
Oh Flow, Are Thou Happy?
TCP sendbuffer advertising for make benefit of clouds and tenants

Alexandru Agache
University Politehnica of Bucharest

Costin Raiciu
University Politehnica of Bucharest

1 Introduction
Datacenter networks have evolved from simple trees to
multi-rooted tree topologies such as FatTree [1] or VL2
[9] that provide many paths between any pair of servers
to ensure high performance under all traffic patterns. The
standard way to load balance traffic across these links is
Equal Cost Multipathing that randomly places flows on
paths. ECMP may wrongly place multiple flows on the
same congested link, wasting as much as 60% of total
capacity in a worst case scenarios for FatTree networks
[2, 16]. These networks need information about the traf-
fic they route to avoid collisions, by steering it towards
idle paths [2, 7], or by creating more capacity on the fly
between groups of hot racks [8, 21, 10, 24]. Addition-
ally, ECMP creates uncertainty about the path a given
flow has taken, making network debugging difficult.

Traffic information in datacenters comes mostly in
the form of rate and loss rate measurements at vari-
ous vantage points including switches, routers and hy-
pervisors (this is less common with the advent to I/O
passthrough). Additionally, monitoring protocols like
sFlow allow sampling a percentage of packet headers
at selected links. This information is simply not suf-
ficient to enable satisfactory solutions to the problems
faced by datacenter operators: we show in Section 2 that
link utilization and aggregate loss rate measurements are
poor indicators of network hotspots, and that the current
threshold-based traffic engineering approaches are sub-
optimal when traffic is not network-limited.

What is the least amount of information from the end-
points that would enable the network to do a better job?
We find that simply knowing whether an application is
backlogged or not would help a lot. That is why we pro-
pose that senders include sendbuffer occupancy—the
number of bytes waiting to be sent in the in-kernel buffer
of a TCP connection—in the packets they originate to in-
form the network about the status of the connection. We
propose an implementation of sendbuffer advertising that
has zero bandwidth overhead: we encode the sendbuffer
in the receive window field of TCP headers. Finally, we
have performed an initial exploration of its applications,
finding benefits in a varied range of scenarios.

2 Problem Statement
What’s in a (flow) rate? Traffic engineering solutions
like Hedera [2] or Devoflow [7] use a rate-based thresh-

old to decide which flows they should schedule; this is
heuristically chosen to be 10% of the host NIC speed.
Flows above the threshold are assumed to be network
bound and assigned completely idle paths in the hope
they will fill them up. Flows below the threshold are sim-
ply ignored: the hope is that their traffic is insignificant.

We ran a rsync of large files between two machines
connected via a 1GBps link and measured link utiliza-
tion, finding it is around 33%: the app can’t fill the
pipe because the hard disk drives of the servers are bot-
tlenecks, and cannot sustain 1Gbps throughput. In our
rsync test, both Hedera’s assumptions are broken. Our
evaluation in Section 4 shows the performance penalty
can be as high as 35% compared to the optimal; the
exact hit depends on the traffic matrix. Previous work
[16](§4.4) shows that the 10% threshold seems to be a
sweetspot; changing it yields worse performance.

Loss rates are poor indicators of capacity shortage.
Conventional wisdom says that the higher the loss rate
at a link, the busier that link is. This is the case when
connections arriving at a link are not synchronized, as
duly confirmed by an experiment we ran on Amazon
EC2, where one VM receives iperf traffic from mul-
tiple other VMs: loss rates for a single connection run-
ning one minute are around 0.1%, and this increases to
0.2% with 5 connections; the average throughput of all
connections received is around 150Mbps, indicating that
EC2 shapes its tenants’ traffic.

Next, we run an experiment where one EC2 VM runs
multiple rounds of a synthetic scatter-gather application,
sending out short requests to 99 EC2 VMs which re-
ply immediately with B bytes; the next round starts only
when all the replies from the previous round have been
received. We vary the size of the response B from one
packet to tens of packets, running many rounds per ex-
periment. We plot the average measured loss rates in Fig-
ure 3, where we vary the size of the reply on the X axis.

Loss rates in this scenario are much higher than in
the previous experiment, yet the traffic rate is at most
10Mbps and thus the link is not a bottleneck: the problem
comes from the synchronization of reply traffic which
repeatedly overflows the shallow receive buffer of the
link towards the destination server. This is a well known
problem called incast that has been studied extensively
(e.g. see [20, 23]), but identifying occurrences of it with-
out packet-level traces is very difficult. A traffic engi-

neering solution using loss rates might wrongly decide
to migrate the frontend VM based on loss rates, only to
find that the problem persists after the move.

Finally, the combination of link utilization and loss
rates is not enough to predict bottlenecks either: when
app-limited traffic shares a link with scatter-gather traf-
fic, link utilization can be high (driven by the app-limited
traffic) and loss rates will soar because of incast traffic.
Migrating the traffic away from this link is pointless.

What is missing? In all examples above, the applica-
tions running at the endpoints are not bottlenecked by
the network: rsync can’t send faster, and the scatter-
gather servers send very little data back: providing more
bandwidth to these apps will not help. The network is
unaware of the status of the application, and may take
the wrong decisions when shifting traffic around. It
should know whether endpoint apps are backlogged to
take proper decisions. The most obvious choice is to try
to infer this by examining their traffic.

There are two known methods to infer if an app is
backlogged by looking at its traffic. Jaiswal et al. [14]
propose a method that runs close to the sender and sees
all packets to measure the flight size and estimate the
congestion window for a number of well-known conges-
tion controllers. If the flight size is smaller than the con-
gestion window, the flow is app-limited. This technique
has two drawbacks: it only works for known congestion
controllers, and may struggle in clouds where tenants
may run their new and fancy congestion control algo-
rithms; secondly, it is very expensive to implement, as
the only reasonable choice is to deploy it in the hyper-
visor (e.g. Dom0 in Xen). However, this requires that
tenant traffic is routed through the hypervisor, instead of
being sent directly to the NIC with techniques such as
PCI passthrough / SR-IOV.

The second method also requires packet-level logs and
looks for packets smaller than the maximum segment
size. It is similarly expensive to implement, and doesn’t
have very good accuracy because it depends on whether
Nagle’s algorithm is enabled, and whether the applica-
tion is using the push flag (which causes segments to be
sent out immediately, rather than waiting for a full seg-
ment). We ran experiments that use rsync to copy a
4MB file across a 1Gbps link. When using the HDD,
rsync is disk-bound and 3% of its segments are smaller
than the maximum segment size; when reading the files
from memory, rsync is network-bound yet 2% of the
TCP segments have sizes smaller than MSS.

3 Sendbuffer Advertising
To ease the job of the network, endsystems should ex-
plicitly inform the network on whether their flows are
backlogged at any point in time. The operating sys-

Sequence	 numbers	

snd_una	 snd_nxt	 write_seq	
	 	 backlogged	 in_flight	

snd_buf	

Figure 1: Anatomy of a send buffer

tem can easily tell whether a TCP connection is back-
logged by examining its sendbuffer, as shown in Fig-
ure 1. When the application issues a send system call,
the kernel copies as much data as possible into the send-
buffer, and then sends segments on the wire as long as
they fit in the congestion window and receive window
advertised by the remote endpoint. The sendbuffer has
two distinct parts: a) the segments that are in-flight have
been already sent but not acknowledged by the receiver,
and must be kept until ACKed, and b) the segments that
are waiting to be sent, or the backlog.

We propose to advertise the number of bytes in this
backlog in every TCP segment. The advertisement can
be easily placed in a new TCP option, but this would
add 8B of overhead 1 to every segment (0.5%); worse
yet, it may disable hardware offloading support on mod-
ern NICs, such as large receive offload, reducing perfor-
mance.

Instead, we encode the sendbuffer advertisement in the
receive window field of outgoing segments; we use one
of the reserved flags to indicate that the receive window
field has a different meaning in this segment; this encod-
ing has zero bandwidth overhead. The stack encodes a
sendbuffer advertisement only when the receive window
and ACK combination is exactly the same as sent pre-
viously. Since traffic is unidirectional most of the time,
the receive window advertisements from the data source
are highly redundant (same ACK, same window) and re-
placing them with sendbuffer advertisements creates no
performance issues. In the reverse direction, sendbuffer
advertisements will not be sent since the ACK is pro-
gressing and the window is constantly evolving; luckily,
the sendbuffer advertisements are usually not needed in
this direction.

We have implemented TCP sendbuffer advertising in
the Linux kernel; our patch is less than 100 lines of code.
We first ran a few experiments to understand how dif-
ferent applications’ sendbuffer information looks like.
In Figure 2 we show the sendbuffer carried in the seg-
ments for three different apps: a HDD-bound rsync, a
network-bound rsync (using a ramdisk to transfer the
same file), and an on-off application that sends high-
speed bursts followed by silence (such as video stream-
ing). The figures show what we expected: there is vir-

1Two bytes for option type and size, four bytes for the sendbuffer
advertisement, and two bytes of padding.

2

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5

S
e
n
d
 b

u
ff

e
r

(K
B

)

Time (s)

(a) HDD bound

 0

 60

 120

 180

 0 0.3 0.6 0.9 1.2 1.5 1.8

S
e
n
d
 b

u
ff

e
r

(K
B

)

Time (s)

(b) Network bound

 0

 100

 200

 300

 400

 500

 0 2.5 5 7.5 10 12.5

S
e
n
d
 b

u
ff

e
r

(K
B

)

Time (s)

(c) Bursty transfer

Figure 2: Bandwidth-hungry network transfers lead to heavy sendbuffer occupancy.

tually no backlog in HDD-bound scenarios, and it’s easy
to distinguish whenever the network becomes the bottle-
neck by examining sendbuffer advertisements.

4 Use Cases

Detecting network hotspots. We have seen that neither
loss rate nor utilization are accurate indicators of bottle-
necks in datacenter networks. A better way to estimate
bottlenecks is to rely on sendbuffer information carried
by packets. The most straightforward manner to mea-
sure this is to average the sendbuffer information of all
packets on a specific link; alternatively, packet sampling
can be used to only examine a subset of traffic.

We reran the EC2 experiments in Section 2 with our
Linux kernel implementation of sendbuffer advertising.
When running app-limited flows through the link, the av-
erage reported sendbuffer is zero. In the incast traffic
pattern, the sendbuffer depends on the size of the client
reply and is shown in Figure 3 as the linepoint graph cor-
responding to the second Y axis; the values are very low
for small responses, and only increase for larger ones be-
cause the congestion window doesn’t open fast enough
at the very start of the connection; the max send buffer is
around 60KB. Running network limited traffic through a
link results in sendbuffer averages that are on the order of
hundreds of KB, making it easy for datacenter operators
to discover when a link is a bottleneck.

This information can be cheaply gathered by operators
using sFlow: the sFlow server has visibility not only in
the average sendbuffer at a given link, but also in per-flow
sendbuffer information. This makes it possible to single
out congested links and take corrective action (e.g. mi-
grate VMs away from servers on that link), and to reroute
bottlenecked flows onto paths that have more spare ca-
pacity. We discuss such a solution next.

Accurate traffic engineering. Traffic engineering solu-
tions such as Hedera [2] make the assumption that any
flow whose throughput is larger than some threshold will
expand to fill the maximum available capacity. This as-
sumption is wrong for app-limited traffic, and could lead

Connections Hedera First Fit Sendbuffer TE
NW 84% 82.7%

NW NW 87% 92%
NW 110Mbps 77% 84%
NW 90Mbps 68% 81%

NW 2·90Mbps 70% 76%
110Mbps 790Mbps 78% 83.5%
200Mbps 800Mbps 76% 81%

Table 1: Traffic engineering in datacenters using send-
buffer advertising

to inefficient path allocations.
To find out how bad this effect is, we implemented

sendbuffer advertisement in the htsim simulator and
tested how well traffic engineering performs on a 1Gbps
FatTree topology with k = 8 (128 servers) 2:

• The First Fit heuristic of Hedera [2] that places any
flow larger than 100Mbps onto the first path that
has enough capacity to fit it. Hedera estimated the
capacity needed for a flow by counting the num-
ber of large flows originating or ending at the same
server, and dividing the NIC capacity equally be-
tween these flows.

• A toy traffic engineering solution that only only
schedules a flow if its sendbuffer has been non-
empty for more 80% of the packets in the current
measurement period and the achieved rate is smaller
than 50% of the flow’s maximum theoretical rate.

In all experiments, we ran a permutation traffic pattern
where every server sends traffic to a single other server,
and no destination receives traffic from more than one
source. The number of connections between each pair
of servers is varied from one to three. The table 1 gives
the average flow throughput measured over a 10s exper-
iment, expressed as a percent of the optimal throughput.

2Previous works have shown that topologies with two orders of
magnitude flows show qualitatively similar results, but the simulation
speeds are greatly reduced [16]

3

 0
 1
 2
 3
 4
 5
 6
 7

1 2 5 10 20 30 50 100
 0
 10
 20
 30
 40
 50
 60
 70

Lo
ss

 r
a
te

 (
%

)

A
v
g
 s

n
d
b
u
f

(K
B

)

Response size (KB)

Losses
Sendbuffer

Figure 3: Losses caused by incast

Storage	
Compute	 1	

Compute	 2	

MAP	

read	

Figure 4: Datacenter compute frame-
works can use sendbuffer information
to make better scheduling decisions

 0
 20
 40
 60
 80

 100
 120
 140

 0 1 2 3 4 5 6

S
e
n
d
 b

u
ff

e
r

(K
B

)

Time (s)

Figure 5: Sendbuffer on an emulated
mobile device

The first column describes the connections that were in-
stantiated between each server pair: NW means a net-
work limited flow, while throughput numbers mean a
flow limited to the specified bandwidth.

The results show that our simple TE scheme is sim-
ilar in performance to Hedera when flows are network
limited (first two rows of the table), but achieves bet-
ter results when flows are app-limited. The improve-
ment varies from 5% to 15% depending on the setup.
Our scheme is nothing more than a proof-of-concept, so
these numbers show that assuming all traffic is network
limited can lead to inefficient traffic allocation (e.g. as
low as 68% of optimal) and that traffic engineering al-
gorithms that take into account sendbuffer information
are more robust and have the potential to improve per-
formance across a wide range of scenarios.

An interesting area of research is to explore send-
buffer TE techniques in the context of datacenter topolo-
gies where rack-to-rack bandwidth is augmented dynam-
ically, such as Helios [8] or Flyways [10]. There, the cost
of wrongly estimating a flow’s needs are much higher,
since the on-demand cross-rack capacity is often an or-
der of magnitude higher than the basic one.

Troubleshooting flow performance. A side-effect of
having send-buffer information in every packet is that it
reveals information about the sender’s congestion win-
dow. Assuming the total size of the sendbuffer is con-
stant, the amount of bytes buffered by the receiver
shrinks when its congestion window grows (and more
packets are in flight), and increases when the congestion
window is decreased upon a loss.

These trends are not immediately visible in the send-
buffer graphs because the sendbuffer also varies due to
app writes into the buffer and the kernel sending packets
out on the wire when possible. This is what we see, for
instance, in Figure 2b, where the app writes/kernel drain
create a 60KB band where the sendbuffer varies.

We observe that the app-writes operate on a much
shorter timescale than congestion window updates (in-
creases or decreases), so if we smooth out the app-write
it should be possible to see the cwnd evolution against
time just by monitoring the sendbuffer information.

 0

 40

 80

 120

 160

 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
 0

 50

 100

 150

 200

 250

C
w

n
d
 (

p
a
ck

e
ts

)

S
e
n
d
 b

u
ff

e
r

E
W

M
A

 (
K

B
)

Time (s)

Actual cwnd
EWMA w/o sampling

EWMA with sampling

Figure 6: Sendbuffer information can be used to estimate
the cwnd of the sender. Even when packets are sampled
1/100, the resulting information allows inferring losses
suffered by the sender.

To see this effect, we run an iperf over a gigabit link;
we add 1ms of delay to make it easier to read the conges-
tion window graphs. We plot in Figure 6 the congestion
window of the TCP connection and an exponential mov-
ing average (without sampling) of the sendbuffer infor-
mation with α = 0.001. We see that this estimate closely
tracks K − cwnd where K is the total size of the send-
buffer. We also sample the sendbuffer information 1/100
packets and plot an exponentially moving average of the
sendbuffer in the same picture: losses experienced by the
flow are easy to detect even with this information.

These results imply that it is possible to use sFlow
sampling at rates of 1/100 (or possibly less) to cheaply
get accurate estimates of per-flow loss rates. This func-
tionality is only available today for links (i.e. flow aggre-
gates). Per-flow loss rates enable debugging performance
problems experienced by flows: it is possible to measure
average loss rates across all flows, single out outliers and
find out why they suffer more, etc.

Improving datacenter applications. Datacenter com-
pute frameworks such as MapReduce use a mix of I/O
and CPU-bound jobs that includes reading from local or
network storage, processing data, write to local storage,
data transfer, and so forth. Such applications can lever-
age sendbuffer information, if available, to improve their
scheduling decisions and thus reduce job finish times.

We present one possible optimization in Figure 4. A
map task is running on compute server 1, reading data
from a storage server. If this task is late compared to

4

the other maps in its generation, it is called a straggler
and map-reduce implementations (such as Hadoop) will
opportunistically schedule the map onto another machine
(say compute server 2), hoping it will finish quicker. This
strategy implicitly assumes that the bottleneck is some-
how related to the mapper.

This assumption can of course be wrong; the storage
node can be I/O bound: starting a new map job on com-
pute server 2 will not help; the same data may need to be
read again (depending on memory usage), competing for
the scarce bandwidth of the the storage node’s disks. If
the mapper computes average sendbuffer occupancy for
its TCP connection to the storage server, it can report this
to the controller next time map statistics are sent. The
controller can then see the connection is I/O bound on
the storage node, and realize that firing another map job
that would read from the same node is pointless.

Helping mobile clients. Mobile clients have multiple
wireless interfaces including WiFi and cellular. Today,
only one connection is used at a time: WiFi if avail-
able and cellular otherwise. The implicit assumption is
that the user wants to avoid cellular links at all costs, as
long as WiFi “works”. Unfortunately, WiFi performance
can be arbitrarily low, crippling application performance.
Multipath TCP [18] is an extension to TCP that allows
a mobile to utilize both WiFi and cellular links simul-
taneously, spreading traffic over both, and can be read-
ily used to increase network capacity when WiFi is not
good enough. Always enabling both WiFi and cellular
links wastes energy consumption and precious mobile
data, thus enabling cellular links when WiFi is available
should be done with care.

We can use sendbuffer information to understand
whether WiFi is sufficient, assuming that the user will
specify which apps are allowed to increase capacity
when needed. These may include VOIP and streaming
apps that have (mostly) inelastic bandwidth demands.
We have coded a Python application that monitors the
sendbuffer and will open a new subflow over another in-
terface when an app is backlogged. We have run this
on a Linux box with dual gigabit interfaces, (limited
to 20Mbps each). A transfer is initiated from a source
which generates data at 30Mbps. The send buffer ad-
vertisements that we receive are indicative of typical
network-limited flow behaviour. After a new subflow is
initiated, the advertised values quickly drop to zero, and
only increase slightly from time to time due to the opera-
tion of MPTCP. Figure 5 shows the evolution of the send
buffer information received on the primary subflow. The
opening of the second subflow is delayed in order to pro-
vide better contrast between the two states. After both
subflows are enabled, the sendbuffer is virtually empty
as the available bandwidth is no longer a limiting factor.

5 Related work

The problem we address is the lack of information in the
network about the desires of the endpoints. We are not
the first to notice this problem or to offer solutions to it.

XCP proposes that routers and endpoints tightly col-
laborate to guide congestion control, rather than relying
on endsystem probing alone as in TCP [15]. In partic-
ular, every endpoint places in each packet the expected
demand for the next round-trip time, and this allows the
routers to allocate capacity appropriately. XCP did not
get deployed despite its potential benefits: it is simply
impossible to change all routers to support it. Sendbuffer
advertising is much simpler, has zero-overhead and does
not require network changes.

Mahout wants to enable more accurate traffic engi-
neering by detecting elephant flows at endpoints, not in
the network [6]. Endhosts monitor the sendbuffer usage
of their connections; if occupancy grows past a thresh-
old, the flow is classified as elephant and it is marked
(with a DSCP codepoint) so that the traffic engineering
system can then schedule it appropriately. Our solution
shares the basic idea of using sendbuffer information to
detect backlogged apps, but we expose the actual data to
the network instead of checking a sendbuffer occupancy
threshold. This ensures our solution is applicable to a
wider range of use cases, and actual sendbuffer values
(as opposed to binary indications of full/empty) allow to
infer second order information such as losses.

B4 [13] and SWAN [12] are inter-datacenter traffic en-
gineering solutions that rely on application changes or
ingress rate-limiting to ensure core load is predictable;
in these settings, B4 and SWAN use SDN paradigms
to attempt near perfect traffic engineering. To achieve
their benefits, both solutions change applications to re-
port their demands to the network; while changing a few
apps at Google is certainly feasible, changing all data-
center apps run by tenants is certainly not. Sendbuffer
advertising aims to allow better traffic engineering with-
out changing endhost apps.

HONE [19] is a scalable and programmable plat-
form for traffic management. Its architecture includes
agents running on each host that can collect various data
about connections, including socket backlog informa-
tion. However, this is relayed and used at an entirely dif-
ferent scope, while we focus on adding sendbuffer adver-
tisements to the packets themselves. Varys [5] proposes
that application schedulers such as MapReduce make it
clear to the network which flows are related, so that traf-
fic engineering can optimize for job completion time,
rather than individual flow completion time. A similar
solution is proposed by CloudTalk [17]. These are com-
plementary to our work, and can be used in conjunction
with it.

5

6 Discussion

We have proposed sendbuffer advertisement, a minus-
cule patch to TCP stacks that has zero bandwidth over-
head in the average case and provides minimal yet cru-
cial information to the network about the connections it
carries. This extension requires no application changes
and helps improve networks by enabling accurate traffic
engineering, reliable bottleneck detection, per flow loss
rate monitoring and application optimizations.

Sendbuffer advertising is particularly beneficial for
cloud environments were the cloud provider has cur-
rently no means to understand what its tenant apps need.
While changing tenant apps to provide such information
is infeasible, we believe incentivising tenants to report
sendbuffer usage is possible.

At HotCloud we would like to get feedback on the
feasibility of introducing sendbuffer advertising in cloud
networks, and on discovering other use cases we haven’t
considered. Our main target is to interact with industry
people to better understand real-life constraints and ap-
plications. In addition, we seek guidance on a number of
important open problems:

1.Preventing cheating. Malicious tenants may lie about
their sendbuffer occupancy to fool traffic engineering (or
other cloud provider apps) and gain more throughput or
attack other customers. There are two possible strate-
gies to prevent cheating: a) monitoring traffic in dom0
to infer whether an app is backlogged by using exist-
ing techniques (see Section 2), perhaps intermittently or
b) designing shaping schemes that incentivize tenants to
declare real sendbuffer information. A starting point for
this work could be the Re-Feedback proposal by Briscoe
et al. [4]. Which technique should we pursue?

2. Tenant incentives for deployment. Cloud providers
provide stock images of popular operating systems, and
many tenants use these as basis for their virtual ma-
chines. The cloud provider can easily create versions
of these images that implement sendbuffer advertising,
and it can entice users to them by offering lower prices
or higher network speeds. We believe that the provider
should be able to offset these costs by the profit it makes
from running its network more efficiently. Is this a rea-
sonable deployment strategy?

3. Minimizing flow completion times. Novel datacen-
ter network architectures such as pFabric [3], D3 [22]
or PDQ [11] propose changing both the transport pro-
tocol and the network to reduce the completion time of
flows, Sendbuffer advertisement can be seen as a mini-
mal change to the transport that would allow similar be-
haviour, as long as switches prioritize traffic with lower
sendbuffer utilization (e.g. with Openflow). It would be
interesting to discuss the pros and cons of these solutions.

Acknowledgements

This work was partly funded by SSICLOPS, a project
funded by the European Comission under its Horizon
2020 programme (contract number 644866).

References
[1] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scalable,

commodity data center network architecture. In Proc. SIGCOMM
2008.

[2] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B.,
HUANG, N., AND VAHDAT, A. Hedera: Dynamic flow schedul-
ing for data center networks. In Proc. Usenix NSDI 2010.

[3] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCKE-
OWN, N., PRABHAKAR, B., AND SHENKER, S. pfabric: Min-
imal near-optimal datacenter transport. In Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM (New York,
NY, USA, 2013), SIGCOMM ’13, ACM, pp. 435–446.

[4] BRISCOE, B., JACQUET, A., CAIRANO-GILFEDDER, C. D.,
SALVATORI, A., SOPPERA, A., AND KOYABE, M. Policing
congestion response in an internetwork using re-feedback. Proc.
ACM SIGCOMM’05, Computer Communication Review 35, 4
(Aug. 2005), 277–288.

[5] CHOWDHURY, M., ZHONG, Y., AND STOICA, I. Efficient
coflow scheduling with varys. In Proceedings of the 2014 ACM
Conference on SIGCOMM (New York, NY, USA, 2014), SIG-
COMM ’14, ACM, pp. 443–454.

[6] CURTIS, A., KIM, W., AND YALAGANDULA, P. Mahout: Low-
overhead datacenter traffic management using end-host-based
elephant detection. In INFOCOM, 2011 Proceedings IEEE (April
2011), pp. 1629–1637.

[7] CURTIS, A. R., MOGUL, J. C., TOURRILHES, J., YALAGAN-
DULA, P., SHARMA, P., AND BANERJEE, S. Devoflow: scaling
flow management for high-performance networks. In Proceed-
ings of the ACM SIGCOMM 2011 conference (New York, NY,
USA, 2011), SIGCOMM ’11, ACM, pp. 254–265.

[8] FARRINGTON, N., PORTER, G., RADHAKRISHNAN, S., BAZ-
ZAZ, H. H., SUBRAMANYA, V., FAINMAN, Y., PAPEN, G.,
AND VAHDAT, A. Helios: A hybrid electrical/optical switch ar-
chitecture for modular data centers. In Proceedings of the ACM
SIGCOMM 2010 Conference (New York, NY, USA, 2010), SIG-
COMM ’10, ACM, pp. 339–350.

[9] GREENBERG EL AL., A. VL2: a scalable and flexible data center
network. In Proc. ACM Sigcomm 2009.

[10] HALPERIN, D., KANDULA, S., PADHYE, J., BAHL, P., AND
WETHERALL, D. Augmenting data center networks with multi-
gigabit wireless links. In Proceedings of the ACM SIGCOMM
2011 Conference (New York, NY, USA, 2011), SIGCOMM ’11,
ACM, pp. 38–49.

[11] HONG, C.-Y., CAESAR, M., AND GODFREY, P. B. Finishing
flows quickly with preemptive scheduling. SIGCOMM Comput.
Commun. Rev. 42, 4 (Aug. 2012), 127–138.

[12] HONG, C.-Y., KANDULA, S., MAHAJAN, R., ZHANG, M.,
GILL, V., NANDURI, M., AND WATTENHOFER, R. Achieving
high utilization with software-driven wan. In Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM (New York,
NY, USA, 2013), SIGCOMM ’13, ACM, pp. 15–26.

[13] JAIN, S., KUMAR, A., MANDAL, S., ONG, J., POUTIEVSKI,
L., SINGH, A., VENKATA, S., WANDERER, J., ZHOU, J., ZHU,
M., ZOLLA, J., HÖLZLE, U., STUART, S., AND VAHDAT, A.
B4: Experience with a globally-deployed software defined wan.

6

In Proceedings of the ACM SIGCOMM 2013 Conference on SIG-
COMM (New York, NY, USA, 2013), SIGCOMM ’13, ACM,
pp. 3–14.

[14] JAISWAL, S., IANNACCONE, G., DIOT, C., KUROSE, J., AND
TOWSLEY, D. Inferring tcp connection characteristics through
passive measurements. In INFOCOM 2004. Twenty-third Annu-
alJoint Conference of the IEEE Computer and Communications
Societies (March 2004), vol. 3, pp. 1582–1592 vol.3.

[15] KATABI, D., HANDLEY, M., AND ROHRS, C. Congestion con-
trol for high bandwidth-delay product networks. In Proceedings
of the 2002 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (New York,
NY, USA, 2002), SIGCOMM ’02, ACM, pp. 89–102.

[16] RAICIU, C., BARRE, S., PLUNTKE, C., GREENHALGH, A.,
WISCHIK, D., AND HANDLEY, M. Improving datacenter per-
formance and robustness with Multipath TCP. In Proc. ACM
SIGCOMM 2011.

[17] RAICIU, C., IONESCU, M., AND NICULESCU, D. Opening up
black box networks with cloudtalk. In Proceedings of the 4th
USENIX Conference on Hot Topics in Cloud Ccomputing (Berke-
ley, CA, USA, 2012), HotCloud’12, USENIX Association, pp. 6–
6.

[18] RAICIU, C., PAASCH, C., BARRE, S., FORD, A., HONDA, M.,
DUCHENE, F., BONAVENTURE, O., AND HANDLEY, M. How
hard can it be? designing and implementing a deployable mul-
tipath tcp. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation (Berkeley, CA,
USA, 2012), NSDI’12, USENIX Association, pp. 29–29.

[19] SUN, P., YU, M., FREEDMAN, M., REXFORD, J., AND
WALKER, D. Hone: Joint host-network traffic management
in software-defined networks. Journal of Network and Systems
Management 23, 2 (2015), 374–399.

[20] VASUDEVAN, V., PHANISHAYEE, A., SHAH, H., KREVAT, E.,
ANDERSEN, D. G., GANGER, G. R., GIBSON, G. A., AND
MUELLER, B. Safe and effective fine-grained TCP retransmis-
sions for datacenter communication. SIGCOMM Comput. Com-
mun. Rev. 39, 4 (Aug. 2009), 303–314.

[21] WANG, G., ANDERSEN, D. G., KAMINSKY, M., PAPAGIAN-
NAKI, K., NG, T. E., KOZUCH, M., AND RYAN, M. c-through:
Part-time optics in data centers. In Proceedings of the ACM
SIGCOMM 2010 Conference (New York, NY, USA, 2010), SIG-
COMM ’10, ACM, pp. 327–338.

[22] WILSON, C., BALLANI, H., KARAGIANNIS, T., AND
ROWTRON, A. Better never than late: Meeting deadlines in dat-
acenter networks. In Proceedings of the ACM SIGCOMM 2011
Conference (New York, NY, USA, 2011), SIGCOMM ’11, ACM,
pp. 50–61.

[23] WU, H., FENG, Z., GUO, C., AND ZHANG, Y. ICTCP: Incast
congestion control for TCP in data center networks. Co-NEXT
’10, ACM, pp. 13:1–13:12.

[24] ZHOU, X., ZHANG, Z., ZHU, Y., LI, Y., KUMAR, S., VAHDAT,
A., ZHAO, B. Y., AND ZHENG, H. Mirror mirror on the ceiling:
Flexible wireless links for data centers. In Proceedings of the
ACM SIGCOMM 2012 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication
(New York, NY, USA, 2012), SIGCOMM ’12, ACM, pp. 443–
454.

7

