi.acm.
org/10.1145/1592681.1592683.

[6] Antoine Joux. Algorithmic Cryptanalysis. Chapman & Hall/CRC, 2009.

[7] Peyman Kazemian et al. “Real Time Network Policy Checking Using
Header Space Analysis”. In: Proc. NSDI’13.

[8] Ahmed Khurshid et al. “VeriFlow: Verifying Network-wide Invariants in
Real Time”. In: Proc. NSDI’13.

[9] Hyojoon Kim et al. “Kinetic: Verifiable Dynamic Network Control”. In:
Proceedings of the 12th USENIX Conference on Networked Systems De-
sign and Implementation. NSDI’15. Oakland, CA: USENIX Association,
2015, pp. 59–72. isbn: 978-1-931971-218. url: http://dl.acm.org/

citation.cfm?id=2789770.2789775.

[10] Mark Reitblatt et al. “FatTire: Declarative Fault Tolerance for Software-
defined Networks”. In: Proceedings of the Second ACM SIGCOMM Work-
shop on Hot Topics in Software Defined Networking. HotSDN ’13. Hong
Kong, China: ACM, 2013, pp. 109–114. isbn: 978-1-4503-2178-5. doi:
10.1145/2491185.2491187. url: http://doi.acm.org/10.1145/

2491185.2491187.

[11] Radu Stoenescu et al. “SymNet: Scalable symbolic execution for modern
networks”. In: SIGCOMM. 2016. doi: 10.1145/2934872.2934881. url:
http://doi.acm.org/10.1145/2934872.2934881.

23

