ROAR: Increasing the Flexibility and
Performance of Distributed Search

Costin Raiciu

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
of
UCL.

Department of Computer Science

University College London

April 11, 2011

To Andrei, Cristina and my parents

Abstract

Search engines are a fundamental building block of the welth&y general purpose web search engines,
product search engines for online catalogues or peoplets@aonline networks, search engines provide
easy access to a huge amount of information. To cope witk Emgpunts of information, search engines
use many distributed servers to perform their functiopalit

For instance, to search the web quickly, search engineii@athe web index over many machines,
and consult every partition when answering a query. To as®ehroughput, replicas are added for each
of these machines. The key parameter of these search hlgerits the trade-off between replication
and partitioning: increasing the partitioning level tyadig improves query completion time since more
servers handle the query. However, partitioning too musb abs drawbacks: startup costs for each
sub-query are not negligible, and will decrease total thhput. Finding the right operating point and
adapting to it can significantly improve performance andioedcosts.

In this thesis we propose that the tradeoff between pantitgpand replication should be easily
configurable. To this end we introduce Rendezvous On a RiIGAM), a novel distributed algorithm
that enables on-the-fly re-configuration of the partitignievel. ROAR can add and remove servers
without stopping the system, cope with server failures, pravide good load-balancing even with a
heterogeneous server pool.

We experimentally show that it is possible to dynamicalljuatithe partitioning level to cope with
different loads while meeting target query delays, and imgl®o the system can reduce its power
consumption significantly.

To test ROAR we introduce Privacy Preserving Search: aquéati search application that allows
users to store encrypted data online while being able tdyesesarch that data. Our contributions include
novel protocols that allow PPS for numeric values, as wedl peoof of concept implementation of PPS

running on top of ROAR and allowing users to match as many agliomfiles in well under 1s.

Acknowledgements

My PhD has brought me to the highs of exultation infused bgtrieleas and the lows of experiments
gone the wrong way. It was a journey | would always remembet,ane | would always start again if |
could. I met, worked with, and made friends with many peopidrd) these years, and here I'd like to
express my gratitude to all of them for helping me become eareber.

My advisor David Rosenblum, always calm and collected, gage¢he chance to study at UCL, and
helped me endure the many paper rejections and find a way tsipwihat was obviously a good idea -
ROAR, the basis of my PhD :)! Mark Handley, my second advisaf later my boss during the Trilogy
project has showed me what good research is, and introdueettd mmy now major area of interest -
computer networking.

My colleagues and friends Felipe Huici and Adam Greenhalgimfthe nets group helped me steer
my way around Hen, and provided invaluable help when | ne@dedst - for paper deadlines. Petr
Marchenko and Andrea Bittau helped me unwind with regulasli@all matches. My friend Mo always
put a smile on my face, even when | was really down. Paper slisons with people in the nets group
including faculty members Brad Karp, Damon Wischik and Kydenieson, as well as colleagues Piers
O’ Hanlon, Georgios Nikolaidis helped me find interestinglgems and compelling solutions in the
vast systems literature.

A big thanks goes to all my friends in the SSE group, where hsfiee initial three years of my
PhD: Clovis Chapman, Genaina Rodrigues, Leticia DuboccdMMusolesi, Stephanos Zachariadis,
Andy Maule, Danielle Quercia, Michelle Sama and many others

Nithin Umapathi, a great friend | found in London, broke themathony of research with intriguing
discussions about the world over coffee. His views of theldvorade a lasting impression on me.

A great thank to my parents that gave me a chance to do a PhDirgirig me up to love school
and science, and who supported my throughout my PhD. Witthait help | wouldn't be in London
finishing the PhD now.

Cristina was close to me during my highs and lows, and gavemogmeus support throughout. It
is great to be with you! Our son Andrei, born during my PhD, matk want to leave home late and

come back early. He always puts a smile on my face and makesehtuffilled. | thank them both.

Contents

Contents

43
44

45
45
46
47
47
48
50
50
51
51
53
54
55
56
59
62
62
63
63
64
64
65
65
66
69
69
71
72

Contents 7

I6_3_C_h_a_nm the /r tradeolf 86
IG._A._C.Q.IIJ.D.a.LiS.Q.D_C.Q.D.CI.US.i.Clns 87

89
|71 Experimental Setljp 89
|72 The ADDIicatiOL 90
IZ.LBasjﬂLa.dﬂJff 91
|7 3.1 __Query | atencies Decrease W’[h P e 92
|7 3.2__Query Overheads Increase Wlth D oo e 92
= rcesuiiuwmue.... 93
7.3.4 Update Overhead Increaseswith 94

NCE . . . e e e e e 101
7.9 Query Delay Comparison: ROARVS. HTN o i o . 102

IZ._‘IQ_ELa.Luali.Q.nﬁ.ummAry 104

on onk 112

IQ.lJQ.DlLi.b.UIiQEIS 112
I&.LEU.LU.LEJNO.IIK 114

— 114

List of Figures

|4 1 __Basic ROAR store and guery mechanisms with 12. » = 4 andr = 3. Objects are stored in arches of leng

|4 2 Duplicate matches are possible w i i =4.p=3andp, = 4] 31

4.3 Avoiding duplicate matchingin ROAR. 31
4.4 A node failure can cause a query to miss a match. ROAR piettss by splitting the failed node’s sub-quer

Ig,j_RQQRﬁghgduﬂn_@orithm' Simple Exanlple 39
b.ﬁ_RaugaAdiuslmﬂnL[a&u.enLS.chﬁdJling 40

|5 1 Bandwidth Consumption Comparison between IndeX-BHﬁhﬂﬁ.Q.D_a.D.d_EéS 49
|5 2 Data Structures Used by IJ’PS 63

IE_S_Ruﬂujﬂ,gaOuervwith PPS: System Archite(lture A o 7}
|54 Execution traces for gueries searchingmda 67

ith fi i i Ao 69
ELWMMMMMMM 70
|61 Basic Delay Comparison for SW. PTNandR&)AR. Y € o)
|6 2 Variation of Query Delay withIN 78
|6 3 Variation of Query Delay with | n]id 79

|64 Variation of Query Delay with Server Heterog_e_[leity. P < ¥ A

List of Figures 9

List of Tables

|7 1 Server Models Used in Experimental Evalu:ltion 90

IY_LEQP_LQV Savings running at= 5 instead ofp = 44 93

inlEC2 100

Chapter 1

Introduction

Search, possibly the web’s most important applicatiommigiémented as a distributed computation over
a large inverted Web index. In order to improve the perforoeanf queries, this index is partitioned
into many parts, and each part is replicated on a clustermfioadity PCs. When a query is executed,
it is sent to one machine in each cluster so that the wholeximgleovered, and the results aggre-
gated [BDHO3B]. From a distributed algorithms point of viemhich cluster each data item is stored on
and which machines each query is sent to are independerg atthalcontentof the data and queries.
Indeed, the algorithm is blind to this content: it is suffiti¢o ensure that each query reaches machines
that between them hold all the data. We call this class ofréalgusdistributed rendezvous

Such algorithms contrast with other more constrained loplalgorithms such as Distributed Hash
Tables (DHTSs), where a query is sent to precisely the nodetiraanswer the request. To some extent,
distributed rendezvous can be thought of as brute-fordehlited matching. However inelegant this

may seem, many real-world problems fall into this categoigiuding:
e Web search - such as Google, Bing or Yahoo Search

Product search provided by online shops such as EBay, Amazon

Image search and other complex searches that are diffidaldléx properly

The “map” operation of map/reduce computation can be thbafjas an instance of distributed

rendezvous, where the query is the mapping function to beudéed and the data is the input to

this function.

Parallel databases

Successful web search engines such as Google or Bing usd#epanaex-search algo-
rithms [BDHO3], which are a form of distributed rendezvoushe datasets involved can be many
terabytes in size [BDHO03], can change rapidly (consider g®dlews, updated continuously as news
happens), and can have very high query rates. Only by sprgddé search across large numbers of
servers can query latency be kept low while achieving higéral/throughput.

Figureld illustrates the basic concept. The servers ardetilvinto clusters and each data item to be

searched is replicated on all the machines in a single clugfieh this in place, a query is then sent to

12

one machine from each cluster, thus ensuring that the gsenaiched against the full index. Each data
entry is only matched against the query on a single machliogyiag arbitrarily complex matching rules

to be performed locally. Having performed the search, eaabhine ranks the matches and returns the
best ones. Finally, the results from all the query machinesreerged, ranked once again, and returned

to the user.

Servers

Macbeih’n\

Data item
replicated on
all nodes in
one cluster

Query sent
to one node
from each
cluster

Figure 1.1: Basic Distributed Rendezvous

Given this strategy, the obvious question is how many nodesld be in each cluster? Each query
must be sent to one node from each cluster, so increasingutiher of clusters means splitting the
search index into more pieces. The good thing with involuimgre nodes in each search is that it
typically reduces the search completion ﬁn@n the down side, per query overheads increase with
the number of nodes participating in each search: the balthwé transmit the query increases, and
each of the queried nodes starts a search thread, sendscaigsadata, etc. In general, these per-node
overheads do not depend on the amount of data being searehexde fixed. Sending the same query to
more nodes means that the system is “paying” more fixed oadrper query. This reduces the amount
of useful work the system can do, thus reducing throughput.

In essence, the problem is one of balancing search latemighwenefits from a larger number of
clusters, with total throughput for all nodes, which hasef@rence for a smaller number of clusters. A
sensible strategy would be to choose the smallest numbéusitcs that satisfies a latency target, such
as answering all queries in under a second. Once this targatisfied, splitting into more clusters would
only decrease peak throughput.

Of course, for a static data set and a constant query rate iheio great problem figuring out the
number of clusters needed to satisfy a target latency, @amdtinere to calculate the number of machines
in each cluster needed to satisfy the overall throughputwéy¥er, neither the data set nor the query
rate remain constant for most real applications, and the tetmber of machines cannot normally be
changed on short timescales.

Consider again Google’s search engine: over time the sizheofveb increases, so the size of
Google’s index grows. While machines can easily be addedcitdirg clusters in order to maintain
throughput, keeping search latency constant requirestiépaing the servers into more clusters. In
such scenarios, the system becomes inefficient but keepsguA worse case is when the index grows
so much that the portion of it each server needs to store @ausggthe memory of the machine. As

Google’s web search algorithm runs from memory, it becongeessaryo repartition.

lassuming delay variance across nodes does not increasfcaigly

13

We have focused the discussion on Google to be more speb#icigted to repartition dynamically
equally applies to other distributed rendezvous appboati In general, it seems that there are two
forces driving the need to repatrtition in distributed rengris applications: a) ensuring the system runs
as efficiently as possible given the current load, and b) rimgthe system does not hit scaling walls;

for instance, this could equate to ensuring it does not rdmbonemory or disk on any of the servers.

Current systems, such as Google, only repartition infratiyend in response to scaling con-
cerns[[Dea]. The repartitioning process is equivalent staréing the system in the new configuration
(although it can be done incrementally; a more detailedrifggm of Google’s approach is provided in
ChaptefR). None of the deployed systems we know about caal@lee do) repartition dynamically to
increase efficiency. We believe this is a result of usingtelubased distributed rendezvous algorithms,
that make reconfiguration expensive and difficult. We takevibw that if repartitioning were cheap and

non-disruptive to the running system, the system wouldrbeye it to increase its overall efficiency.

This thesis sets out to build distributed rendezvous systdrat use repartitioning as a knob to
control the properties of the system. Specifically, we psap@ novel distributed rendezvous algorithm
called Rendezvous On A Ring (ROAR) that achieves most of tis&able properties of the cluster-based

algorithm while allowing reconfiguration with minimal baniith cost.

The main difference between ROAR and the cluster-baseditiigois the way replicas of data are
laid out on servers: instead of using clusters, ROAR arrasgevers in a virtual ring and stores each
replica on a portion of the ring. The biggest gain is that réfi@ning now only equates to expanding or
contracting these areas. The biggest challenge is eféd¢gtising heterogeneous servers to reduce query
delay and its variation. The core of the problem is the “sligiindow” positioning of replicas ROAR
uses. This technique effectively reduces the number oEseambinations a query can be sent to, and

hence it is more difficult to include faster servers in morenigs.

We present the design of ROAR and throughly explore its ptagse We present and evaluate
several techniques that together overcome the delay ogalléNVe evaluate ROAR against the cluster-
based solution, and against the theoretical best algorixperiments on a 50-server deploymentin the

Hen testbed, together with experiments on 1000 servers cewAnis EC2 show ROAR’s practicality.

To test ROAR we chose the Privacy Preserving Search (PP3tamm. PPS is an application
where untrusted servers can match encrypted queries agaitrypted data without knowing the con-
tents of the queries or the data. PPS could be used, for gestém enable privacy in online services
such Microsoft Office Live and Amazon S2. This thesis contiéls a security model for PPS and novel

techniques to support matching numeric predicates agaimseric data.

PPS is both disk and CPU intensive and achieving reasonaleley glelays for large datasets re-
quires parallelization. Distributed Rendezvous in geharad ROAR in particular, is a natural solution
to scale PPS to large datasets and high query rates. We shblRRE can scale to millions of items and

high query rates by running on more servers.

This thesis is structured as follows. Chajfller 2 provides/amiew of the problem space, including

relevant applications, scope and requirements. Chhptealyses the solution space focusing on the

14

way different algorithms place their data on servers, anéeves in depth the most relevant existing
literature on distributed rendezvous. Chagller 4 presamtsalution, ROAR. Chaptdd 5 presents the
PPS application, together with our solution for performpriyacy preserving search. We perform an
analytical evaluation of ROAR comparing it to other appioexin Chaptdil6. ChaptEr 7 contains an
in-depth evaluation of ROAR and PPS running on top ROAR. fedlavork is reviewed in Chapt€l 8.
We conclude in Chapt€f 9.

Chapter 2

Problem Space

The Web has expanded enormously since its inception, m2@ejears ago. In this short period, more
and more data has become available online, totalling mare %0 billion pages today [web09]. For this
huge amount of data to be useful, users need ways to discelegant information quickly. Search has
emerged as a backbone for the Web, supporting the Web's lgtoyvbffering a simple interface that
allows users to find interesting data.

There are many flavours of search available on the Interaeh &ilored to meet different needs of
the user. Web-search engines (such as Google, Bing, Yatarol§are the most general example: they
create and store a reasonably accurate snapshot of the Wkhsa it to answer user queries. Online
retailers such as eBay or Amazon offer product search to tisers, allowing them to find interesting
items in large product databases. News sites typically asegories to allow users quick access to
desired content, but also offer search to allow for moreifipepueries. Online data repositories such as
Flickr or Picassa (storing photos), Google Docs or Micro&iffice Live (storing documents) also offer
search to allow their users quick access to informationadt falmost all major websites today use some
form of search to help users sift through large amounts &.dat

Searching large databases is not technically easy. As theeata involved can be huge, they cannot
fit the memory or even disk of any single server. Even if thed; dinning a query against the entire
database takes a long amount of time, much more than the sers are willing to wait for a response.
Search systems must provide correct answers fast, typiaall under one second. Finally, search
systems must be built with scalability in mind: the datasstsare constantly increasing, and search
volumes will likely increase too. Solving for the currentaset sizes and query loads is not enough. A
good solution must be able to smoothly adapt to changing ivads.

To address these issues, most of the existing search s@utty on two basic toolgartitioning

the query andeplication of the data.

Partitioning allows running the query in parallel on many servers. Theaghkdtis partitioned among
many servers, such that each server will store a subset tftdledata, and all servers collectively store
all the data. To run a query, the system will send ialicthe servers. Each server locally runs the query
against its part of the dataset, and returns (partial) testihese results are merged into the final answer,

which is sent to the user. For simplicity of presentationwilerefer to sending the query to the servers

16

holding different parts of the data partitioningthe query. However, we note that the query itself is not
split in any way, but rather the data that is matched by theyque

Partitioning the query to more servers typically reducesghery search time: the time a server
takes to run a query against its data is smaller as the datetsetmaller. Partitioning more would always
reduce delay if end-to-end delay were only determined ballquery search times. However, there are
other delays that affect end-to-end query delay: netwolkyddn sending the query and receiving the
results typically increase with the number of servers. Ifpaetition too much, the network delays will
tend to dominate the local query delays, and at this poiritiganing further only increases delay.

At first glance, partitioning is work conserving: the totataunt of work done is constant, regard-
less of the partitioning level. This is because there is nplidated work: each server only works on
its unigue subset of the data, and no other server works osetine data. Globally, the dataset is only
matched once against the query, regardless of the numbenairs involved in the search.

However, this view is not accurate: there are overheadsted with starting a query on a server,
and these overheads scale up when the partitioning lewelases. For each query, each server processes
the query message, starts a search thread, waits for thedttoefinish, and sends a reply message.
This overhead is constant, as it does not depend on the sittes afata being searched. Further, the
network will send proportionally more messages as moreesgiare involved in the search. The front-
end server—receiving the query from the user and sendiwgtlite query servers—uwill work harder to
schedule a query on more servers (as the complexity is atlieear, as we will show in ChaptEl 3).

To summarise, the total per-query overheads increase \eepartitioning level increases. This
is work the system does, but is not useful per se; hence, dtivedy affects the maximum throughput
of the system. Further, for the same amount of useful womrk sgrstem has to do more total work as
the partitioning level increases. This increases energgeist the least; in the evaluation we show this
effect for the PPS application.

Partitioning is useful to split the data into chunks that fit and can be quickly searched by, indi-
vidual servers. Partitioning alone is not enough: if angkdrserver fails, the subset of the data it stored
becomes unavailable to queries. In such cases, the seatemswill either return incomplete results
or just stop responding to queries. Even if the servers wertegtly reliable, scaling the system with
partitioning alone is insufficient. If query load increasssrvers are typically added to the system to
cope with the additional load. This would cause the partitig level to increase, which in turn can have

negative effects on end-to-end delay and will increaselwaats,

Replication helps with both these problems. The dataset is partitioselefore, but the number of
partitions is now less than the number of servers. Then, ebtifese parts will be replicated on a few
servers. To run a query , the system will send it to enoughesethat hold all the data between them.

Having more than one replica of each data part increasessttdetance and availability. Adding
servers to the system, and loading these servers with asphitexisting data is the easiest way to scale
the system up when query load increases.

Replication comes with its own overheads: the more repliddse dataset, the bigger the update

2.1. Problem Definition 17

cost (in terms of network traffic and local processing). Tgbsearch databases do not change that often,
so this may not be a big issue. However, there are datasetshhiage frequently (e.g. news); in such
cases, the update costs may become a limiting factor inrays¢eformance.

As with partitioning, replication alone is not sufficientgapport search. When the data set grows,
the amount each server has to store and process grows. biieritzaling walls will be hit when the
amount of stored data exceeds any individual server’'s dgpatso query delay will increase to unac-
ceptable levels when the data set becomes too large. Fihalliyng more replicas to update will increase
the time needed to reach consistency in the system.

The main problem with existing search engines is that theentalifficult to change the replication
or partitioning level. The typical mode of operation is t¢imsite dataset size and update frequency, as
well as query load, and use these to statically compute thenexl levels of partitioning and replication.

If these parameters require changing, the system is efédgtirestarted” with the new parametersDea].

This by itself is not a big issue if these estimates are ateubait they rarely are: query loads, in
particular, are notoriously bursty (e.g., due to “flash alely, the dataset sizes continuously increase
and their update rate changes. The task then is to “optintheeparameters a-priori. If one uses worst-
case predictions to derive the parameters, the systempaume for the worst but is highly inefficient.

If one uses average case predictions, the system will faildet its targets (such as delay) when load
exceeds expectation, and will be inefficient when load ustteots. Hence, it is important to allow
systenreconfiguration at runtime.

Current systems repartition infrequently [Dea], typigalihen the dataset size exceeds the memory
of the nodes. Replicas can be added as query load dictatesse Thconfigurations typically require
manual input and disrupt the system. This means that suatitsaee the exception, rather than the

norm.

Contribution. We take the view that fine-grained adaptation of the repboaand partitioning levels
can increase the overall efficiency of the system, and witwakystems to cope with wider ranges of
traffic loads while maintaining good service.

For reconfiguration to beconsdaptation it must be fast, automatic and seamless. The system
must be able to service running queries with minimal disouptvhile reconfiguration is taking place.
Current algorithms, in particular the Google one, fail thiaue these requirements.

In this thesis we examine the fundamental algorithmic reagbat prevent the existing solutions

from achieving adaptation and design a novel algorithmiests these goals.

2.1 Problem Definition

Distributed Rendezvous (DR)is a solution to search problems that uses the two basic tboéplica-

tion and partitioning. Essentially, distributed rendezs@aims to meet (rendezvous) each query with all
the data, in a distributed way. It is an algorithm that degidew data is split and how queries are routed
to meet the data. It does not dictate how the query is perfdiowally, on each server (which depends

on the type of search provided).

2.1. Problem Definition 18

We use the term “distributed rendezvous” instead of “distied search” for two main reasons.
Firstly, we want to focus on the distributed algorithm stgriand splitting the data and routing the
queries to servers, not on the search algorithm used |acedlglect the results. Secondly, there are other
applications besides search that can use distributed zeodg: online filtering of content is one such
example[[RRHO7], and the map operation in map-reduce caatipatis another.

Distributed rendezvous is “dumb” because it does not uséecdito decide where it should store
certain data, nor does it use query content to route the qa¢hge interesting data. It routes the query to
meetall the data, which is, in a sense, a distributed version of dorte matching. Locally, however,
each server will typically use smart algorithms to get thergwesults from its local dataset.

How come distributed rendezvous-like solutions are usqatéctice by Google, Microsoft, etc.?
Surely, smarter content-based solutions are preferalblebiggest advantages of distributed rendezvous
over content-sensitive solutions are its simplicity andeagality. We provide an overview of alternative

solutions and outline the reasons for DR’s widespread uSeatio 8.P.

Definition 1 (Distributed Rendezvous)Pistributed Rendezvous is a class of distributed algorithat
takes a collection of servers and a parameteithe replication level for data objects. It offers two basic

operations:
1. Store Object takes as input a data object and stores it gBrvers.

2. Run Query: when presented with a query, it will forward the query to eglo servers to ensure

all the data objects are queried.

A third operation that may be implemented by distributeddezvous algorithms is the ability to
change- on the fly. On request, replicas will be added or deleted téesetthe desired replication level,

meanwhile queries should still be serviced as usual, plyssith a reduction in capacity.

To achieve full query functionality, a few other operatiomsst be implemented on top of distributed
rendezvous: each node must locally search its data objé&btthe given query, and find matches; results
must be sent back to the user. We intentionally leave thetsef the DR definition, as they are application
specific.

Brewer [BreOl] definebarvestandyield for distributed rendezvous systenmarvestis the fraction
of data objects a query visits. When harvest is 100%, all dbjects are visited so the query is given
an exact answer; when harvest is less, an approximate aissednrnedyield is the number of queries
that are serviced out of the total number of queries. Idealywould like to service all queries and
thus haveyield close to 100%. However, when systems are overloaded it mdgdieable to drop some
queries altogether to ensure the rest of the queries aretexkc
Comments on Def[1.By definition, we require harvest to be 100% as some appbieativill require
exact answers.

We intentionally choose the same replication level for #lleats. This is the next step after not
considering content: we treat all data objects equally. &applications may need to give more weight

to certain objects if harvest is less than 100%; this is taenthat some important objects are always

2.1. Problem Definition 19

visited. These mechanisms can be layered on top of a distdlvendezvous algorithm as needed, with-
out changing the underlying behaviour for the majority ojeas. Hence we consider them orthogonal
to the basic distributed rendezvous problem.

In practice, when designing a distributed system, one dskgjtiestion: how many servers are
needed to support a certain query throughput, given a ¢mlleof data objects? Here, we take the
dual approach where we assumethe number of servers, is given and and ask what is the mawimu
query throughput. An answer to the latter question implesanswer to the former. We prefer the dual
formulation as it allows us to reason about the propertige@flgorithms more easily.

A secondary question is: what is the proper replicationlizvée common approach is to choose
the replication level a-priori according to requiremenistsas availability. We take the view that the op-
timal replication level is difficult to characterise befbesnd and may even change as the system evolves.

Therefore we choose to expasas a knob to the application.

Definition 2 (Partitioning Level) Givenn andr, let the partitioning levep be the minimum number of

servers a query must visit such that it collectively medtthal data objects.

Definition 3 (Load Imbalance) Given an assignment of items to serversdetigned; be the number
of items assigned to serverWe define load imbalandé as:

max;_; assigned;
(>, assigned;)/n
In short, load imbalance is the ratio between the maximum &ssigned to a server and the average

b=

load. When items are split eventually among servers thelamba is1; when all items are assigned to
a single server the imbalanceris

In the definition above, items can be either replicas or gseri

2.1.1 Running a Query
Splitting work among multiple servers serves to pool theueses of those servers together, making
them act as a single resource. DR can help pool the disks,Rilss @nd the memory of the nodes. In

this section we aim to create models of how these resourcesecahared.

Definition 4 (Object) An object is a collection of bytes that is stored in the DR egst It has an
identifier associated with it, uniformly distributed from abject identifier space. For example, assume

this space is unsigned integers.

Definition 5 (Query) A query is a predicate (a polynomial time computation) ta&et as input a data
object and answers yes/no indicating whether the objeatheatthe predicate or not.

To execute a query is to run it against all stored objects ifthin the object identifier space. To
partially execute a query is to run it against objects witk IDa subset of the identifier space. To split
a query on many servers is to partition the identifier spate (& few) sub-queries, and assign them to

different servers.

Definition 6 (Splitting a query) The query in Distributed Rendezvous contains partitioffigrmation

that informs servers which of their objects should be matdwainst the query.

2.2. The Distributed Rendezvous Trade-off 20

The query does not need to specify exact object identifietgdther the range of objects this query

needs to match.

2.2 The Distributed Rendezvous Trade-off

What is the relationship betweenp, andn? The answer depends on load balancing.

Let us consider the case when we have perfect load balanaingpfect replicas (i.elbguia =
1). Let the number of data objects He. Each server will store approximatelyr/n objects. To
achieve correctness, a query must visit enough serverglath visits all data objects. Dividing by
the number of objects on each server, we find that the minimumber of servers to be visited—the
partitioning levelp—is p = n/r. Thus:

rp=mn (2.2)

Another way to think of this equation is to place theervers in a matrix withr rows, where each
data object is stored in all the servers from one random collvhen a query arrives, it must visit all
the servers in a random row from the matrix.

This is the main trade-off distributed rendezvous offeriserE is a direct relationship between the
number of replicas for each data object and the number oéseavquery must visit. As a consequence,
when parameterizing DR we can choose either p; givenn, the other is implicit.

Increasingr increases availability, and also increases the abilitytmidaslow servers - thus im-
proving query delay. Smallermeans less bandwidth is used for storage, as each objedeupskds to
be sent to fewer servers.

We note thap is the minimum number of servers that ensures correct quagution. In reality,
values larger thap can be used for any given query. If utilisation is low, usinghter values of will
result in lower delay for CPU bound queries, as long as dafdimatches are avoided across servers.

In distributed rendezvousis no longer just a tool for increasing availability, but aywa control
other properties of the system. For instance, to achievsistemcy, chain replication [vRS04] serialises
updates at the first replica and only allows reads at the sbnating the first replica. DR only settles
for eventual consistency but can instead uge affect other properties of the distributed system such as

bandwidth consumption or delay.

2.3 Scope

What are the DR-like problems we are trying to support? AmBwethis question will help us narrow
the large problem space.

We envisage two main categories of problems:

e Query Applications. Here, a query is presented to the distributed system, whielutes it
and returns the results. Examples are many: Google/Mitdaboo web search, eBay/Amazon
product search, Privacy Preserving Search, etc. We as$usngetvice will run in a data-center,

with low delay and high bandwidth between servers.

2.3. Scope 21

e Online Filtering Applications. Here, users express their interests which are stored in the
database. When new documents arrive, they are matchedsagsisting interests and forwarded
to interested users. This is the dual of the query scenasigr. interests are stored instead of doc-
uments. Such a system could be used to quickly dissemingBef&sls. A possible deployment

is the Web servers themselves.

Different applications have different bottlenecks. Th&agrey preserving search application we
experimented with is CPU bound. Web-search seems to be CRigrmory boundIDé€a]. other types of
searches are disk-bound. The online filtering example maabdwidth bound, as documents must be
sent to many users.

The main focus of this thesis is the first type of application.

Although there are many potential constraints on creatisgliation, three are of particular impor-

tance:
o the reliability of the servers, which affects the availapiof the system;
¢ the cost of communications between the servers; and
e the acceptable delay bounds of the application.

For any particular stable scenario, with a particular rafistored objects to queries, it is possible
to choose a value of which optimises these objectives. For example, Google twiggh to minimise
bandwidth costs, subject to the threshold constraints efsatond search latency and five-nines avail-
ability. However, if conditions change, given thats the only free parameter, it may be important to

change the replication leveh-the-flyto re-optimise the system.

2.3.1 Server Reliability

The applications we envisage, while distributed, are nikshy to run on maintained servers with rela-
tively stable overlay membership (i.e. servers are alkatst the search application for a long time) and
infrequent failures. Thus we prefer solutions suited fanparatively low churn and failures.

Different algorithms hit different points in the availabjfcost/delay tradeoff space. However, re-
gardless of the algorithm, increasinincreases availability. Applications can monitor availigbwhen
running queries and adapappropriately.

Failure Model. We assume server behaviour is fail-stop, and that failuesaependent.
Data Consistency.We assume lazy replication is used to store objects, andethergual consistency is
achieved. This is appropriate for the target applicatiamgre objects updates are comparatively rare to

query rates, and a few transient false positives or negadiseeacceptable.

2.3.2 Communication Costs

Bandwidth is often the bottleneck in wide-area deploymemtd even between racks in data cen-
ters [DGO4], and thus it may limit the query-processing rata addition, many applications care
about throughput, a prime example being map/reduce systemese queries are executed offline against

stored data. The online filtering application is bandwildtund if run in a wide-area setting.

2.3. Scope 22

In general, if bandwidth costs are high then reducing badtiwisage is an objective. While this
is obvious in the wide-area, this may be even true even in ciatgers with scarce inter-rack capacity
available, and the new focus on energy consumption: reduzémdwidth usage also reduces energy
related costs [NF108].

How does bandwidth usage depend+¢h Let By, be the bandwidth of incoming data object
updates and inserts. L&, be the bandwidth of incoming query traffic, am...i¢s the bandwidth
used by query replies. The total bandwidth consumplari the system ist Byata +pBguery+ Bresuits -
Biesuits does not depend ah p or n and can be considered constant for this analysis.

Using EqZL, it is straightforward to show that the value-dhat minimises the bandwidth is
Topt = \/1 - Byuery/Bdata-

If we sub-optimally chose an extreme valuergfeither very small or very large, this requires

O(y/n) more bandwidth than optimal.

2.3.3 Application Delay Bounds

While interactive applications care about bandwidth ¢dbtsir primary concern is keeping query times
short. When DR partitions a query, latency is reduceg sexvers work in parallel on disjoint subsets of
the data. The largeris, the smaller the resulting delay.

Further, depending on the overall load, running the sameyqrethe same number of servers may
take a different amount of time. For instance, approxinggtiire system with afi/ /D /1 queue, waiting
time increases with loagf asp/(1 — p).

We can effectively write a functiomin P that takes as input the servers’ processing capacity and
the load in the system, and outputs the minimal valug thfat achieves the target delay. For different

values of loadin P will be different.

Chapter 3

Solution Space

Our end goal is an algorithm that can easily adapt to chamgbseth query rates and data update fre-
quency, providing bounded search times as efficiently asiples Efficiency favours using partitioning
and replication levels such that = n. Within this envelope, lowep values are preferred if query rates
are high, and lower values are preferred if data updates are frequent.

Our first requirement for a candidate solution is to effidigatipport the basic functionality : run-
ning queries and storing datgr(= n). The algorithm must allow changing the ratio betwgesndr
when the number of serversis fixed, while at the same time allowing us to chapgendr by adding
Or removing servers.

Adding and removing servers is the basic way to scale systgnasd down. We are introducing
a new load adaptation technique that changes the ratio befwandr, while keepingn fixed. Such
reconfiguration is desirable when the new load can be hardle@configuring the existing servers,
and is the only viable strategy when additional compute ciipes not available. Even when additional
compute capacity is available, powering up new servers @ndibg them to a consistent state can take
minutes. Adapting the ratio gf andr can provide a seamless experience to the users until the new
servers are up and running.

What are the possible Distributed Rendezvous algorithnasiieve these goals? Many different
solutions are possible, each choosing a different set ajdésmde-offs. The basic solution must dictate
how to split data into parts and where to replicate each mawtell as how to run the query such that
all the data is visited. These two components are tightlgteel, choosing a solution for one constrains
sensible choices for the other. It is easier to reason aleplita placement strategies, so we start our
solution exploration here.

In their study of reliability, Yu et al. identified three maglasses of replica placement algo-
rithm [YGNOG@]: Partition, RandomandSliding Window We will analyse algorithms from these classes
in our quest to obtain a practical DR algorithm. In this cleapte develop skeleton DR solutions for
each of these classes, specifying replica placementgieatand ways to dynamically adjust the repli-
cation/partitioning level. A valid question arises: arega algorithms diverse enough that they capture
all the interesting parts of the solution space? To reasaungelves that these algorithms cover a wide

enough spectrum, we informally discuss optimality criaend how these algorithms score against them.

3.1. Partitioned Distributed Rendezvous 24

query~y,
0O O O] [0 O O]

0 o0 o] [&X o 0]

o O »0~0 24—04—00
o

store —y¢
st p@—O0—@| (@ @ *@facn O @ O © ®
O O O] [0 oF O] O 0+—e«—e O
storing scenario querying scenario storing scenario guerying scenario
(a) Partitioned DR, boxes are clusters. (b) Randomized DR; = 2.

query
NV

storing scenario querying scenario storing scenario querying scenario

(c) Sliding Window DR. (d) Dual Sliding Window DR.

Figure 3.1: Different Distributed Rendezvous algorithms=(12,p = 4 andr = 3)

In our analysis (chapté&l 6) we perform a thorough compatisdine optimal solutions.

We conclude this chapter with a brief high-level comparisetween these different DR solutions.

3.1 Partitioned Distributed Rendezvous

Intuitively, the simplest way to organise servers is in arnimatvhere each replica is stored on one row
of servers and each query is executed by a column of servérs.pioblem with this view is that, in
reality, (or p) rarely dividen and thus we do not have a perfect matrix. The solution is thtbereto
run queries not necessarily in a column, but on one serveadh eow; or the dual is to run queries on a
column, but store replicas once in every column. The firsttsgy is better for a number of reasons, so
we discuss it first.

The Partitioned (PTN) strategy is parameteriseghbit divides then servers intg clusters each
with approximatelyn/p servers; each object is then stored on all the servers inamdomly chosen
cluster. For routing, queries are sent to one seﬂviereach cluster (see Figufe_3:3(a)). This is the
algorithm used by Googl& [BDHO3]; we call it PTN.

Partitioned algorithms can change but the change is disruptive. To decreaseservers must
first be freed to store the new replicas, which is done by degistg a cluster. Each object from this
cluster must be stored on all servers in one of the remairluisgears. Finally, the free servers can be
split between the remaining clusters and each must theeveta copy of the objects stored in its new
cluster.

Increasingp is simpler: a few servers from each cluster simply leave amdchfa new cluster.
Initially this cluster will store no data, so to improve lobdlancing some objects can be transferred to it

from existing clusters.

ITypically this choice is influenced by load balancing.

3.2. Randomized Distributed Rendezvous 25

Coordinating the change @fremains an issue. In a data center, one server can simplydserch
as the master. Changipgn a distributed manner is more difficult because the actadrservers differ:
some need to leave and re-join, others must replicate ahjget some others must delete objects. Just
designating which servers should leave a cluster requorsedorm of distributed agreement. The
network structure also needs to change when clusters atedrer destroyed; depending on how this is
done, it may add additional costs or result in some missedagpiduring the transition.

Finally, » or p can be changed by modifying the number of servers. Whenasgrgn, it is
simplest to add the new servers to the existing clusters ithereasing-. In theory it is possible to
create a cluster with new servers (i.e. increase p) andtigpathe existing objects, but this only works
when a whole new cluster is added; otherwise, a small clusteradversely affect the performance of
the whole system. When is reduced, either or p can be easily controlled by removing servers from
each cluster or destroying entire clusters.

What type of query delay does PTN experience? We are not teaatyswer this question just yet,
but we just observe the number of choices the algorithm hanwlssigning a query. For each of fhe
query parts, the algorithm can choose betweaervers; thus the number of possible combinations is
rP,

To achieve maximum throughput, PTN needs to make sure tingtecs are computationally equiva-
lent (so that none becomes a bottleneck until they are dfiditilised). That means the sum of processing
speeds of servers in each cluster is roughly constant aalladasters.

A dual PTN approach.

Instead of creating clusters, and having all machines identical in each clustercan create
clusters instead. Each data object will be stordidnes, once in each cluster. Inside a cluster, a data
object will go to a random machine in the cluster. When a qaeriyes, it is executed by all the servers
in a randomly selected cluster.

The nice thing about the original PTN approach is that alNeserin a cluster are identical: they
store the same replicas. This seriously simplifies clusgmagement, and is not the case with the dual
approach; the dual approach is suited for multiple dateecetgployments, where replicas are clustered
geographically and it is possible to run a query completedyde a data center.

This special case can also be handled optimally with theraid?TN: simply create a higher level
partitioning of the servers into data center clusters, &ed apply PTN inside each cluster of servers.
This is simple enough, and yet it reaps all the benefits of ttad @pproach.

We have run analyses of this dual approach and found perfarengimilar to PTN in all cases
except the multiple data center scenario described abowsijrhplicity of presentation, we omit these

(rather obvious) results. We do not consider the Dual PTNadidate solution for DR.

3.2 Randomized Distributed Rendezvous
In the Randomized (RAND) strategy replicas of objects aaeqd randomly on servers during a random
walk through the overlay of length- r, and queries are routed to n/r randomly chosen servers, as

in [TKCBO/l ERAT085] (see FigurE3-I(p)): is a constant of the algorithm.

3.3. Sliding Window Distributed Rendezvous 26

Unlike the other algorithms we discuss, harvest is not resgédg 100% (i.e. not all objects may be
visited by a query): randomized strategies only give a podistic guarantee that a query will return all
matches. The constantserves to tune the probability of a query missing a storedatbjThe typical
value forc is 2, which yields a harvest of QGE/O.

Randomized algorithms can easily change the replicatiel.|@0 increase, the last server of each
object’'s random walk simply replicates the object to an toldal server. To decreasethe last server
of the random walk discards the object. For the probabilitg miss to remain unchanged, all servers
(including the frontend servers) need to agreercso they can maintaip = n/r for their queries;
typically, a gossip protocol is used for this.

Whenn is increased, either can be increased (by creating new replicas of existing ¢d)jearp
can be increased (by moving some existing replicas fromingnservers). Similarly, when servers are
removedr or p are decreased.

The randomized DR algorithms give probabilistic coveragargntees and have higher costs than
deterministic algorithms such as PTN: each query is semtiteetthe number of servers, and each object
is also stored on twice as many serversdet 2. For these reasons, and despite the ease of changing
ther /p tradeoff, they seem of little practical importance to daater deployments, and will receive no
further attention in this thesis. They do offer, howeveghhiobustness in face of massive server failures
and thus seem better suited for peer to peer type deploypiurtbleStorm is a randomized algorithm

suited for these deploymen(s [TKLBO7].

3.3 Sliding Window Distributed Rendezvous

An important observation is that there is no need to dividerbdes into disjoint clusters: what is
important is that each data item is replicated-arodes, and that we can arrange for every query to visit
at least one of these nodes.

The simplest solution in this case is probably a sliding windlgorithm, where the nodes are
arranged in a circle. The first data item is then stored on sidde-, the second is stored on nodes
2...(r + 1), and thek™ on nodesk...(r + k), with all arithmetic performed modute. Now if a query
visits everyr' node it is guaranteed to reach every data item, as shown ief&Ii(c). Such an algorithm

has some very nice properties:

e Each node stores the same number of items, and if a round-adgairithm is used to start queries,
each node handles the same number of queries (assurdinigiesn). In this sense it is identical

to the basic partitioning scheme.
e Increasing- by one merely requires replicating each data item onto theessor node on the ring.

e Decreasing: by one merely requires deleting each data item from the naedbdst around the

ring that currently stores it.

2while sufficiently high harvest is achievable with smalll00% harvest is impossible to guarantee unless the quBiopied

to all nodes.

3.3. Sliding Window Distributed Rendezvous 27

Thus each node plays an equal role when changif@nd consequently). When decreasing, no
additional data needs to be copied. When increasimgone, each node needs to cdpyzth of the data.
During the transition, search continues to function: i§ decreasing, searches must use the new value
of p during the transition to ensure correctness: i§ increasing, searches must use the old valye of
until the transition is complete.

Despite these nice properties, such an algorithm comesshithtcomings. First, while it works
very well with a fixed number of reliable nodes, it does lesdl vWfea node fails. If such a failure
happens, queries that would have visited this node will myés match its data items, so some fast
recovery mechanism would be needed to replace the failed.ladhe meantime, queries would have
to visit both the preceding and subsequent nodes to ensatraltidata items continue to be matched,
causing load concentration on these nodes. In additioheaddta set changes over time, old data items
disappear and are not perfectly replaced by new items. Heusitially perfect load balancing degrades
over time.

More generally, the most basic problem with the simple sidivindow algorithm stems from the
fact that the nodes have a discrete position on the ring. Bakeen replicated across consecutive nodes
holding a range of these discrete positions. If the list afesxchanges (either nodes are added, shutdown
to save power, or fail), this impacts the relative positiohaodes, and so has non-local consequences.

Beyond this, another problem is that all nodes are treatadllgalso a result of the discrete nature
of the node positions on the ring. In practice, it is rare @hhodes in a data center are of identical
performance, as equipment tends to be purchased over timexplicit goal is to be able to effectively
utilise heterogeneous servers according to their cagiabili

How many choices does SW have when assigning a query? SW bachmose the starting point
for each query, as this determines all the other points witherguery hits. This means we only have
choices. This is much smaller than PTN%choices, so we expect query delays to be higher for SW.

Let the above be the optimal sliding window algorithm, SW.

A dual SW approach

The SW algorithm stores replicas ersuccessive servers on the ring. Its dual is to store each data
object onr equidistant points on the ring, while running each querylbtha servers with ids in an arc
of sizel/r on the ring. This is the approach used by Gladier [HMDO5], mmtesented in Fi§. 3.1{(d).

Changing the replication level in the dual SW algorithm issencomplicated than in SW. Because
replicas are equidistant, on each replication level chasogee replicas will change servers, and will
need to be relocated; a simple analysis shows that if we haervers, a /n fraction of objects will
need to be relocated on each change.

Even worse, to implement this relocation, the nodes neeeint@mber which node holds the previ-
ous and next replica for each object they store. Checkiremégs of adjacent replicas implies probing
quite a few nodes.

In contrast, in SW the previous and next replicas are implgtored on the predecessor and suc-

cessor); no objects are relocated whethanges; and monitoring liveness is much easier, as it esffic

3.4. Limitations of Existing Solutions 28

to monitor the immediate neighbours.

In a distributed setting, running queries is simpler fordnal approach if queries are run recursively
(i.e. forward to next neighbour). In reality, queries wik Ibun in parallel to minimise delay, which
means the querying node will have to know and contact a feeratbdes directly; hence the complexity
is similar in both SW and its dual approach. Given its comityewe drop dual SW from our candidate

list.

3.4 Limitations of Existing Solutions

The three algorithms we presented are suited for differarispf the problem we are attacking. RAND
stands out as it is designed for peer-to-peer like deploysnerith highly unreliable, high churn pop-
ulations of servers. Such deployments are completelyrdiftefrom the data center deployments we
envision, with low churn and failure rates. To achieve tglity, RAND increases the basic Distributed
Rendezvous costs. For instance, if we want each query to9@%b of the data, RAND will spend four
times more resources than optimal. At the end of the day,nilgians we need much more hardware
to cope with the same data and query rates. Thus, it does ri@ semse to use RAND in data-center
deployments.

PTN is simple from an administrative point of view and has lo&sic costs for data storage and
gueries. It has good load balancing and efficiently suppadvengingr or p by adding or removing
servers. PTN’s main drawback is its approach to changingatie of p to » whenn is fixed. PTN
transfers more data and takes longer on each reconfigur&tid also reduces overall capacity while
this change is taking place. These limitations arise méhagn the asymmetric workload imposed on
servers during reconfiguration: a subset of servers wilpdheir data and reload new data, while the
others do nothing. This behaviour emerges from the clustectsire itself and is fundamental to PTN.
Itis the price PTN pays for simple administration.

SW too has low basic costs for storage and queries. In cantiigts PTN, it naturally allows
changing ofp andr whenn is fixed. The process simply involves extending or redudigreplication
range of each object, and transfers the minimal amount ef @a&juired for reconfiguration. In contrast
to the asymmetry in PTN, each server plays an equal role glthia reconfiguration process. SW has
other problems, though. It does a poor job of load balancmbcmpes badly with adding and removing
nodes, as well as node failures.

In this thesis we will show it is possible to elegantly solke tssues of PTN and SW with a handful
of techniques. The resulting algorithm, ROAR (Rendezvon#\@Ring), achieves the best of both PTN
and SW: it allows easy reconfiguration as SW does, while pingigood load balancing and coping

with server churn and failures.

Chapter 4

ROAR: Rendezvous On A Ring

The problems mentioned above led us to develop a new algotitat we call Rendezvous On A Ring
(ROAR). ROAR uses the sliding window arrangement of regliwhile avoiding its drawbacks. ROAR’s
insight is that the discreteness of replica placement isthi@ source of problems. In basic SW, replicas
of an object will be stored onservers from a given starting point. When servers leaveagpléicas need
to adjusted accordingly, causing a lot of churn.

Rather than simply arranging servers in a circular list, RO#ses a continuous circular ID space
(for simplicity assume its range to lj@, 1]). Each server is given a continuous range of this ID space
that it is responsible for, such that all points on the ring@wvned by some server. Thus ROAR uses the
ring in a similar way to Chord [SMKO01], although that is where the similarity ends.

To decouple replica placement from server replication, efené for each object a continuous range
on the ring called “replication range”. The object will bersd on all servers whose range intersects its
replication range. When a server leaves no operations aessary to ensure consistency, as objects’
replication ranges are constant; some objects will singdg lone replica. Similarly, when a node joins,

it will load the objects it should store; replicas stored timen servers will not be affected.

store d

Figure 4.1: Basic ROAR store and query mechanismswith 12, p = 4 andr = 3. Objects are stored
in arches of length /p and queries sent toservers al /p intervals, thus ensuring that a query visits all

stored objects (denoted by letters).

The partitioning levep defines the length of the replication range. GiyerROAR stores each
object on the servers whose range intersects an arc ofl gizen the ring (the replication range, see

figure[41); for searching, ROAR randomly chooses a stagaigt on the ring and forwards each query

4.1. Storing objects 30

to p equally-spaced points around the ring.
Whereas the basic sliding window algorithm stores a data i@ exactlyr consecutive nodes,
ROAR stores on an arc of the ring in which, on average, thexe servers.

While the basic concept is very simple, there are a numbeetsiild that matter for correctness.

4.1 Storing objects

Each data item is assigned a uniformly random identifief0iri]. The data item now needs to be
replicated on all the servers that are responsible for tige segment of length/p that starts with the
data item’s ID. How this replication is actually done is ipgadent of the basic functioning of ROAR.

Several strategies are viable, depending on the deploysuenario:
e Push the data item to the first server, and then forward it §emer to server around the ring.

e Have all the servers mount a shared filesystem (such asiIGFHJ&)Gvhere the filenames embed
the node identifiers. Servers periodically check the filesysfor files with IDs that should be

stored in their range.

e Push the data item to all the relevant ring servers from adratkpdate server that knows the ring

topology.

A peer-to-peer solution using ROAR might use the first, wasrerganisations with existing dis-
tributed filesystems might choose the second. Our impleatient uses the second, with NFS as a

filesystem and a special file structure to store the objeets $ectioli 516 for details).

4.2 Forwarding Queries

To perform a search, a query from a client is first sent to atfemrd server. These front-end servers
are responsible for partitioning the query and sending thecgieries t nodes on the ring. In our
implementation, every front-end server is kept updatel thi¢ ranges of IDs on the ring for which each
node is responsible.

We first discuss the simpler case when all servers are eqpadigrful; the general case is discussed
in SectioZ.8]1. The front-end server then picks a random t the ring for this query, and sends
sub-queries in parallel to the node responsible for [@nd the nodes responsible for IQs+ 1/p, ¢ +
2/p,...,q+ (p — 1)/p, modulo 1. As these IDs ark/p apart on the ring and as each data item is
replicated on a range of at ledstp, it is easy to see that the query will reach a node that holdsyev
data item (refer to figue4.1). Each server that receivesjtiegy matches it against its data items and
returns the matches (or the best matches if the query is feryapopular term) to the front-end server,
which assembles the final list and returns it to the client.

The description above captures the basic idea of the ROA®Ritig, but not the whole story. The
real benefit comes from an additional observation: if theth@nd server chooses a partitioning vaiye
for a query that is larger tham the algorithm still matches all the data items. By defaudiugh, this

would waste effort, as the query might hit more than one séhat holds the same data item (as shown

4.2. Forwarding Queries 31

v #=~. DUPLICAT
query: e
search a

Sema.

Figure 4.2: Duplicate matches are possible whgp p is used. In this case,= 4, p = 3 andp, = 4.

in figure[Z2). However, if we embed the valpginto the query, the servers can divide up the matching
task by object ID so that no two servers match the same data ife do this deterministically, a server
that receives a query with logical destinatief,..., only runs the query against data items (objects) that

satisfy the following two conditions:

7:dobject < Z.dquery (41)
idobject + 1/pq >= idquery (42)

Data items that do not satisfy the second condition will bectmed by the preceding server that
received a sub-query (figure 4:3(a)), while data itemsrfaithe first condition will be matched by the
server receiving the following sub-query (figlire Z.B(b)).

idobject + 1/p:
max extent of
replication range

of object

no match as
idobject + 1/pq < idquery

idobject:
logical position
of qbject

range of
node d

node a

preceding sub-query
sub-query at idquery

(a) Match by first sub-query

idobject + 1/p:
max extent of
replication range
of object

match:
Idobject: idobject + 1/pq < idquery
logical position
of object

no match:
query before
object

preceding sub-query
sub-query at idquery

(b) Match by second sub-query

Figure 4.3: Avoiding duplicate matching in ROAR.

Why then is it so useful to be able to run queries with valueg gfeater than the bare minimum

needed to match all data items? There are two main reasons:

4.3. Adding Nodes 32

e Spreading a query across more nodes decreases latency. AR namically trade off latency
for total throughput (or if the nodes are not saturated, p@easumption) without needing to first

change the replication level.

¢ Allowing different values of, to be used for queries allows the basic partitioning to bexghd

while still serving queries.

4.3 Adding Nodes

To be able to function correctly, each server just needs twkits 1D range, and this should match up
with the ranges of its immediate neighbours on the Hng.

When a server joins the system, it is inserted between tweratérvers on the ring. The query
load seen by a server is directly proportional to the fract the ring it is responsible for. Thus a
simple strategy for inserting nodes is to pick the most He&vaded node, and insert the new node as its
neighbour. We discuss other insertion strategies, as well@actical way to implement them in Section
3.

To start with, the new node has an infinitely small range, andaes not yet receive any queries.
The node begins by replicating all the data items that tsevés ID. This download could be from its
neighbour, but more likely it will be from a back-end filesstst to avoid putting extra load on an already
loaded server.

Once the data download has finished, the new node communitiagetly with its two neighbours
to determine which of them is most loaded. It now starts tavgts range into that of the most loaded
neighbour, requesting additional data items that oveti@prange as it grows. Every few seconds it
updates the front end servers with its new range, and alsatepis neighbour so that the neighbour can
drop data items in the overlapping range.

As the new node’s range grows, its load will start to increa®ace the new node’s load starts
to approach that of its neighbours, the rate of replicatiosldéwed to a low background rate. In fact,
nodesalwayscompare load with their neighbours and expand their rangeslewly into that of a more
loaded neighbour. In this way, the nodes progressivelyibige themselves around the ring, not with
equal ranges, but with ranges that are the correct size &ambakhe load on the nodes, even if the nodes

have heterogeneous processing powetr.

4.4 Removing Nodes

A node can be removed from the ring in a controlled manner fyrining its neighbours that its load
is now infinite. The two neighbours will grow their rangesiiithe range of the node to be removed by
downloading the additional data needed. This data is tyipiasmall fraction of the data a node already
has: if each data item is replicated piservers on average, therir"* of the data on a node starts or
finishes at that node; it is this data that the neighbour vatlalready have. If a node hasdata items

already and its neighbour wants to shut down, it will needdwmloadk/2r new data items if it takes

1This is not always strictly required for correctness, butéeded for efficiency.

4.4. Removing Nodes 33

item a

(a) A failure causing a misth) ROAR'’s failure-

match. handling mechanism.

Figure 4.4: A node failure can cause a query to miss a matcARR@events this by splitting the failed

node’s sub-query in two and sending these to its predecassissuccessor nodes.

over half of the neighbour’s range.

The query load will increase by as much as 50% on the neighufithe node being shut down,
as their range has increased by 50%. However, in practicegigdbours’ neighbours will expand their
ranges as they see the load start to increase, so this upjed onot normally reached.

What happens though if a node fails without warning? Theifailvill be discovered very quickly
by the front-end servers, so they know not to route any moegigsi to it. However, we still want to
match the data-items the failed node would have answeredcoel simply choose initial values for
the start of the query on the ring so that the failed node ishitptout this would reduce the overall
capacity by a fraction of /r for a single failure, and might be infeasible for multiplddaes.

Instead the front end server ignores the failures when degithe starting point of the query, but
when it needs to send a query to a failed node, it uses a fek-4tsategy. Each data item was replicated
over an average of servers that span a rangelgfy; any of these servers could match the query instead
of the failed node. We need to split the sub-query that woalkkreen sent to the failed node in two
because some data items’ range might have ended on therfaitiedand some might have started on the
failed node. So long as we send the sub-query to two nodedefoee and one after the failed node,
and so long as these nodes are not more tharapart, then we are sure to match every data item that
the failed node could match.

The general idea is shown in figurel4.4. The first subfigure shww a failed node causes queries
to miss a match againstitems a and b. The second subfigugiBQIAR's fall-back strategy, whereby a
sub-query meant for the failed node is split in two and settiedailed node’s predecessor and successor
nodes. The former is needed in case the item’s range endeel failied node (as is the case with item a)
and the latter in case the item’s range started at the faded (item b). To maximise the load spreading,

we choose a pair of new targets for the sub-query as follows:

1. Let fail;, be the lowest ID held by the failed node afidi{;; be the highest ID held by the failed

node.

2. Choose a new first sub-query destinatiépn randomly such that:

faily,, — (1/p—9) < idp < faily,.

4.5. Changing the Replication Level 34

4 is a small value that captures any uncertainty in the valug pf It is chosen so that/p — § is

guaranteed to be less thafp,;4 for all recently used values @f,;4.

3. Choose a new second sub-query destinatignsuch that:
idgo = idg1 + (1/p — 9)
This guarantees the new sub-queries are not so far apad theth item can fall between them.

Thus all data items will be matched.

4. Send both new sub-queries, but in the query request gpkeibriginal query ID. This is so that the
only data items to be matched are those that the failed nod&llave matched, avoiding overlap
with other sub-queries. Additionally, because the two nabgsieries are maximally separated,

their data sets are maximally disjoint, so they will produeey few duplicate matches.

The overall effect is that immediately after a node has dadled before any node has had a chance
to download any failed items, all the queries are still beiegponded to correctly. The number of
sub-queries being sent has increased by a fractidnefbecause one extra query is needed for those
queries that would have hit the failed node. The total matgihbad does not increase as nodes do not
duplicate each other’s work, but approximately/p nodes share the extian'” of the load, so their
load temporarily increases by a fractionyp.

The same general algorithm applies for multiple failed rspdhit if either of the new sub-queries

hits a second failed node, the process is simply repeateddtep (2), choosing a new random value.

4.5 Changing the Replication Level

So far we have seen that for a given replication levele can partition queries for varying values of
pq, SO long agp, - r >= n. However, if, in an attempt to keep query latency low we anesgsiently
running with values op, significantly larger than the minimum needed, then it dodgmake sense to
keep sending all the updates to all the nodes. Maintainiregphlcation level higher than needed incurs
extra bandwidth costs, and eats CPU and network bandwidtltttuld have been used to serve queries.
Instead, we want to repartition by reducinghence increasing the minimupn

If p is increased and decreased, all the ROAR nodes have to do is drop a few objectstheir
local store. As it is always safe to run queries with highgthan needed, the front-end servers can just
switch to the new, immediately, and let the ROAR nodes catch up in their own time

Conversely, a ROAR system may discover that it is runnindpwijt- » = n, using the minimum
currently-available partitioning level. If the query laty is well below threshold, themis probably too
large. This may be limiting throughput, but in any event it@sting CPU cycles and hence increasing
energy requireme

To decrease to p/, » must increase, and this is done by replicating each objgct- 1/p’ further
round the ring. The ROAR servers need to download the redjoibgects from the filesystem, which can

take some time. Further, the nodes will not all complete therdoad simultaneously. For correctness,

2The reader may think that the effect is negligible, but thepterature in our air-conditioned machine room rufisCélsius
hotter when our 43 ROAR nodes are fully loaded than when theydéing.

4.6. Load Balancing: Proportional Ranges 35

when decreasing to p’, the front-end servers continue to partition quepesays until they receive
positive confirmation that every one of the ROAR nodes haaioetl all the extra data needed. Only

then do they switch to partitioning querigsways.

4.6 Load Balancing: Proportional Ranges

ROAR performs load balancing by adjusting the size of thersag of the ring that a node is responsible
for. With queries, the mean query rate seen by a node is Biggiportional to the node’s rangg. As

mentioned previously, ROAR evens out load by a slow backugigurocess in which each node extends
its range into that of a more loaded neighbour. The goal is;eten out ranges, but to even out load so

that a node’s range is in accordance with its processing powe

With stored data items, if the ROAR system indexe#ems in total, the number that need to be
stored on a node with a range of sizés the number of items that intersect the start of the nodeige
plus the number of items that start within the node’s rangs;is D/p + D - g;. On averagé /p = rg,
so for sensible values of the D /p term dominates, and the amount of data stored by each ncaidys f

even between nodes.

Our discussion in Sectidn 4.2 assumed all servers are gqualerful; in that case randomly

choosing the starting pongives perfect load balancing and minimal average delay.

When servers are not equally powerful, assigning largegeato faster servers allows perfect query
load balancing, whereby each server will serve queriesrdaupto its processing capacity. In this way,
servers are uniformly loaded and no server is a bottlenetikha system as a whole cannot support the
query load. However, when the system is lightly loaded,qmrioad balancing is not needed. In such

cases, it is best if we run thesub-queries on the most powerfuhodes, as this minimizes query delay.

PTN naturally optimises for both load balancing and queitgylat the same time: load balancing
is ensured by having equally powerful clusters of nodes, while query delay isimised by choosing
in each cluster the server that would first finish the subyUROAR load balancing is given by unequal
node ranges. To minimize query delay, the ROAR schedulesiders different starting points for the
query and picks the starting point that finishes first (we gméan algorithm that achieves this in section
E87). Compared to PTN, ROAR has a lot fewer choices in tectien of servers to run the query: it
must choose betweenconfigurations. In comparison, PTN has to choose betw@eamnfigurations;
thatis why PTN has better delay than ROAR. In the next seet®show how to change the basic ROAR
to get better query delay.

Another way to get better query delays and to improve queay lsalancing is to increagg, the
number of servers that run each query. This is not the pedfesay, as it increases overheads due to
sending queries. However, it can be selectively used torertbat certain max query delay bounds are

met; we present a heuristic algorithm for this purpose itieeEL8.2.

30r choosing the lightest loaded of two to smooth out loadnaké power of two choice5 TMit01]

4.7. Multiple Sliding Windows 36

4.7 Multiple Sliding Windows

To improve query delays for ROAR, we use a simple variati@t thakes it more PTN-like. Instead of
having all servers belong to a single logical ring, createnalsnumber of rings (say 2) and have each
server belong to only one of the rings. Objects would be stordoth rings, withr/2 replicas in each.
A query would still touchp equidistant points, where each point belongs to eitherefitigs.

Because is the same, on average each object still/heeplicas; adding a second ring does not add
overhead for storing objects or running queries. It doesdver, mandate that any object has at least
two replicas (as it is stored once on each ring); sannot be lower then 2.

For availability purposes; > 2 anyways, so this is not a drawback. If we used more rings, this
limitation would become important. At the extremes, we dottleater rings. This turns the ROAR
algorithm into the Dual PTN algorithm, so we lose all the Hga®f SW to easily change the tradeoff.

With two rings, ROAR has more choices when running queriaselyr-2P~1. This is much better
than SW'sr choices, but less than PTN'$. We show in simulation that using multiple rings increases
availability when search operations are strict, i.e. aJeots must be visited by a single query for the
guery to succeed. Also, multiple rings allow much simpleaatdtion to daily load fluctuations, as we
discuss in Section4.9.1.

4.8 Running Queries on Heterogeneous Servers

As mentioned previously, the front-end server receivegjtiery from the user, splits it and runs it on
the ROAR nodes, and finally aggregates and returns the teghk end-user. The front-end logs query
delays, and controls - the query partitioning level. The front-end server alsdntans statistics about

each ROAR node:
e The node’s range (which implies the node’s minimum valug)of
e Node’s liveness (last time seen up)
e The outstanding queries scheduled on the node, and thactdfinish time
e The processing speed of the node (this includes other backdload not from ROAR)

When a new query arrives, the front-end will split it ifficsub-queries. Using information about
outstanding queries and node processing speed, it declueb gervers should process the query and
sends the query to those servers, setting timers for eacheerdy. These timers are used to detect node
failures quickly: if a query response times out, the nodeasked as dead. The unfinished sub-query is
split further into two smaller sub-queries that are resciextion the failed node’s neighbours.

As results return, the front-end assembles the reply; whleresults are received, the query is
marked as finished and its finish time recorded; the reswdtsemt back to the user. Also, estimates are
made for each sub-query for the processing speed of thersanetan exponentially weighted average
processing speed is updated with the new data.

ROAR needs to send queries quickly and reliably to the matcbérvers; our implementation uses

TCP for reasons explained below, but other choices arelgessi

4.8. Running Queries on Heterogeneous Servers 37

4.8.1 Scheduling Algorithm

ROAR uses server processing speed estimates togetherubithuery size to estimate sub-query exe-
cution times. ROAR does not model network delays, as in datéecs round trip times are well under
1ms, being negligible compared to query execution timeis. dtraightforward to extend this algorithm

to take into account network-induced delays.

We describe the scheduling algorithm for the single ringsigar of ROAR first, and show how it
can be extended to support multiple rings later. ROAR hashtmse a starting point for each query
to minimise the delay. There arepossible combinations of servers that can be chosen. Tallest
combinations, it suffices to pick the starting point gf way query in the first /p range of the ring; this
is because all the othgr 1 are equidistant, sweeping different parts of the ring. Timpkest algorithm
is to choose one or a few random starting points and use théhahgives the smallest delay. To get

perfect results, however, we need to pick many random stapidints (a lot more thar).

A deterministic approach is the following. Lé&f be the starting point of the query. Iterate with
id from 0 to 1/p increasingid with a smalldelta, computing the expected query delay, and choosing
the fastest point. To get all possible combinations we nesdall delta; however, on each iteration we
need to find out which node is in charge of each ofplpmints, and compute the delta; this significantly

increases costs.

Our final algorithm dynamically changésita to minimise the number of iterations. The insight is
to moveid at each step by enough to hit at least one different servéeifselected” configuration. The
finish times for all the other servers are already known; allnged is to compute the finish time of the

new server, and check if it affects the overall query delde ffseudocode is given in AlgoritHth 1.

The algorithm has an initialisation phase where sub-quedytatal query delays are computed for
id = 0. The functionnodein_chargedoes a binary search through the list of server identifiefgtb
the server in charge of a sub-query. The functestimatefinishuses server speed and load estimations
as well as sub-query sizé [(p) to predict the execution time for the sub-query. We use arlgiheap to
maintain distances to the closest node from each query piehid = 0. The heap functions use the

distance field for ordering within the heap.

On each iteration, the server with the smallest distahceckwise to any of the query points
is chosen, andd is set to the corresponding distance (these distancesraté/shcreasing). The next
server is given by the functiosuccessoand the distance to it calculated and re-inserted in the.h&ap
subtle point is that by maintaining absolute distances &lways assumgi = 0 and compute distances
to the corresponding/p) we do not have to update the distances in the heap whed tfenges.

The algorithm stores the currently best query delay andibdefitalso keeps the delay of the current
server configuration. When we switch one server with anptheicompute the delay of the new server;
if it is greater than the current delay, we re-set the curdefay. If, however, the new delay is smaller
than the current query delay AND the node being replaced haslbwest node, we iterate all server
delays and recompute the max (this last part iterates olers it is slow; this is why the algorithm

tries to avoid it when possible).

4.8. Running Queries on Heterogeneous Servers

Algorithm 1 ROAR Scheduling Algorithm

delayq < 0
fori=0...p—1do
assigned[i] — node_in_charge(i/p)
finish[i] — estimate_finish(assigned[i],1/p)
if delay, < finish[i] then
delayq — finishl[i]
end if
d.distance — assigned[i] —i/p
d.pos «— i
insert_heap(d)
end for
delaypest = delay,
idpest = 0
id=0
while id < 1/p do
d «— remove_heap()
id «— d.distance + 1
assigned[d.pos] — succesor(assigned|d.pos])
isMax «— finish[d.pos| == delay,
finish[d.pos] « estimate_finish(assigned[d.pos], 1/p)
if isMax and finish[d.pos] < delay, then
delay, = max(finish)
else
if finish[d.pos] > delay, then
delayq, = finish[d.pos]
end if
end if
if delay, < delaypest then
tdpest + id
delaypest < delayq
end if
d.distance — assigned[d.pos] — d.pos/p
insert_heap(d)

end while

38

4.8. Running Queries on Heterogeneous Servers 39

@)

©) (3
OF @

id=0 id=0.05 id=0.2 id=0
assigned={2,4} assigned={2,1} assigned={3,1} assigned={4,1}
heap=1{(0.05,1),(0.2,0)} heap={(0.2,0),(0.45,1)} heap=1{(0.33,0),(0.45,1)} heap={(0.45,2),(0.55,1)}

distance pos

Figure 4.5: ROAR Scheduling Algorithm: Simple Example

An example is provided in Figufe3.5, with four nodes ang 2; let the circle length be 1. The
dashed line intersects the ring at the two query poiptsahd p;). The parallel blue arcs show the
distances maintained in the heap. For simplicity, dssignedarray contains the user-friendly node
identifiers (1-4) rather then their positions on the rin@(0.33, 0.55, 0.95).

The algorithm starts witlid = 0 and servers 2 and 4 are assigned the respective sub queries. |
the heap distances are maintained to server 4, and serven®, tNeid is increased past server 4; now
servers 2 and 1 run sub-queries, and the heap is updatedudeértbe distance to node 1. Note that the
distance does not depend on the current valugl dbeing computed relative to positions 0 and 0.5 on
the ring. The next step is to increagkto 0.33, past server 3; now servers 4 and 1 run the query. The
next step would pass node 1, selecting the starting configaraith servers 2 and 4 running the query.
At this pointid is close tol /p (i.e. 1/2) and the algorithm finishes.

The complexity of the algorithm i©(n log p). n is given by the number of iterations: we have one
step per node in the systenug p comes from removing the closest server on each iteratian fre
heap, and adding the new server. Finally, we show experagtihat theO(p) required when we are
replacing the slowest server with a faster one is amortisedthen iterations.

In comparison, our straw-man deterministic algorithm hamglexity O(np). In practice this dif-
ference matters: ip ~ n ~ 1000, our algorithm is 100 times faster.

Scheduling for the PTN algorithm is simpler. For each subrgithe front-end will iterate through
all the servers in a cluster. Together, the complexi®{s). For the practical example above, we found
that ROAR scheduling is 3 times slower thBfi’ N, taking 20ms instead of 8.5ms.

Scheduling for Multiple Rings. It is straightforward to extend the above algorithm for riplé rings.
Two things will change: first, when computing the assignmesmd finish time for a sub-query, the
algorithm will consider both rings and use the fastest ser&cond, when searching the successor
of a node to update the distances, it will consider nodes footh rings, effectivelyoverlayingnode

identifiers from both rings. The complexity of the algorithemains the same.

4.8.2 Optimisations

Range Adjustments.The scheduling algorithm and all our previous discussidR@AR (except dealing
with failures) assume sub-queries have equal size. Thessds dictated by the smallestthan the

system is currently configured to support. If we chose biggérqueries there will for sure be one or a

4.8. Running Queries on Heterogeneous Servers 40

Figure 4.6: Range Adjustment for Query Scheduling

range of
node a

range of
node d

range of A
node a

range of
node d

range of
node d

Inflated sub-query run by node d

few nodes who would not be able to correctly run their part.

However, we make the observation that we can increase tigehlef some sub-queries while still
allowing correct execution. The reason for this is the faat ROAR over-replicates in some cases, when
object replication ranges briefly intersect node ranges.

Figure[Z® illustrates this concept. Nodeandd run two consecutive sub-queries. Itis always safe
to reduce nodd’s sub-query by moving poindl to the right: all the objects withd greater tham are
already replicated onte, as long asA < id,.

We can also increase the sub-query allocated to ddyemoving A to the left. The constraint here
is thatA + 1/p, > id.; in other words, we can shift left as long as the objects witl greater tham
are replicated od.

We use this technique to take work away from the node thathfiisisast and push it to its neigh-
bours. The aim is to equalise the finishing time across thghfeiurs, as long as the above two con-
straints are met.

The algorithm is very simple, taking near constant time. Weeeimentally show it is most effective

when the replication level is low, making node ranges andcudry sizes comparable in size.

Increasing the Number of Sub-QueriesQuery delay is dictated by the slowest server to finish rugnin
its sub-query. While scheduling, the front-end knows whsab-query will be late to finish, potentially
delaying the whole query. To avoid this, the front-end canadyically split the slow sub-query and
allocate it to faster nodes, with a technique is similar ®dhe used to deal with failures. This process
can be repeated, with the front-end always selecting theestbsub-query, splitting it and allocating

each sub-query to the fastest servers that can run them.

4.8. Running Queries on Heterogeneous Servers 41

For a given value ofp and a fixed starting point of the query, tasks of siZe can be run by a
single server in the system. For the sameach half size sub-query (2p) can be run by as many
asr servers. Hence sub-query splitting not only reduces the tdahe slowest node, but also offers
numerous alternatives for sub-query placement.

In contrast to the range adjustment optimisation preseattede, this optimisation increases fixed
overheads associated to each query: the more we split, themmessages the front-end needs to send,
the more query threads are started on the ROAR servers, etc.

We show in the analysis section that most of the benefits coone $plitting a single sub-query, so
the costs of using this technique may be worthwhile. Anottegy to reap most benefits without paying

the costs is to use it only when the slowest server is signifigalower than the others.

4.8.3 Multiple Front-End Servers

Although the scheduler is centralised, our experimentalyeis shows that a machine can support thou-
sands of servers at high query rates. However, it is impbtteme able to use multiple front-end servers
for fault tolerance, and to further increase scalability.

If fault-tolerance is the only concern, it is straightfongddo maintain a backup front-end server,
pushing the relatively rare long-term topology changesdthbmaster and backup servers. It is not
necessary to push other state—such as server processgugspeliveness information— to the backup.
The latter will quickly learn all this information when it otes online, providing little if any disruption
to query delays.

The value ofp should be kept updated on the backup, but this is an optilisaather than a
requirement. If the backup does not know what valug of safe to use it can either start using= n
(which will always work) and progressively decreaseAnother option is guess a value paind use it
to split queries. If the servers do not have enough replizag will reply saying they haven't matched
the whole query. Then, the front-end can decrgesed retry.

It is easy to use multiple front-end servers in parallel. €kact behaviour depends on how query
delays vary with the number of concurrent tasks. Memory aRtd-®ound query processing will typi-
cally runt concurrent taskstimes slower; in such cases, the front-end schedulers t¢eetate queries
independently, in a completely decoupled fashion. To awsillations in server processing power esti-
mates and in query allocations, statistics about servengddive averaged over many queries. The same

applies for disk-bound query processing, assuming readsigrenough to avoid disk head thrashing.

4.8.4 Sending Queries Reliably

The front-end needs to reliably send sub-queries from thietfend to the ROAR servers and to carry
back the results. TCP is the obvious transport protocol toassit offers reliable delivery, has stable
implementations and a well known API.

Yet standard TCP suffers long timeouts when the connedtiapplication limited. The queries are
small, so at any time there is little data in flight betweendtigeduler and any of the ROAR servers. If a

packet gets lost, fast-retransmit is not triggered; irstedong retransmit timeoHtmust expire before

4The TCP standard suggests setting the minimum RTO to 1 sebtwat OSes set it to smaller values. Linux uses 200ms.

4.9. Managing Ring Membership 42

the query is re-sent. By that time most of the query resultg Inesalready received at the front-end, and
the scheduler may reschedule the missing query onto arsdhesr. Retransmitting the query is useless,
yet TCP must send its outstanding data to function prop&his is the head-of-line blocking problem:
the controller cannot schedule a new query until the old smeéedlessly executed.

Whenp is small enough and the network is relatively idle, packesés are very rare so this is not
an issue. However, whengrows large (say 1000) we hapeservers replying to the front-end at roughly
the same time. Such synchronisation overflows the switcfeboh the link to the front-end (this is
called the TCP incast problem [CGDY,|IVPS 09]). To make matters worse, even retransmissions after
timeouts may be synchronized, causing further loss.

A very simple fix is to drastically reduce or even eliminateP€min RTO bound, as proposed in
[CGLT09,IVPS Qg]. In this way, retransmissions will happen after a few am& most of the problems
above vanish. There is still head-of-line blocking, howex@ much shorter timescales (ms). As query
delays are on the order of tens and hundreds of ms, blockireyfeav ms is not an issue.

If it were an issue, we could use UDP enhanced with appliodggel acknowledgements, but the
difficulty is to avoid congestion collapse in pathologicakes. A better choice would be to use DCCP
[KHEQSG] that provides congestion control without mandgtieliable transmission (thus eliminating

head-of-line blocking).

4.9 Managing Ring Membership

We have discussed at a high level how nodes are added andedimROAR. Here, we describe our
practical instantiation of these ideas, and provide furthetails on how ROAR membership works in
practice.

We use a centralised membership server to keep track of nagkigned ranges, and to ensure that
the system is load balanced. The membership server dowsfmeribdic statistics from the front-end

servers about node liveness and processing speed. It U#gs aiformation to:

e Insert new servers at hOtSpOtS.

Enable or disable server local load balancing

Decide when to move servers to different parts of the ringrenecross different rings

Redistribute the failed node’s range between its neighdathien long-term failures are detected.

The membership server can be configured to organise servergior more rings. It attempts to
give equal processing capacity to each ring, as this givelsdhlt query delay (as we show in the Analysis
section).

When a new server joins, the default behaviour is to pick thg with least processing capacity
and to add the server into the hottest spot of that ring. Thaloeeship server does not utilise individual
server load estimates to decide how to allocate rangeseas tan be skewed by the front-end’s prefer-

ence for fast servers when allocating sub-queries. Insteasks the ratio of range to processing power

4.9. Managing Ring Membership 43

as a proxy for the load of that node. The front-end will praglaach an allocation only when the system
load nears 100%.

Once a node is given a range, it will start downloading theliregl objects from the backend file-
store. As it completes all objects for the range (or a parnt)df informs the membership server. At this
point, the membership server marks the server as up anddeiteravailable range. This information is
then pushed to the front-end servers, which will start sahied queries on this node. When shrinking
a node’s range, the membership server first shrinks its dedorange, updates the front-end, and only
then tells the node to shrink its range.

As we have mentioned, the ROAR servers perform local loddro#ang independently, periodically
announcing their new ranges to the membership server. Tal &bmurn, we set a threshold on the
load difference between nodes (10% for our implementatidrthe difference is less, the nodes stop
balancing the ranges. The membership server can disallletoge balancing if desired; this is done by
pushing a range update to the corresponding nodes with adFfiag. This is to allow administrators
to tweak node ranges as desired.

Further, local load-balancing can take a long time to baahone area of the ring is really “hot”
and the opposite area is “cool”: pairwise range changesggating out of the hot area will create a lot
of unneeded object churn and will take a long time to loadrixsaThe membership server has a global
view of the ring and will simply move nodes from “cool” placesthe ring to the hot ones, significantly
speeding up this process.

The membership server maintains a history of range alloestio servers. If a server is taken out
for maintenance and brought back up it will get the same rértggd before; it only needs to download
deltas in its object list since it was previously online.

Finally, as with the front-end server, the membership gecae be replicated for availability pur-
poses, with only one master server active at any point in.time

We have discussed the basic operation of the membershiprseve now look at how it can be
used to optimise for common data centers that have dailyfloatliations, and how it can reduce cross-

sectional bandwidth usage.

4.9.1 Adapting to Changing Load

Most online services see fluctuating load with diurnal andekie patterns [[CHL 08, [CESSO5,
WABT0€]. The ratio between the mean load in different parts ofidneor week is 2x to 4x. A service
provider could keep all of their nodes up all the time, but thauld waste energy. It is better either to
turn off some of these servers when load is low, or to use tleerather tasks [CHIZ0€].

If ROAR uses a single ring, it can shut servers down in a patteat does not dangerously reduce
the number of replicas in any part of the ring, hence maiimgimigh system availability. However,
the ring will be now fragmented, and the number of choicesafor query will be even less than the
choices in SW. It makes more sense to use multiple rings fon saenarios, and turn off entire rings
when needed.

We have already mentioned how the rings are populated. S&RR@s been configured to use 4

4.9. Managing Ring Membership 44

rings, with each ring maintaining two replicas of the dathe Tmembership server will use load statistics
provided by the front-end server to decide how many ringsagd have running at any given point
in time. The system can easily bring some of the rings onlinghat them down to track the average
load, and to match the predicted future load. The time netmlbdng a ring online is of concern. The
membership server assigns the same node ranges to retsenuags, so start-up delay can be minimised

if the same servers are periodically shut-down and brougtit bip.

4.9.2 Reducing Cross-Sectional Bandwidth Usage

Typical data-center networking architectures connedtsaf servers with one switch per rack, and have
one or two layers of switches that interconnect the rack® tfde hierarchy causes bandwidth further
up in the tree to be scarce compared to intra-rack bandwidlitihough it is possible to increase the
cross-sectional bandwidth, achieving full bandwidth bessw any two nodes is very expensive. As a
consequence, cross-sectional bandwidth usage is a majoeieoin data center algorithm design. In
this context, it becomes important to understand how ROARmares with simple partitioning in cross-
sectional bandwidth usage.

Assume that object replication is much more expensive - Wait wise - than running queries.
This is true for most distributed search applications weetevalysed. The case when queries are band-
width hungry can be optimised in a similar way.

PTN could place one cluster of nodes (i.e. nodes with the state) in as few racks as possible,
sayl. To update the data, each item needs to be sent to a singlanaanheach rack, minimising
cross-sectional bandwidth consumption.

ROAR can similarly use physical placement of servers to misé update cost, by having the
membership server assign servers in the same rack to becciseon the ring. In this case, each
update will be pushed to | or (I + 1) racks. ROAR will generdte {)D cross-sectional traffic for each
update, which is marginally more PTN.

To implement this optimisation in ROAR, it suffices to use pleer-to-peer like object update algo-
rithm we have described: the updates for an object are pusttbeé server responsible for that object’s
ID. This server forwards to its successor, and so forth, ag &s the successor is within the replication
range. Almost all of these hops will be intra-rack.

The downside of such server placement in both ROAR and PTNligevability to correlated server
failures in the same rack. These are not all that unlikelthaftop-of-the-rack server fails, or the rack’s
power supply burns out, the whole rack is wiped out. Finally; back-of-the-envelope estimations for

web search in the analysis section show cross-sectiondiNdth usage is not of concern.

Chapter 5

Application: Privacy Preserving Search

Online storage of personal data (such as videos, photosnuEts) is now becoming commonplace.
However, data are typically stored as “plaintext” which sk easy for online companies, law enforce-
ment agencies and hackers to access users’ data withouktimmng it. Serious privacy concerns have
already been raised by the Federal Trade Comis§ion [Teclidprotect their privacy, users could in
theory encrypt data before storing them online. The dovwnisidhat accessing the data becomes much
more difficult. In particular, searching is not directly gise.

In this chapter we present Privacy Preserving Search, atsapplication well suited for paraleliza-
tion with ROAR. With Privacy Preserving Search the clielorss encrypted metadata on the server(s),
describing photos, documents, pictures, email messagdssa@on. The client then creates encrypted
queries and gives them to the server. Privacy Preserving®eechniques allow the server to select the
encrypted metadata that matches the query without knowiagadntents of the query or the metadata.
These are returned to the client, which decrypts them.

We begin by describing the motivation for Privacy Preseg\@®arch and focus on the techniques
that make it possible, targetting common query types ajpgar practice: keyword and numeric match-
ing. We present a novel construction to support numeric hiradcand to rank query results. Finally we

analyze the scaling bottlenecks PPS faces and discuss hmawdlelize PPS with ROAR.

5.1 Motivation

We are witnessing a compelling shift towards what is calledoamline” operating system. While online
email has been around for quite some time (e.g. Gmail, Yahai rhotmail), other parts of the users’
desktop are being shifted online as we speak: documentg(&bocs, Microsoft Office Live), pictures
(Picassa, Flickr), videos (YouTube). It seems that the gfattie local hard drive that contains personal
data is moving online.

The main benefits to end-users are easy sharing, avajabild accessibility: personal files are
now always online and can be accessed from anywhere by jingt asveb browser. Further, they are
guaranteed to last: the online providers use massive reshaydand anything short of a large scale
disaster will likely not affect their durability. This is hdrue for files on users’ hard drives, where a

failure can make years’ worth of personal data disappeatr.

5.1. Motivation 46

Service providers such as Google aggregate and store ysemfe data including documents,
videos, photos, email, friends lists, browsing histonarsh history, and so on. This entails higher
privacy risks: the user has little or no control over who ases its data and when. The Federal Trade
Commission has recently brought up these issues, pointihghe increased privacy risks of online
data storage: “the ability of cloud computing services tteod and centrally store increasing amounts
of consumer data, combined with the ease with which suchralgnstored data may be shared with
others, create a risk that larger amounts of data may be ysedtities in ways not originally intended
or understood by consumer§”[Te¢10].

If this data were only stored locally, on the users’ deviadsthese privacy risks would be much
smaller. Ideally, we would like to have the same privacy for online files as if they resided on our own
devices (assuming these are secure).

The basic recipe to protect the privacy of user data in thedcls simple. Users should symmetri-
cally encrypt their files using their private key before stgithem on the servers. To go further and even
hide the file size, files could be broken into blocks and sta@®duch. When reading, several blocks
would be used to compose larger files. In effect, the onlingigers would offer a simple block storage
device, that users would use to store and retrieve their. fildss is similar to the S3 service already
offered by Amazon.

This storage service underlies most online services, aahs@nough for any application if the
server is not needed to implement other functionality. dadtof using the local hard drive, the soft-
ware running on the user’s machine will download/decryptessary files before using them and en-
crypt/upload them afterwards. One exception is securingilemvhere messages are created by other
users. There, public key cryptography could be used instgatdessage encryption.

When the number of files becomes large, it becomes cumber&orasers to find information of
interest. Traditional file system hierarchies help to soxterd. Search is the missing ingredient as it
is user friendly, faster and more powerful especially orntgdale devices like mobile phones. Search
has become ubiquitous in accessing web and local informatim it is likely it will be central in pro-
viding an agreeable user experience. The success of Afjpetight search service in Mac OS X is
representative of this new trend for quick access to infétionaSearch obviates the need for deep, cum-
bersome hierarchies of directories and folders. Fast kéarequirement if privacy preserving online

applications are to become successful.

5.1.1 Limitations of Online Privacy

We acknowledge that certain online features are difficultrtplement in a privacy preserving manner.
These include converting files, image or video editing (echanging sizes for images, bit-rates for
videos), etc. While it is convenient to have this functidgtyadnline, we observe that the same function-
ality can be run on any home machine, given the appropridteae. Thus, if privacy is important,
running the software locally is the option.

Encryption significantly increases user privacy, but is pedfect. There are fundamental privacy

limitations given by the fact that the servers store usea.d&ervers analysing client requests will be

5.2. Basic Approach and Scope 47

able to infer which blocks are likely to be part of the sameditel which files are important at any given

pointin time.

5.2 Basic Approach and Scope

Privacy preserving search is the main focus of this work,iahds two types of solutions. The obvious
solution is to create and maintain an index of files on theessrwdownloading it before queries and
uploading it after files change. The second solution is téoper the search on the servers themselves,
using encrypted queries ran against encrypted metadatatiag the files. In the latter case, when a
file changes, its corresponding metadata is updated.

To guide the comparison of these solutions, let us examméythical deployment environment for
PPS. Today most users use personal computers to accessrilieér data. However, there is a strong
trend towards integrating more and more functionality orbileodevices, so these may well be the
gateway to the user’s files in the near future. Further, tmebrar of devices each user owns is increasing:
typical users have a work computer, a home computer andigpssiaptop, a mobile device, a portable
music player, and so forth.

Device lifetimes vary wildly, with portable devices typllyahaving a much smaller lifetime than
their desktop counterparts (because they break more gasdlgtolen, or simply because devices with
new desirable features appear). Thus, it seems a bad desiigioth to place the focus on a unique
piece of equipment, and even to assume a user’s device $stayilconstant. Online storage ensures an
easy transition between devices, and is effectively thg tmmg lived device the user owns. A design
requirement is that all these devices should be able to ssaiplaccess and search the online repository.

Among these devices network connection speeds vary signific(from 1Gbps/s for Gigabit Eth-
ernet to as low as 28.8Kb/s for GPRS) and so do costs: wiredrlet connections typically have a flat
rate and unlimited traffic, while mobile connections have @nthly quota and volume charging when
the quota is exceeded. Further, battery for mobile devicaasiquickly when sending or receiving data.
Another design requirement is to minimise bandwidth usageduce costs and increase battery life on
mobile devices.

Finally, while the main application of privacy preservireasch is to allow users search their online
repositories of files, additional uses also seem plaushhish-based notifications are very useful as they
provide the users the ability to create filters and instadhtion the servers to be notified when certain

events occur.

5.3 Analysis of the Index-Based Solution

The simplest way to implement the index-based solution igpate the encrypted index on each file
change, and to download the index whenever it changes. Tinisogssarily wastes bandwidth for both
updates and queries. A better algorithm is to encode and/gineach index change as a delta to the
index and store it online separately. When the user runs gy gtigypically needs to download only the

latest deltas instead of the whole index; it locally apptles deltas to the index and only then runs the

search locally. As the deltas themselves can become nusiahmiindex is updated to include all the

5.3. Analysis of the Index-Based Solution 48

deltas periodically or when a threshold number of deltageeen created.

The index-based solution is simple: no additional mechansneeded at the servers for imple-
menting it. It is well suited for users that mostly use a srdgvice, but behaves poorly when users have
many devices and have to frequently download the index.

The index-based solution does not work well for pushingfiwatiions. Filters like “notify me
when this file is updated”, “when somebody sends a messadeaiomy URGENT in the title” seem
very useful to prompt the user’s attention when rare evespgpén. The alternative in the index-based
solution is to periodically check the index, or to be notifigden updates are added to the index. Both
approaches waste bandwidth.

As we have noted, wasted bandwidth may be acceptable in améttsetting where pricing is

mostly flat, yet it entails high costs and decreases batfetinie for mobile users.

5.3.1 Bandwidth Comparison

We performed a simple comparison of bandwidth usage in thexibased solution and in our encrypted
search solution (presented later). We assumed the ontinggst contains 50.000 filds We create a
simple index by listing all the filenames in a text file, whick wompress and encrypt. The size of the
output is 500KB, requiring around 10B per file. Updates ts thdex are encoded as filename and the
change (added, deleted, updated). Compression is lesemfiin updates; one update, compressed and
encrypted, takes 200B. In our privacy preserving searchementation, we create one metadata for
each file. The size of the metadata is 500B; a single encrypted also takes 500B.

We built a simple analytical model of bandwidth usage by tgorithms. The bandwidth used by
PPS is500f, + 2500 f,, where the first term accounts for the frequency of updatdsfamsecond term
account for the frequency of queries, and assumes only LGses 200B each are returned.

To approximate the bandwidth used by the index-based apipre proceed in two steps. Let the
maximum number of deltas g, ...

First, the expected bandwidth use due to updatgs(i00.000+200(d42 — 1))ﬁ. The formula
reflects the fact that ifi,,,,. Updates, the index is stored once completely,&pngd. — 1 updates are sent.

To compute the bandwidth used in queries, lets first assumiatep are generated on another com-
puter than the one that does the search. Before each selaecbomputer checks the online version
of the index and downloads the index, deltas or both depegrafinthe local version. To begin, let the
frequency of querieg, be smaller to the frequency of updatgés Depending when the query arrives,
the querying computer will download the index, one delta deltas, up t@,,., — 1 deltas. Assuming
these are equally likely, the expected query bandwidtheigag), (500000 + 100042 (0maz — 1)) L

Omazx

The value 0f6,,., that minimises bandwidth consumption depends on bptand f,,. We com-

pute the optimal value and plot the ratio of bandwidth constimn in the index-based approach to the
bandwidth used in PPS, varying query and update frequencies

In general we expect the number of updates to be larger thmanumber of queries, but do not

1This was the number of files in the authors’ home directory fmars ago; now the same directory has grown to nearly a

million entries

5.3. Analysis of the Index-Based Solution 49

0 local updates

Index-Based solution

6‘ s / 6

80
Query Frequency >1000 100600
File Update Frequency

50% Local Updates

80
Query Frequency >1000 1(_)06
File Update Frequency

90% Local Updates

Figure 5.1: Bandwidth Consumption Comparison betweenxXsRiesed solution and PPS

restrict the analysis to this case. When the query frequenarger than the update frequency, we

modify the formula above to use the update frequency wherpaoting bandwidth required for queries.

We vary both update and query frequencies from 1 to 1000 ansdider three cases: one where
all the updates are generated by another machine, one whlkref the updates are local (and do not
need downloading) and one where 90% of updates are locagjurefb.1 we plot the relative bandwidth

usage of the index-based solution when compared to the R&t® 80

The results are not surprising, and they show that the ildesed solution consumes more band-
width overall, as it generates eight times more bandwidterwipdates are non-local, and nearly twice

more traffic more when most updates are local.

For mobile devices, this has several implications. Fimhdwidth costs will be significantly higher.

Secondly, the time required to run a query will be higher tbothe case where the index is 500KB,

5.4. Definition of Privacy Preserving Search 50

downloading it using state of the art 3G connection runningMb/s takes around 5s. This is too
slow to be usable, and it is bound to get worse with more fileswiload times scale linearly with
the size of the index, so the more files we have, the longekdistéo search them. Finally, more traffic
significantly reduces the battery life of the phone, bectiusireless interfaces are quite energy-hungry
[SNRT10,[HGSWID].

In summary, the index-based approach has high worst-cdagsdeloes not scale well with the
number of files, and consumes a lot more wide-area bandwhidth PPS. Additionally, it is difficult to
apply to online email, and cannot properly support asynobus notifications.

The PPS solution we propose lowers wide-area bandwidtk,dmst requires significant processing
support in a data center. We will show during the course af tiiésis that it is possible to keep search

times very low for a wide range of objects searched.

5.4 Definition of Privacy Preserving Search

We wish to allow an untrusted third party, the online serieematch encrypted queries against encrypted
data provided by a user. We assume the user has a private kegdtto encrypts both queries and
(meta)data.

The real file data is not encrypted with the algorithms we desbelow, but rather with a traditional
symmetric encryption algorithm such as AES [DR02]. The miata describing the file (also referred
to as data, for simplicity, during this thesis) is encrypted attached to the original symmetrically
encrypted file, such that the server can return the matcHend fequested.

We take the view that not only files can be stored on the sdwuéglso long-standing queries (also
called queries). When (meta)data is added, modified orettlet the server (by the user), the server
will match the new metadata against the standing queriesatify the user if it matches. We conflate

the two mechanisms as together they offer all the functipnaéeded by the user.

5.4.1 Security Preliminaries

We say that a functiof is negligiblein ¢ if, for any polynomialp there exists, such that for alt > ¢,
f(t) < 1/p(t). We use PPT as a shorthand fwobabilistic polynomial time

We provide the following standard definitions from the litire on provable security [Gol01],
which we will use throughout this chapter.
Pseudorandom Function.A pseudorandom function is computationally indistingaiste from a ran-
dom function. Formally, a function familyFx : {0,1}" — {0,1}™|K € {0,1}'} is pseudoran-
dom if for every PPT oracle algorithm the following value is negligible int: |Pr[A"=()(1t) =
1] — Pr[A%(1%) = 1]|, whereR is a random function selected uniformly at random from theé&unc-
tions from{0, 1}™ — {0, 1}". The probabilities are taken over the choicddand R, respectively.
Pseudorandom Permutation.A pseudorandom permutation is computationally indistialgable from
a truly random permutation. Formally, a permutation famfli, : {0,1}" — {0,1}"K €
{0,1}t} is pseudorandom if for every PPT oracle algoritiimthe following value is negligible ir:

|PrAFx()(1%) = 1] — Pr[A™(1*) = 1]|, wherer is a permutation selected uniformly at random from

5.4. Definition of Privacy Preserving Search 51

the set of bijections from{0,1}" — {0,1}". The probabilities are taken over the choicefofand,

respectively.

5.4.2 Security Assumptions and Scope

We use the term “user” to describe a number of different desyipossibly belonging to different people,
which were authorised—by being given either the secret kegnoencrypted query— to search the
system. We assume that each of these devices is trustwdibwy. the key is shared between these
devices is orthogonal to the privacy preserving protoggiidally a smart card could be used.

We assume that servers are computationally bounded and deviate from the privacy preserving
search protocol—they correctly return matching files touker. Otherwise, denial of service attacks
could be mounted easily, affecting the correct operatiothefinfrastructure. If we bear in mind that
these services are in some way paid for by the user, it seeati®iral for servers to risk losing users by

denying them service.

5.4.3 Problem Definition

Definition 7 (Privacy Preserving Search (PPSonsider a uset/ that stores a number of files on a
server, and that has two types of inputs. The user generaexpugnce of metadata, with one metadata
describing one file at any given point in time. The user alstegates queries, a subset of which may be
active at any point in time. PPS is a multi-round protocolssnl/ and a third partys, the server. In
each round one of the following can take placeUajubmits a one time query 18, b) U submits or
withdraws a long standing query £ or c) U sends a metadata 0. A correct implementation of PPS

with security parametgrmust satisfy the following:

1. Correctness..S must be able to determine in PPT the subset of long standiegeguthat match

new metadata, anfl must be able to find the set of metadata matching a one-tintg.que

2. Security. Fork € N, defineViewy, as all the communicatiortshas received frorty before round
k. Define Plaintext, = {M;,...,M;,Q1,...,Q;} as the set of metadata and queries ffdm

before rounds.

Let Oy be an oracle that has accessR&intext;, and exports the two following functions:
match(idzg.idx), defined iffideg € {1,...,7} andidzy € {1,...,4} that answers whether

the query denoted bilxzq matches the metadadéz ;. , and

covetidzg, ,idzg,, where the indices are defined{n, . .., j}, which replies with yes or no to
indicate whether querylz, covers querydzg,. A query@, covers the querg), if the metadata

matched by, are always a superset of the metadata matcheghby
Finally, defineView; = {i,j, Oy }.

A PPS scheme is secure if, fér € N, for any PPT algorithmd, any functionh, there ex-
ists a PPT algorithmi* such that the following value is negligible in |Pr[A(Views,1!) =
h(Plaintexty)] — Pr[A*(View;, 1") = h(Plaintexty)]|

5.4. Definition of Privacy Preserving Search 52

In other words, we require that information leaked to theeeis the same as in an ideal protocol where
the server performs its functionality by submitting theerds of the queries and metadata it wishes to
match ¢dxq andidxjs) to an oracle Q) with access to the plaintext versions. The above definition

implies the following:

e Metadata Security. Metadata encryption is semantically secure for multiplessages (as defined
by Goldreich[GolOL]) in the absence of queries. When qgeaxie available, the only thing that is
leaked is whether a metadata matches the query or not. Tlaglatatthat are not matched by the

available queries are computationally indistinguishdtde random bits.

e Query Security. Queries can be distinguished with the covering relatio, therefore their en-
cryption scheme is not semantically secure. A strongenrggecnodel could require that the query
encryption scheme is also semantically secure. In this warldiscard this stronger model for
practical purposes: efficient solutions for executing oardus queries rely on the coverage rela-

tion between queries, which mandates that a server shoald iiwo queries are related [CWD3].

Further, even in the one-time query scenario, when a a gsempiagainst a large number of meta-
data and returns a non-trivial number of results (i.e. not,zend not all the metadata), one can
strongly infer that queries that return exactly the sameltegalthough the results are encrypted)
are equal. By acknowledging that in practice it is very diffico obtain query indistinguishability

we are able to obtain more practical solutions.

e Metadata Unforgeability. It is infeasible for an adversary to create valid encryptextadata.
This is important, since an adversary able to craft aryitnaetadata can use regression techniques

to infer an approximation of the query function.

e Query Unforgeability. It is infeasible for an adversary to create valid encryptedrigs. Oth-
erwise, the adversary can use binary search to discovemthe ef the metadata in logarithmic
time. An important consequence of query and metadata \geédnility is that plaintext queries or

metadata cannot be used in the matching process (sincedieesasy to create by adversaries).

e Match Isolation. It is infeasible to compute anything from the messages setreaerver that
cannot be computed by applyimgatchandcover(using an oracle) to the indexes of queries and

metadata.

The definition above can be generalised naturally to theirseitrer case where the number of matching
servers is arbitrarily large.
Any solution for PPS consists of the following five algoritenthe first four being required and the

fifth optional:
Keygen(t): run by the userJ outputs the private kel when given the security parameteas input

Encrypt Quer y(K,Q): run by the user, outputs the encrypted quéry when given the plaintext
query@ and the private keyk

5.4. Definition of Privacy Preserving Search 53

Encrypt Met adat a(K,M): run by the user, outputs the encrypted metadétavhen given the meta-
data@ and the private key

Mat ch(M.,Q.): run by the server, receives as parameters an encryptedateetddand an encrypted

queryQ. and outputs 1 if). matchesV/, or 0 otherwise

Cover (Q1,Q2): run by the server, receives as parameters two encrypteég@arand(@, and outputs

1if @, covers(); or 0 otherwise

For simplicity of exposition, we use the term “encrypt” tondée a secure encoding of queries and
metadata that allows PPS. However, we point out that thensebg@resented here are not traditional

symmetric encryption schemes, since decryption is notllyspassible.

5.4.4 Limitations of Confidentiality

Regardless of the protocols used, the maximum level ofretitdé confidentiality in PPS is quite limited.
These limitations arise from the functionality the sensrreéquired to perform (i.e., to decide if an
encrypted query matches an encrypted metadata) and arermmbe@the PPS problem. Here, we present

a brief overview of these limitations.

Limited Metadata Indistinguishability

Queries stored by a server can be used to distinguish cenetadata (e.g., to tell if they are equal) by

matching the queries against the metadata: this uses trtb&the server must be able to match queries
against metadata, and is independent of the encryptiomeelwsed for metadata. The more queries
that are available, the more likely the server is to acciyaistinguish metadata. In the case where the

server has a complete basis of queries, it can distinguisheshdata with zero probability of error.

Statistical Attacks

The server can find for each query it runs how many of the fileklmalf the server has additional
information about the corpus it can infer with some degreeooffidence what the search term could be
by looking at the number of matches and the frequency of tarcke

While this problem is significant for general purpose wearsk queries, we believe that when
a user searches its own files the file content and the seardhesny significantly across users, and

therefore may yield limited information without specificfiting for the actual user.

Confidentiality-Generality Tradeoff

We define thecomplexityof a query type asT#nS, whereming is the minimal number of queries
needed to recognise all metadata. There is a direct caorlagtween the complexity of a query and
the information it leaks about metadata. For instance,ithplest query function is equality testing: one
such query will allow a server to distinguish metadata thatgual to the specified value. To distinguish
all possible metadata without error (i.e., to have a basis)server needd(2") distinct queries, where

n is the size of the metadata in bits. The more complex querégstee more information is leaked about

metadata. For instance, a query that accepts all metadtitaheik!” bit set to a specific value, will

5.5. Solutions for Privacy Preserving Search 54

allow the server to distinguish information about #ié bit of all metadata. In this case, onfy(n)

gueries are needed to distinguish metadata with zero pilahali error.

5.5 Solutions for Privacy Preserving Search

What features of documents should be searchable? Traalifitesystems provide tools like “find” and
“grep” to match through filenames, file attributes and fileteah Consequently, we split searchable file
information in three searchable attributes: file name art, gde content and attributes like size and
modification date.

To support practical searches on file name and file contenteed to support keyword matching:
the ability to tell if a keyword is contained in a collectiohkeywords. For filename matching keyword
matching should suffice, and clearly all the components cdith pnust be searchable. For document
content, on the other hand, it makes little sense to incliideeakeywords contained in each document
in the searchable attribute: when one searches for the kelyithee” all the documents written in English
would be returned. Basic information retrieval techniqoaly index the most important features of
each document, i.e. the words with the highest discrimiggpiower. Thus, we imagine that for each
document a small number of keywords will be searchable (8&y 5

To support matching on filesize and access dates we mustuppober matching: the ability to
tell if a given encrypted number lies within a range.

Combining keyword matching and number matching, we can meéh¢he precision of content
search as follows. Assume each keyword is ranked based inmatstance in the document; the ability
to search for documents where a certain keyword is the mqgsbritant feature, or in the first 10 most
important features, allows us to indirectly obtain rankesLits.

In this section, we present PPS algorithms for these taslesid@éntify in the literature two algo-
rithms that support basic keyword matching from Goh [Golh@Bd Chang et al[[CM0%a] and list them
here, showing they both conform to our security definitiosing these as building blocks, we present
novel constructions that allow PPS number matching andimgndf search results. We also discuss
techniques to support more general queries.

In the descriptions of the basic PPS schemes, we assume edalata is a single value, and
each query is a single predicate. Because all of the integeptotocols we describe below are based
on keyword matching, all the different types of file inforioat can be easily bundled into a single
searchable “attribute” at the server; we describe how wdempnt this in sectiof 5.6.

Practical queries may involve multiple keywords and magréd file attributes such as last modifi-
cation date. Ideally, we would like to “compose” all thesedicates into a single query which the server
runs. However, as we will see in our discussion in sedfloB5this is quite expensive for two-keyword
queries and prohibitively so for general purpose multiizate queries.

We use a less secure but practical alternative, encodirtigates separately and having the server
compose them. With this scheme the server gains more infamthan necessary. For instance, a query
requesting keywords A and B will reveal to the server whichadata match A and which metadata

match B, instead of only revealing the metadata that mattth Aand B.

5.5. Solutions for Privacy Preserving Search 55

5.5.1 Equality Matching

We begin by showing how to support simple equal filtering tfiatites. Although this scheme is not
powerful enough to be used in practice, it is useful as aistapoint for understanding the other mech-
anisms.

To support equality matches, we use the first step of theiealptoposed by Song et al. for searches
on encrypted datd [SWP0O0]. The idea is to compute the “hitldalne of an attribute by passing its
plaintext value as argument to a pseudorandom functioreckesth the secret key. The encrypted query
is the hidden value of the plaintext. Encrypted metadatezangposed of two parts: a random nonce
generated by the user, and the result of feeding a pseudorandom function, keyed with the hidden
value of the attribute’s plaintext.

Let F' be a pseudorandom function. The algorithmsEqualPPS are:

Keygen(t): selectK from {0, 1} uniformly at random

Encr ypt Quer y(K,Q): returnFx(Q)

Encr ypt Met adat a(K,M): select rnd uniformly at random. Leth = Fx(M). Return
(rnd, F},(rnd)).

Mat ch(M.,Q.): Let M, = (rnd, two). Return 1ifFg, (rnd) = two, 0 otherwise
Cover (Q1,Q2): Return 1ifQ; = Q- (bitwise), 0 otherwise
Theorem 1. Equalis a correct implementation of PPS.

Proof. It is easy to see from the descriptions that all the schemegsramose correctly match queries
against metadata and conservatively solve query coveiagethey can give false negatives, but not
false positives). We have also experimentally tested tlmeectmess of our schemes. Henceforth, the
proofs only analyse the security of the proposed schemes.

We want to show that for ank, any functionh and any algorithm (i.e., running at the server),
there is an algorithr* (i.e., running with access to the oracle) such that the atig value is negli-
gible int, the security parameted: = |Pr[A(Viewy, 1') = h(Plaintexty)] — Pr[A*(View},1") =
h(Plaintexty)]|.

The idea, borrowed from Chang et al. |CM05b], is to prove thaican useView; to construct a
view View;, that is computationally indistinguishable froff¥ewy,. If this is the caseA* can simulate
the desired functionality by calling with paramete#iew; , and thereforé is negligible.

Without loss of generality, assume that the PPS protocdistsof two consecutive phasesgis-
tration (consecutive rounds in which the user sends their metadateetserver) andperational(con-
secutive rounds where the user sends queries to the sertas).simple to see that if the protocol
is secure in this case, it is also secure when metadata $pdatequeries are interleaved. Assume

Plaintext, = {Mjy,...,M,,Q1,...,Qs}, that is, thek*” round in theoperationalphase. Then,
Vi€1Uk iS {(Tndla ffK(Ml)(Tndl)a ey (rnd’ﬂm ffK(Mn)(Tndn)a fK(Q1)7 ceey fK(Qk)}

5.5. Solutions for Privacy Preserving Search 56

Let us consider the special cases first. Assume 0, that is, there are no queried* selects all
entries inView;, (corresponding to encrypted metadata) uniformly at randarthis caseA* simulates
A properly, otherwise we can usd (A4*) to distinguish pseudo-random bits from random bits.

Next, assumer = 0, meaning that no metadata have been received yet. In thes daproceeds
as follows. For each = 1...k, check to see if there exisjs< ¢ such thaiO;.cover(j,;)=1. If suchj
does not exist, select quey, in View, uniformly at random. Otherwise, s&; = Q.

A* feeds this view tad. The only difference betweeWiew; andViewj, is the way the distinct
queries are chosen. We claim that whatedectan compute froni/iew;, can also be computed using
Viewy; otherwise the pair4, A*) can be used to distinguish pseudo-random bits from trutgoan
bits.

Now consider the general cas¢” generate queries as described above and adds thefita), .
LetQq = @1, - .., Q. be the set of independent queries. Nekt,generates notifications as follows.

Foralli =1,...,n A* checks if there existg € {1, ..., k} such thaO,.matchi,j)=1. If so, A*
generates a random noneed and addsi(nd, fq, (rnd)) to View,; otherwise it adds a value selected
uniformly at random.

There are two differences betwe®fiew; andView,: a) distinct queries are pseudo-random as
opposed to truly random, and b) metadata that are not mabghtbe distinct queries are generated truly
randomly instead of pseudo-randomly (i.e., usjfi)gTherefore, ifA can compute something more from
Viewy we can use it to distinguish pseudo-random bits from rantdm-This concludes the prodf]

This scheme is cheap from both the computation and commtionigaoints of view. Computation-
wise, the scheme adds a few cheap operations to creatingsfneetadata and a single function appli-

cation for matching.

5.5.2 Keyword Matching

In this section we describe two existing solutions for keyavmatching that achieve similar security yet
have different costs. As keyword matching will be used asildimg block for our proposed protocols
for matching numbers, and also for matching keywords, lpténchoose between two solutions with

different practical characteristics gives us an optingatlimension we can exploit.

Bloom-Filter Keyword Matching
The first protocol we use has been proposed by Goh [Goh03a]idEa is to break the string into words
and construct a Bloom predicake [Bld70] to signal existasf@eword in the string. The query is a single
keyword.

Let ' be a pseudorandom function. LBt be a Bloom predicate. The algorithms for Keyword

PPS from Gohl[Goh03a] are:

Keygen(t): selectr as the number of hash functions in the Bloom predi¢afewith the desired false

positive rate. Seledk = (k1, k2, . . .,k,) uniformly at random fron{0, 1}"*.

Encrypt Query(X,S): return €, (S),Fk,.(5))

5.5. Solutions for Privacy Preserving Search 57

Encr ypt Met adat a(K,N): extract keywordsvy, ..., w, from N. Select a random noneewd. For
i =1...n, compute ;1,...,z;,) = Encrypt Quer y(X, w;), compute the codeword;{ =
Frna(xin), y2 = Frna(®i2), .. Yr = Frna(zir)) and setBF[y;] = 1 for j = 1...r. Return
(rnd, BF)

Mat ch(N.,S.): LetS. = (x1, z2, ...,). Let N, = (rnd, BF). Compute codewordg; = F,.,q(x;)
for +=1...r and check if the bit corresponding {g is set in BF. If there exists; such that

BF[y;] = 0return O, otherwise return 1
Cover (51,52): Return 1ifS; = S5, 0 otherwise.

We make the assumption that all strings have a predefinethlang that they have the same number of
words. This prevents an attacker from distinguishing tweatiata by counting the number of bits set in
the BF. When the latter assumption does not hold, we can add randertolihe BF' to simulate the

proper number of word§ [Gonh03a].
Theorem 2. Keywordis a correct implementation of PPS.

Proof Sketch. The paper by GoH [Goh0Ba] presents a proof of security uddeND-CKA2 model,
which focuses on document indistinguishability. Here wevskthat breaking PPS security feyword
can be used to break IND-CKA2 security fikeyword and therefore IND-CKA2 security implies PPS
security for keyword matching.

The attacker in the IND-CKA2 game selects uniformly at randodistinct keywordd Sy, . . ., Sy, }
and finds out their encrypted versions by using the IND-CKAallenger. The attacker further selects
two plaintext documents uniformly at randofsy and N7, ensuring that the known keywords are con-
tained by bothV, and N; or by neither.Ny andN; are passed to the challenger in the IND-CKA2 game,
which replies with an encryption df;, whereb is uniformly random fron{0, 1}.

Assume that the attacker can compute a functionaligiven View; = {Qu,...,Qn, Ny}, that

cannot be computed only usiidiew;. If h does not depend on the valdg,, thenh can compute
something relating to the queries, besides the coveraame] by using an argument similar to Theorem
1, we can see that this will allow one to distinguish randotstoom pseudo-random bits, and is therefore
impossible. Therefore, it must be thiatdepends onV,, meaning that will present non-negligible
distinct outputs folb = 0 andb = 1. The attacker uses this output to guess the value tferefore
winning the IND-CKA2 game. This completes our proof sketch.
Overhead.We analyze here at a high level the communication and magahiarheads of the protocol.
We will describe these experimentally later. The commuivceoverhead for the metadata is the size
of the Bloom filter, which is proportional to the number of keyds stored in it. We have already
mentioned that to match document content a small numbenoetdels suffices (e.g. 50), and for path
matching the depth of the path is lower bounded in practice &uthor’s filesystem has a maximum
depth of 22).

The parameters of the Bloom Filter are the size of the filierand the number of hash functions

Assume we wish a false positive rate of 1 in 100,000 (whichugheeturn very few false matches, for

5.5. Solutions for Privacy Preserving Search 58

large numbers of files); the optimal valuerofs 17, we would use 25 bits for each element on average,
som = 2550 = 1025b ~ 1305B.

The query simply lists the positions of the bits in the Bloom filter, so the expected Ez€log m =
170b ~ 22B.

The matching overhead is dependent on the number of hashgsuted; when query does no t
match the metadata, on averag®@ hashes will be computed by the server; when the query matobes

metadata hashes will be computed.

Dictionary Keyword Matching
The scheme proposed by Chang etlal. [CMO05b] is based on mgeatilictionary that has one bit for
every possible word (as opposed to the words in that speafiardent). The dictionary is shuffled
using a pseudorandom permutation and blinded using psandiom functions and a random nonce. The
metadata includes the blinded dictionary, along with thelcan nonce.The query contains the shuffled
index of the word plus a “hidden” version of the index.

Let ', G be two pseudorandom functions ahdbe a pseudorandom permutation. Tietionary

scheme is:
Keygen(t): selectk = {K, K>} uniformly at random fron{0, 1}* x {0,1}".
Encrypt Quer y(X,S): findindex\ of S'in the dictionaryD. Return{index = Ex, (\),Fk, (index)}

Encrypt Met adat a(K,N): let J and! be two bit index strings of sizgD|, initialised to 0. For all
wordswy, ..., w, in N, find \; (the index ofw; in the dictionary) and set{Fx, (\;)] = 1. Select
a random noncend. Fori = 1...|D|, computer; = Fk, (i) and setj[i] = I[i] ® G,,(rnd).
Return ¢nd, J)

Mat ch(N,,S.): LetS. = (index, rindes). LEt N = (rnd, J). If J[index] ® G rnd) = 1 return

Tindex (

1, otherwise, return 0
Cover (51,52): Return 1ifS; = S5, 0 otherwise.
Theorem 3. Dictionaryis a correct implementation of PPS.

Proof Sketch. Definition[d provides a security model for PPS regardlessiefquery, by mandating
that the information the server can learn by using the messaggeived from the user can also be learnt
by accessing an oracle. The security model provided by Cleamd [CMO5b] is an instance of our
model, where the query function is keyword matching and tlagle is replaced by access to the actual
information (i.e., which document contains which keyword@he difference between their model and
ours is the treatment for queries (keywords). They assuatethkeywords are different (and therefore
no information is gained by seeing they are different), ehik allow the server to distinguish whether
one query covers another query. In the case of keyword nmgjctwo queries cover one another only if
they are equal. If we only consider the subset of distinctiggewe can directly use the security proof

in Chang et al.[[CM035b] to prove security in PPS. The reduhdaeries do not leak any additional

5.5. Solutions for Privacy Preserving Search 59

information about documents, and do not leak more informmedibout queries that cannot be discovered
by using the oracle. Therefor®jctionaryis secure according to PPS.

Overheads. Compared tdloom Filter Keyword Dictionary Keyworddoes not generate false positive
matches and does not impose any restrictions on the numlberds in the document.

This scheme assumes the dictionary is known before the @tetade created, and that it stays
constant during the metadata lifetime; if words are addafiedictionary afterwards, all the metadata
for all documents must be recreated.

The communication and storage overhead of metadata eadrpgDictionaryis equal to the size
of the dictionary. The size of the encrypted metadata is 3&kBlocuments written in the English
languagel[CMO05b]. This is very expensive for small docuraefhe expected size of document content
in PPS is quite small (hundreds of bytes usually) favourhmegfirst scheme Dictionary can be used
when the size of the string is larger or comparable to 32kB @ases where the dictionary is smaller.

Matching withDictionary is cheaper, as a single one way function computation is requCom-

pared to théBloom Filterapproach, it is a few times faster on average.

Beyond Single Keyword Queries
The schemes above are secure, yet they allow one to matchla kéyword at a time. To match two
keywords, there are two straightforward options.

The first is to just encrypt the two keywords separately, stimm to the server, and have the
server return the results matching both keywords. Thisdem&re information than necessary to the
server, as the latter knows all documents that match eiteepbthe keywords, not just those that match
both.

A second option is to have the user to submit one keyword tseheer, download all the matching
documents, and match the second keyword locally. This aekkslmore information to the server (more
documents match) and also wastes bandwidth.

We propose a new solution to this problem, that works if thenber of keywords allowed in a
search is small (say 2). The basic idea is to create evenjbp@sombination of keywords and list
documents as having or not having that combination. Singjavikrds are a special case of keyword
pair, where the second keyword is empty.

Is this scheme practical? The average number of keywordemsgarches is 2.3, so we believe
allowing two keywords should suffice in the vast majority aées. To estimate communication costs, let
us assume we ugdoom Filter Keywordas a basis, and that we list only the 50 most important keysvord
in each document. In the resulting encoding, we would H#@?e= 2500 entries in each document,
which equates to aboGt5KB with a 1 in 100.000 BF encoding. Whether this is practiogheinds on

the size of the document, and the update frequency.

5.5.3 Numeric Matching
Matching numeric attributes is important as such searcreeBequent in filesystem searches, either for
searching newer files or files of a certain size. Further, iléyato match numbers can help implement

more advanced keyword searches that would be useful inipeastich as ranked searches.

5.5. Solutions for Privacy Preserving Search 60

Let D C R be the numeric metadata space. Given a metablata D, the query can have two
forms: a) inequality tests\ > I, N < up) or b) range testdf < N < wy), for iy, up, € D. We define

two novel PPS schemes for the two cases.

Supporting Inequality Queries
Choosé€ points,p1,...,p; € D as reference points. We consider the following dictiondfy> p;”,

“>po” L > < pr" < pe”, oL, “< o b Queries will be approximated with one of these
constraints. Each metadad is considered to be a document containing the words in thgodary
that it matches. These are encrypted using either one ohih&eywordschemes we have previously

described. Thénequalityscheme is:
Keygen(r): K =KeywordKeygen(r). Agree on a set afreference pointg,,...,p; € D.

Encrypt Query(K,S): Let S = (type, value), wheretype can be <” or “>". Find i such that
lvalue — p;| = miné-:1 |value — p;|. ReturnKeywordEncr ypt Quer y (K, type|p;)

Encrypt Met adat a(K,N): Let N, = {t;|p;, wheret;=">"if N > p;, andt,="<"if N < p;,, for
i =1...1}. ReturnKeywordEncr ypt Met adat a(¥k, N,,)

Mat ch(V,,S.): returnKeywordMat ch(N,,Se)

Cover (51,52): we check whether the queries are the same by u&ywordCover . Full query cover-
ing cannot be checked without additional information irsttése. We present an efficient solution

in the Implementation section, which leaks some additioxfafmation.

Theorem 4. Suppose all queries can be expressed exactly using the mseissabove. Themnequality

is a correct implementation of PPS.

Proof Sketch. Inequalityis an instance dbictionarythat contains as wordss p;”, “ > p»2”, ..., “> p;”

“<pr Y < pe”, ..., < pp”. Since the approximation is assumed to be perfect@iationaryis secure
(TheorentB), verifying inequality using the dictionary givas much information as verifying with the
oracle. It follows thatnequalityis also secure.

Note that the assumption that queries are expressed eiaatiportant. Without this, the server
can infer additional information. Here is a simple exampesume the notification spacelis . ., 10
and the reference points agb, 10. QueryS = = > 7 will be approximated with5, = = > 5. Given
encrypted notifications 4 and 6, the server cannot diststgtiem in the ideal case (when testing against
S, none of them is matched), however it can tell they are difiem reality (asS, will match 6 and not
match 4).
Overhead. The overhead of this scheme is due to the size of the dictjpegual to2 - [. There is a
direct tradeoff between this overhead and the precisidioiva for queries.

If we want perfect queries (0 false positive and negative cheg), we setl = |D|.
This can be expensive in reality (e.g., for 4 byte integers ewe ~10° points). We de-

scribe an exponentially spaced partitioning scheme thauseful in many practical scenar-

ios. Approximating the 4 byte positive integers with...10°], we select as reference points:

5.5. Solutions for Privacy Preserving Search 61

1,2,3,...,10,20,30,...,100,200,300,...,1000,...,10%
,2-108,3-108,...,10°. Although the number of reference points is only 100 (theauata has only
12 bytes), the precision is acceptable if we consider thatygsensitivity decreases as metadata values

increase.

Supporting Range Queries

To supportl, < N < wuy queries, our initial idea was to have the user create a ipaitig P =
{p1,...,p} of D. The user would encrypt the index of the sub¥ebelongs to by usingqual Queries
are mere encrypted versions of the indexes of the subsetg ipatrtition they are interested in (i.e., all
p; € P such thap; N (Ip,up) # 0). However, sending multiple subsets leaks more informatti@n
necessary. Therefore, we would have to approximate theyquitir a single subset in the partition. As
query sizes are not fixed a-priori, we can either grosslyestenate the size of the query, leaking more
information to the server and wasting bandwidth, or we cattengstimate the size of the query, which
also leaks information but does not waste bandwidth.

The initial idea can be refined as follows. Create severtditjgans of D, P, . . ., P, with different
subset sizes and different starting offsets. Create aodigty containing as words the index of the
partition concatenated with the subset index, forralpartitions. A metadata can be expressed as a
document with this dictionary by listing the subsets it islided in. The query is approximated with

one of the subsets in these partitions. Rengescheme is:

Keygen(r): Generatd< usingKkeywordKeygen. Agree onm partitions ofD, Py, P, ..., P,,, where

P, = Pi1Upi2...Upiy,. Letpi,j = [ai,j, b@j]

Encrypt Quer y(K,S): LetS = (I, up). Find the best approximation &fin P, ..., P,,. In partic-
ular, findz andy such thally, — ag | + |up — bgy| = minj>, min§;1(|lb —a; | + |up — bi).

ReturnKeywordEncr ypt Query (“z,y")

Encrypt Met adat a(K,N): Let N, = {“z,y"| wherez € {1,...,m} andy € {1,...,1,} such that
N € p, . ReturnKeywordEncr ypt Met adat a(k, V)

Mat ch(NV,,S.): returnKeywordMat ch(V,,S.)

Cover (51,52): we can easily check to see if two queries are the same by KsigordCover . How-
ever, we cannot properly check full covering without addfitil information. In[[RR06] we de-
scribe an efficient coverage solution that can be used ithstea leaks more information than

necessary

Theorem 5. Suppose all queries can be expressed exactly (i.e., withengrating false positives or

negatives) using the above algorithm. ThRanges a correct implementation of PPS.

Proof Sketch. Same reasoning applies as for Inequality.
The scheme creates an explicit tradeoff between the sizgeajueries and matching time on one

hand, and the number of false positives and the securityatidi.e., information leaked due to imprecise

5.5. Solutions for Privacy Preserving Search 62

queries), on the other. A partitioning scheme with zercefatatches for any range query hag? points,
being quite expensive. A better scheme can be obtained ibagsfon query sizes likely to be used in
practice.

In general, given a desired cost, choosing the proper joaitig is application specific and should
take into consideration the distributions of queries andacteta. An algorithm that determines the
optimal partitioning strategy for a specified cost is présdmy Hore et al[[HMT04] and could be used

for this task.

5.5.4 Supporting Ranked Queries

We are now ready to describe our construction for rankediegiein traditional information retrieval,
the document score is computed using a scalar product bettheequery and the document vector
representations. It is difficult to implement this exactdtionality with PPS, but we can approximate it
quite well if we have few keywords in the query.

First, assume there is a single keyword in each query and gk twimatch only those documents
where the keyword is of utmost importance, say in the firstfiaggures of the document. To allow such
matching, we create the following partitioning of the featapace: first, first five, first ten, and first 25.
If a keyword satisfies the query (i.e. it is first), an encrgptof “first—keyword” will be added to the
document. All in all, we add 41 new keywords to each documehih increases the size from 130B to
250B.

If we allow dual keywords in each query, and we wish to mamthe same allowed ranking (first

1%, first 5%, etc.) we roughly double the size of the metadatdbut 15KB.

5.5.5 Supporting Generic Queries

Supporting arbitrary functions as queries is not a goaldalif as the maximum achievable security is
not satisfactory: Only)(|V|) carefully chosen queries are enough to distinguish evetada¢a. This,
combined with the knowledge of a plaintext-ciphertext paampletely breaks the metadata encryption
scheme. However, itis interesting to discuss approachegfeeric query functions as a possible starting
point to support other query functions of practical interes

There is a tradeoff between the amount of information ledkettie servers and the communica-
tion overhead. Therefore, to support generic queries wetreae confidentiality for communication
efficiency.

At one end of the solution space, the minimum amount of in&dfom is revealed and communica-
tion size is very expensive. Consider an enumeration otialtfions fromD — {0, 1}. The dictionary
will contain the indexes of all these functions. We etionaryto encode arbitrary queries by encrypt-
ing the proper index. Metadata will include as words all tideixes of functions that accept them. This
scheme is secure for all possible queries as it does not lead imformation than what is needed. The
communication size is huge: Every metadatahi&s bits.

At the other end of the solution space, we have examined aptkimented a protocol based on
Yao’s garbled circuit construction to support generic igpgerexpressed as boolean circults [Y2086].

The size of the communication is small (query size is diyeptbportional to the number of gates in

5.6. Implementation 63

File:sm.dat
| File Pos:0
Mem Pos:0

Count:3

Pointer 1 File: sm.dat

Pointer 2

File:sm.dat

File Pos:1000 /V

*Mem Pos:-1
Count:3

Pointer 3

File:sm.dat
ile Pos:2000
Mem Pos:3
Count:3

2] 7] 8] ° |

In memory: sorted metadata

Figure 5.2: Data Structures Used by PPS

the circuit, while metadata size is the same as the plaingrsion). However, this scheme allows the
server to distinguish every bit of the metadata, and theeedsingle plaintext-ciphertext pair is needed

to completely break metadata (without neediNg“good” queries as a basis).

5.6 Implementation

We implemented all the algorithms we presented in Java 1&chidse Java mostly for ease of devel-
opment and debugging. The only concern we had was for pedioce but techniques such as HotSpot

JIT compilation make Java reasonably fast.

We used the SHA-1 cryptographic hash function [0S T95] thhmut our implementation as a pseu-
dorandom function. We used 128-bit AES [DR02] for the synmn&incryption scheme and as a pseu-

dorandom permutation.

5.6.1 Overview

The server stores for each user all the metadata the useediiatered. Multiple users will be serviced
by the same server as multiplexing is needed to make PPS mdcadly viable.

The user provides a random identifier for each metadata. @iverscode loads the metadata from
disk into memory in the increasing order of the identifierfpens the matching in memory, and returns
the results. A user’'s metadata is cached as long as memovgilatde. When a user submits a query,
the query is served from memory if the user's metadata is imamg. Otherwise, if memory is full a
user's metadata will be deleted from memory. The cache pditeast recently used (LRU).

Caching improves performance when a user emits a burst ofegua a short period of time. A
server will need to service a large number of users, a smiadledwof which is active at any pointin time,

so we expect that in the common case the user’s data is notrirongavhen the query arrives.

5.6. Implementation 64

I/O Thread: Producer Matcher Thread(s): Consumers
P PF_or all Read data | ¢
ointers p

No
Load Yes Ves Match data
data
Produce Return
data results

v v
Figure 5.3: Running a Query with PPS: System Architecture

5.6.2 Managing Metadata

To manage metadata, we created a data structure that aléotiesl fjpading and quick access to entries.
Partial loading is used when a single query is split acrogsyrsarvers, and each server only matches a
subset of their local data (i.e. when increasiggwith ROAR). The data structure is based on an array
of user metadata sorted . Disk storage uses the same structure, storing metadatarst]ly in one

or a few files on disk. Besides the array structure, we mairgaiarray of “pointers” to these basic lists,
to allow fast and partial access. The data structures asepted in FigurESl 2.

When a user sends a query the server will create an in-memadsmetadata list (if one does
not exist already), loading the pointer entries from a stilallon disk. Initially, there is no metadata in
memory.

The range requested by the query is used to select rangedadateto be loaded, and the server
begins loading data from disk (file “sm.dat” in our examplging information from the relevant pointers.
To load data from disk it uses memory mapped I/O (this is fakign traditional I/O for large files). An
1/0 thread will sequentially read from disk into the in-membist the data corresponding to each pointer
entry. In our example, data is read for pointer O and placgubsition 0. Then data from pointer 2 is

read and placed at position 3 in memory.

5.6.3 Running Queries

To run the query, metadata are loaded (if necessary) anarthtahed against the encrypted query. There
are several bottlenecks that could appear: loading frolnabsld be slow, or matching could be slow.
To decouple these two, we create two threads: one that readiata from disk or memory and feeds it
to another thread that matches the metadata against the quer

The architecture of the system is presented in Fifiie 5.3us&e fixed-size buffer to synchronise
the two threads, using the producer-consumer paradigmbitfier hides I/O latency in the case when

CPU is the bottleneck, even in a single processor systemvdid axcessive use of synchronisation, the

5.6. Implementation 65

I/O thread produces batches of metadata at once, and themenenly announces the sleeping producer
when enough space is available for an entire batch. Wheri@his the bottleneck, the setup adds very
little overhead compared to sequential match and load.

Dealing with multi-core servers servers is easy: the coaplsi creates one matching thread per
physical core, and the buffer now has a single producer artipheuconsumers. The server supports

inter-user query parallelism, but serialises queries frloensame user (thus achieving fair sharing).

5.6.4 Metadata Encoding

Each user file has three types of metadata. File size, lasficaithn date and keywords (both filename
and, where applicable, the most important keywords in teecbhtents).

The straightforward way to encode this data would be to emeadh attribute separately, and allow
predicates to select one of the attributes. This leaksimftion, as the server knows how many times
each attribute is queried, and can infer the attribute type.

The better solution is to embed all attributes into a singgéle metadata. This is possible because
all practical queries use keyword filtering as a base. We lhussame keyword matching algorithm for
all attributes, and create a dictionary that is a supersall tfie per-attribute dictionaries. For instance,
if the keyword dictionary if distributed, systems} and the file size dictionary i1, 2} we can create
a dictionary{kw = distributed, kw = systems, size = 1,size = 2} that encompasses both. To
match keywords, the user will create a query by prepending"Ko its desired search keyword. In this
way, we can stack up all the attributes in a single dictiondtls size equal to the sum of the individual
dictionary sizes.

There are no associated space overheads. |Dit@nary scheme total metadata size will be
the same as if we had encrypted each metadata individualliytree same applies to thigloom Filter

Keyword

5.6.5 Multi-Predicate Queries

In our implementation a query can contain multiple predisand a binary functiora(d, or) to aggre-
gate the results. We have mentioned earlier that while rpudtilicate queries leak more information
than needed to the server, supporting all possible mudiiipate queries securely has prohibitive costs.
Hence, we allow multi-predicate queries for practical psgs. It is the user’s choice whether they wish
to use multiple predicate queries or single predicate go#yf secure queries.

The matching algorithm initially runs all the predicategtlie query regardless of the binary func-
tion, counting the number of matches for each predicate @liethis predicate “selectivity”). After a
small number of samples, it sorts the predicates accorditigeir selectivity, and starts to match pred-
icates selectively. If the binary function iafd’, it will apply the most selective predicates first; if the
binary function is 'or”, it will apply the least selective predicates first.

As the matches are randomly scattered through the metadatehing a few metadata is provably
enough to get a very good estimate of each predicate’s sétect

Here is a succinct explanation. Let the predicate’s realct®ity be s’; we matchn metadata

chosen randomly to find an estimatef the selectivity. The number of matching metadata samples

5.7. Evaluation 66

is a random variable that has a binomial distribution withames and varianceis(1 — s). Using

Chebyshev’s inequality and 89% confidence we have:
Pr(lns’ —ns| > 3y/ns(1 —s)) < 1/9 (5.1)

Dividing by n and upper-bounding(1 — s) by 1/4, we gefs’ — s| < qy/21=2 < %ﬁ To get an

accuracy of 0.1, it suffices to set= 225. This is the number of samples we use in our implementation.

5.7 Evaluation

Privacy Preserving Search must be fast to provide a goodexperience. In this section we explore the
performance properties of PPS for typical numbers of filkedyito appear in practice. Our experimental
setup uses file information from the author's home directorgenerate metadata as described before.
The metadata is stored and experiments are run on a Dell Edger1950 server with 2GB of main
memory and two dual core Intel Xeon 5150 processors runtidg&GHZ. We used the Linux operating
system, with kernel version 2.6.28. We experimented witkriggs matching as little as 10000 files up to
a few million, covering a wide enough range to gain a good tstdading of the performance limitations
of PPS.

Our basic experiments use a set of 1 million metadata whielegreatedly queried by a server in
the same LAN using two random keywords, such that the nuntheatched metadata is always 0 (this
is to avoid measuring the network cost of transmitting tha dkack to the client).

We have two versions of PPS that exhibit different fixed coBBS is written in Java, and the cost
of running the Java garbage collector is not negliB.bIBPSLM (low memory) forces a run of the
garbage collector immediately after finishing a query. Tas the advantages of minimizing memory
usage and preventing the garbage collector running duropgeay, which would increase query delay,
but the disadvantage of adding to the fixed costs of a quel§.LRP(low CPU) does not force a garbage
collection run after a query; it has lower fixed costs, butsusere memory and may exhibit more

variable query delays. Unless stated explicitly, we run RREby default in our experiments.

Basic Performance. We wish to understand the scaling bottlenecks of PPS. Wedinsthe query with
cold disk caches and a single matching thread, and foundtbah end-to-end query delay is 3.9s, with
all values within 0.5s of the mean. To understand the battiknwe instrumented the producer-consumer
buffer to output a line whenever a multiple of 1000 metadatapoduced or consumed. We plot the
results in Figur@ 5.4(R) for one of the queries.

In the plot the I/O and matcher thread lines perfectly oyerliadicating that the producer—the
I/0 thread—is the bottleneck. To verify this assumption,rese a simple tool that just reads the whole
230MB metadata fiI and found it took around 3.5s to complete. The remaining &&8sccounted for
by the list append operations the 1/O thread performs.

The metadata file was written sequentially on disk, and wes r@ad sequentially. We wondered

2Memory allocation is however faster in Java than C++, bez#ius free space is contiguous, as the heap is compactedion eac

collection
3The command printed the number of characters in thedaéfile | wc -c

5.7. Evaluation 67

le+06

1e+06 +
8000007 1 800000 |
I / I
T 600000 S 600000}
8 b
2 400000} = 400000}
200000 4 /O Thread | 2000001 " 110 Thread
0 # Matching Thread--- 0 & Matching Thread--
0 1 2 3 4 0 0.5 1 15
Time(s) Time(s)
(a) Query reading data from HDD (b) Query reading data from OS buffer cache

Figure 5.4: Execution traces for queries searching 1 millieetadata

whether the ext2 filesystem was causing the performancégmasb Further experiments show this is not
the case: the maximum achievable transfer speed is givemetgetquential raw hard disk transfer speed
of 856MB/s, which we measured with “hdparm”. The transferespi the experiment above is around
66MBY/s, 75% of the optimal. Even if we achieved the maximuees] and with no other overheads the

query would still take 3s to complete. 3s per query is too dtmlve acceptable for regular users.

Warm OS Buffer Caches.We expect many users to be multiplexed on the same serverjswdry
likely that user queries will be interleaved and cachesIpedways cold. Such queries will be disk-
bound and performance will suffer. However, it is equalltenesting to explore what happens when
there is query locality, and caches are warm. Modern opeyatistems maintain a “buffer cache” where
recently read data is cached. Linux in particular is quitgragsive, using all available memory for the
buffer cache.

If the same user runs a burst of queries, only the first queeywidl read data from disk. With high
probability subsequent queries will access data in the O&fer cache. We repeated the experiments
above, but with warm OS buffer caches.

With a single matching thread query delays are around 1.dshrfaster than 3.9s with cold caches.
A look at the output of the producer-consumer buffer showasiththis case the bottleneck is the match-
ing thread, which lags behind the 1/0 thread (see fifjure }.4(b

CPU-Bound QueriesWe profiled the execution to understand the CPU overheadsefyqunning all
the operations with in-memory metadata and without perfiogrthe matches takes 0.3s: this overhead
is mostly due to adding/removing items from lists in Javae Témaining 1.1s are due to matching the
metadata. Most of the time is spent in calling the SHA-1 figrctvhich was called approximately 2.5
times per metadata in our experiments. Typical SHA-1 imgletations take 8 processor cycles per
byte to execute [KKG 10]. Our processor’s speed is 2.6Ghz and the keyword metélad0B, so the
processor can run at most 2.32 million SHA-1 function aggilans per second. For a query against 1
million metadata roughly 2.5 million SHA-1 function apgitions are needed, taking around 1.1s. This
matches our profiled execution time.

The number of SHA-1 applications per metadata (on averdge2upper bounded by the number

5.7. Evaluation 68

16 —
14+
1.2 ¢

0.8+
0.6 r
04r
0.2r

Query Delay (s)

1 2 3 4 5 6 7 8
Matching Threads

Figure 5.5: Query delays with in-memory data and differemhber of matching threads

of hash functions used by the keyword bloom filter (17), whitdtead depends on the total number of
keywords in the bloom filter and on the probability of gettfatse positives. We used 17 hash functions

to get a false positive match probability of 1 in 100.000.

The CPU overheads grow linearly with the number of hash fanstapplied. When a query
matches some metadata all hash functions are applied tiy teei match and CPU costs are highest.
If a query matches all metadata, query delays increase fadgeas all 17 hash functions are applied for

every metadata being searched.

However, these high costs do not appear in practice for tasams. First, if a query does match
everything, the query will be stopped early and the first femdred matching results will be returned.
The second case is when a multi-keyword query matches fesiegnbut some of its keywords match
all (or most) entries (e.g. when searching for “the doork&"twill match nearly all documents). In this
case the server will order predicates in increasing ordselefctivity, and query delays will be reduced.

This is why we ran our tests using queries that did not matghmastadata.

To speed up execution of CPU-bound queries, we can increaseumber of matching threads;
each of these will be scheduled onto different cores, so weebsignificant speedup. Surprisingly we
found that query delays quickly reach a plateau at 1.1s wheneasing the number of threads to two;
further increasing the thread count yields no improvemefts closer examination, we see that with
two or more threads, the 1/O thread is the bottleneck agaithi$ case the overheads come from system
calls, parsing the data, allocating memory, etc. These \measked” by the 1/0 delays when the system

was disk-bound.

In-memory cache.We can bypass all these overheads with an in-memory metealei@. The memory
usage is similar to the buffer-cache and there are no costa winning new queries. The cache has an

upper bound of metadata items to be stored and uses the LRA¢eepent strategy.

We enable the cache and plot the query delays in Flgule 5.fuastion of the number of matching
threads. Up to four threads, each thread is scheduled oritiegedt core and the speedup is almost lin-
ear. With four threads, one query only takes 400ms on avelagesasing past 4 threads only decreases

performance due to increased locking and scheduling costs.

5.7. Evaluation 69
2
10 ————— = le+07
Disk bound s °°
In memory -+~ g8
— Q .
Q) £
) 1y > let06f
g © -~ E]E_ s
b 0 0
o o
=] 0.1+ ¥ £ 100000,
e " Q
wet 8 Disk bound
001 % 10000 - Memon;
8 16 32 64 128 256 51210242048 0 500 1000 1500 2000
Collection size (thousands) Collection size (thousands)
(a) Query delays scaling (b) Processing speed scaling
Figure 5.6: PPS performance scaling with file collectior sin a Dell 1950
5.7.1 Dynamic predicate ordering

To evaluate the effectiveness of dynamic predicate ordevie ran a simple experiment searching for
“the xyz” that returns zero matches. With in-memory data oratching thread and predicate ordering
enabled the first few hundred objects are matched againstkegivords and after that predicates are
sorted such that the more selective “xyz” is matched firstydBe this point, all metadata are only
matched against “xyz”, and queries take on average 1.25s.

Next we turned dynamic ordering off and ran the query “xyZtiige server applies the predicates
in the user-provided order, and the mean query delay is a®s1 This shows that the overhead of
matching the first 225 metadata against both keywords idgielg. Finally, we ran the original “the
xyz” query. Query delay in this case grows to a surprising Gfghese, 8.75s are due to matching “the”
and 1.25to “xyz”. The increased costs of matching “the” are th the many more SHA-1 applications
(17 vs 2-3 per object).

Dynamic predicate ordering is very simple and cheap. Itstimgsortant benefit is that it allows
query delays to be independent of the query terms and couquries that have “wildcard” keywords.

Predictable performance makes it easier to provide googeettictable search response times to users.

5.7.2 Query delays with varying numbers of metadata

The results we have presented provide an accurate imageedieads when running queries against 1
million metadata. How do these results scale up and downlaiigier or smaller collections of files? We
ran experiments with collections of files containing as fesen thousand files (20MB on disk) up to
two million files (500MB on disk).

We present the query delays in Figfire 5)6(a) using a logdafes As we increase the number of
items of metadata that must be searched, query delay irse&duery delay scales linearly with the
number of metadata objects when there are large numbergeaftetbo be matched for both disk-bound
and CPU-bound processing. The in-memory experiments wer&ith 4 matching threads, to get the
best performance.

In Figure[5:6(0) we plot the server processing speed forahgesexperiments. When the number

5.7. Evaluation 70

Throughput Variation with Dataset Sizes Query Delay Variation with Dataset Sizes
250000 T T . T 5 . T . .
PPS_LM
> PPS_LC -
$00000 4t]
e}
i) B
() B
2150000 % 3 1
5)
8 g
o ©
“100000 Q 2t .
o)
£
[7]
(%]
gsoooo 1t .
a
O O 1 1 1 1
0 200 400 600 800 1000 0 200 400 600 800 1000
Collection Size(thousands) Collection size (thousands)

Figure 5.7: PPS performance scaling with file collectior sin a Sun X4100

of objects is smaller, the server processing speed is loWeis is because the fixed costs associated
with a query cease to be negligible. These include netwdekae delays due to connection setup,
data transmission, parsing and serialisation of the quedyr@sults, and so on. Other host related fixed
costs include starting new search thread(s), providingafrgliery thread synchronization, allocating
and releasing memory, etc. For disk-bound processing tke finsts also include the disk seek times
(on the order of 10ms per seek); for small files these are nottésad over long sequential reads. These
fixed costs start to be amortised by the time the server islsiegr about 100,000 files, and at 250,000
files the throughput of the server levels off for both curves.

As a high level point, disk-bound query delays exceed 1s@{0f® metadata, and increase linearly
past that. We need to parallelise such searches to providedger experience; we will use ROAR for
that purpose. Even in-memory processing quickly reachegesiserver scaling limits. On a four core
server delay is 700ms for 2 million metadata. As collectiohfiles become bigger, running searches on
a single server will quickly result in bad performance. Eitit will take too long to match the data or
the metadata will grow bigger than the server’s menﬂmyld the query will become disk-bound.

Distributing computation across many machines is requedake PPS scale. Interestingly, both
delay curves have similar shapes, albeit at different perémce levels. This implies it should be possible

to apply the same parallelisation techniques regardlegeediottleneck.

Different Hardware. So far we have examined how PR$1 performs on a single Dell 1950 machine,
finding that the disk is the performance bottleneck. We reth@ same experiments on different hard-
ware too, and found that the behaviour is similar for the npmwerful Dell 2950 machines. However,
for the slower Dell 1850 and Sun X4100 machines the CPU isyaltee bottleneck, even when the meta-
data is loaded from disk. These experiments analyzed besiovs of PPS (PREM and PPSLC). The
main issue is query delay as shown in [Eigl 5.7. As before, treéixed costs are satisfied, query delay

increases with the number of metadata objects to be searched

4This limitation is true for Google’s web sear¢i[Dea]

5.8. Related Work 71

When the number of objects is smaller, the fixed costs adsaolcigith running a query cease to be
negligible, which shows up as a performance drop off in thitrhand graph in Fig.3.7. The drop is

steeper for the low memory version.

5.8 Related Work

The security work in this chapter has been undertaken byuttees in 2005-2006 and was published
as [RROB] in the context of achieving privacy in contentdzhpublish/subscribe systems. At that time,
to the best of our knowledge, ours was the first complete aodrsesolution for content-based pub-
lish/subscribe that had been presented in the literaturéhdr it was the only secure construction for
numeric queries.

The biggest assumption of the initial work paper was thatyawas shared by publishers and
subscribers. In PPS publishers and subscribers are reidgdbe user, and this assumption is no longer
needed. From the security point of view applying the samertieuies to Privacy Preserving Search is

not only possible but straightforward.

Secure Function Evaluation.Research in cryptography has produced many importanttseisuthe
broad area of secure function evaluatibn [FKN94, 1K97, CGK]S Although several protocols in this
space resemble and appear applicable to the PPS probleemismafrpractical importance for PPS. First,
the protocols have been designed for single invocationsaamdulnerable when the same key is used
to send multiple queries. For instance, the informaticesttically secure protocol described by Ishai
[IK97] can be broken easily when used for multiple queriebjlevthe semantically secure protocol
described by Feigé [FKN94] becomes as secure as the one #ichim phe same context. In theory, we
can use such single message protocols in the context of RP®jth tremendous overhead: For every
query, the user would re-encrypt all their data and storalihe. Further, even the cheapest instances of

these protocols have high costs for single invocations.

Privacy Preserving Keyword SearchesMotivated by public file servers and email servers, a more
practical approach was taken by the security community beestie problem of searching encrypted
files using keywords.

The pioneering work in this direction is due to Song et Al._FEW)], who propose a scheme that
encrypts each word in the document in a way that allows a osezdrch using an encrypted keyword. To
test whether a given keyword is in an encrypted file, a sedplestian of the file is needed; this approach
does not scale well for large documents.

Schemes were proposed by Gbh [Gof03b] and Chang €t al. [(Mi¥gause indexes to address
this issue and propose stronger security models. For pahetasons, we used the first scheme for
keyword search and the second as a basis for supporting raatghes. Our work employs a security
model that is similar to the one from Chang et al. [CMO05a]eexiied to deal with arbitrary subscriptions
and to allow subscription covering (that was implicit in th@gial model). Our mechanisms can be used
to provide privacy preserving range matches for numericesl

Curtmola et al. proposed an improved security model and reffi@ent constructions for privacy

5.9. Conclusions 72

preserving keyword search concurrently to our wark TCGK[D0Bhe authors observe that previous
definitions of security in the area such s [SWR00, Goh03b0%:{1do not cover the case of multiple
queries, and create a security model that includes seastidryio address this shortcoming. Our secu-
rity model, initially proposed in the context of contentsed publish/subscribe also incorporates query
history.

The main idea in[[CGKOU6] is to create an inverted index-Bkmicture which is encrypted and
stored on the server. This data structure consists of a [ptahle of terms, and each term has associated
a linked list containing the matching document identifi¢hgse are then blinded and scrambled to stop
the server from gaining information about documents. Tiigk can be searched efficiently, in constant
time, regardless of the number of documents. This diffemmnfthe schemes of Goh and Chang where
CPU search time is linear in the size of the document cotlactiVe have seen, however, that search for
PPS is likely to be disk-bound, thus CPU speed does not ntattemuch.

Compared to the naive solution of just using the encrypteerted index and downloading it before
queries, Curtmola’s scheme has the advantage that it ddeserd to download the index. However,
the index must be kept updated, and potentially the wholexmeeds to be changed when documents
are changed, added to or removed from the collection; thdtieg bandwidth overheads would be pro-
hibitively high. This overhead could be reduced by tradirfijhdex accuracy against update bandwidth,

though. Further study is needed to decide which PPS cotistns@re better in practice.

5.9 Conclusions

We have shown that it is possible to perform encrypted searelgainst encrypted data on untrusted
servers. We have used existing keyword matching constngts a basis to support numeric and more
general matching.

PPS is less costly for mobile users than the straightforappioach of downloading and decrypting
an encrypted index for searching, and will be preferablaé@rtear future where more users access their
data on the move.

However, Privacy Preserving Search takes too long even wioeiest numbers of files are searched:
with 250,000 files it takes in excess of 1s to get the resultsniypbecause disk access is the bottleneck.
To make Privacy Preserving Search practical we need tolpksalit across many servers. In Chajifer 7,

we will show how to do just that with ROAR.

Chapter 6

Analytical Evaluation

We wish to understand the fundamental properties of PTN, 8&/ROAR, including query delays,
bandwidth consumption, load balancing, fault-toleranue the ability to changg dynamically. A first
step in our exploration is this chapter, where we use a mixnafyéical modelling and simulation to
distill the properties that determine algorithm behaviour

We restrict our analysis to the basic Distributed Rendegwaperations (storing objects, running
queries, and changing, and ignore other costs related to practical implemesnati The practical costs
include bandwidth consumed for control traffic, imperfeetd balancing, and so forth. We include these
in our experimental analysis (see Chapler 7).

A central point of the analysis is the comparison betweemygdelays obtained by the algorithms
when running on a heterogeneous server pool. To guide theséave begin by characterising lower
bounds for query delay. Our most important finding is that RIld ROAR have relatively similar delay
values for configurations likely to arise in practice. Thégoshave similar availability for data center-
like deployments. ROAR provides more flexibility in adagtithe ratio ofp andr, and in controlling

query delay.

6.1 Query Delay

We want to evaluate query delays giveiservers, their partitioning level their processing power, and

some query arrival rate. To do so, we first provide a model efydelay at a single server.

Definition 8 (Computation Model) Each server has a fixed processing spead expressed as the
number of data objects per second it can match against a.qlieis/assumes that the server takes the
same amount of time to matetmyquery against a constant size dataset. That is, the serseohatant
service time.

The query is initiated by the front-end server which splits uery to enough other servers that
together can complete the query. The time to initiate a qoargnother machine and to receive the
results is entirely dominated by the round trip timg between the two servers plus the local query
processing time. If the front-end (server 0) needs to runexyqagainst! data objects on serverthe

time required ist = rttg; + d/cpu;.

For simplicity, we assume there are zero or very few returasdlts, so that bandwidth for returning

6.1. Query Delay 74

results does not impact query execution time. This is truemdueries are executed, as few results are
returned regardless of the total number of matches (foaintst, Google returns 10 results at a time), and
is also true in data centers where bandwidth abounds.

Objects are randomly load balanced across servers, whiengrtee number of matches on each
server is roughly the same. Therefore, when all servers hawegeneous bandwidth it does not really
matter how long it takes to return results from the point efwif the scheduling algorithm.

The definition assumes there is no setup overhead assouwidtestarting a query, and that there
are no OS overheads for parsing query requests and sendingrgplies. We show experimentally that
this model is accurate if the query is large enough, and theeaks down when queries are very small;
in the latter case, the setup overheads begin to dominate.

In reality, processing speed varies even for the same maahiar time due to OS background
activities and concurrent applications. We ignore suchat$ffor now. We make no distinction between
CPU and I/O bound query processing, as the linearity fatitbhslds. Memory-bound query processing
is trickier to model, so we assume for simplicity that all ttega is either entirely in memory or on disk.

We experimentally show that this model is accurate for orgrebapplication.

Simulator. We implemented the algorithms and estimates of the optirlalyd in a simple numerical
simulation. The front-end server has estimates of senargssing speeds and maintains for each server
a list of tasks assigned and still running.

Queries arrive at discrete times according to a Poissonepsowith a configurable mean. The
scheduler splits each query into exagtlyarts and chooses theservers that would finish first, according
to the algorithms described in Sectibn418.1. To estimatrygfinish time at servet, the front-end
assumes the new task will start as soon as séfeishes its last assigned tJllIhe front-end assumes
network delays are negligible.

For every query, we log its arrival time and its completiamei We run many queries (a few
thousand) to ensure we capture long-term averages. As quévgls are open-loop, there is a danger
that we overload the system with the query load. We test fpltaghing server task queues by fitting a
straight line to thelelay(time) function (which gives the delay of a query as a function ofitsval
time). If the slope of the fitted line is greater than 0.1 (geery delays are constantly increasing with
time), we consider the queue to be exploding and set the mezhdelay to be infinite; otherwise, we set

the delay to the mean of the query delays.

6.1.1 Bounding Optimal Query Delay

We want to find optimal query delay, defined as the averagey ddlgueries run by the system. We

mainly wish to understand how the algorithms use servers héterogeneous computing capacity to
improve query delay and increase throughput. We do not ex@thie impact of network delays on query
delays as these are second order effects (only one to a féisaninds) in data center deployments, our

main focus.

1This simple model assumes serial execution. It is apprpfia a single-core machine as the scheduler is perfectambeep

it fully occupied; in practice a scheduler will assign a fevedapping tasks to any single core server to ensure gotisatiton.

6.1. Query Delay 75

From the computation model it follows that, to optimize queéelay, it may be sensible to send the
query to more thap servers. For instance, if servers are idle, splitting a @®Und query to servers
is faster that splitting it tg servers (although this would increase overheads).

If each query is sent to all servers (i.p, = n) a collection of servers will achieve minimum
delay if they act as a single server with processing powealdguhe sum of each server’s processing
power. If we assume Poisson query arrivals, the system sets# /D /1 queue where the service time
D= ﬁ

The optimal operating point for distributed algorithmgjs= p, as costs are minimal at this point.
If p, = p < n, itis trickier to grasp what the optimal query delay is. Ieth is very little load, the
system is optimal if it can run the query on the most powesfsgrvers.

As load increases, it is not sufficient to consider only thestmaowerful servers, as these may
become overloaded. When load nears 100%, the system isajftinapproximates ai// D /r system,
with service timeD = m

A heuristic approximation of the optimal in the general cagée following algorithm: sort servers
according to their descending CPU power, and assign the fistvers to the first cluster, nexservers
to the next cluster, and so on; we will creaté + 1 clusters. When a query arrives, run it on all servers
in a chosen cluster, assigning more work to servers prapwtly to their CPU speed. The chosen cluster

is the one that is estimated to finish the query first.

6.1.2 Query Delay Comparison whem, = p

We ran queries with SW, PTN, ROAR and the theoretical lowamugbin a1000-node network, with
30% query load and server speeds uniformly chosen in the@gGhz, 2Ghz.

We run each experiment in two phases, corresponding taréiffecontrol loops in the algorithms.
The first phase is network-setup where the system uses éssimfiserver processing speeds to setup
the data on the servers; in ROAR the speeds are used to cosgiue range, while PTN uses server
speeds to balance compute power across clusters. In thedspbase, queries are run. The front-end
updates and uses server speed estimates to do query placemen

In practice, the network setup phase runs infrequentlsipbswith periodic input from the query
execution phase. Thus, the estimates of the phase are iticpramuch less accurate than those of the
query execution phase. However, the network allocatiorrésalts in the network setup phase influences
the choices available to the front-end in the second phase.

Our simulations model this imperfect knowledge using ttdierent scenarios. First, we assume
server speeds never change, such that network allocatibe first phase remains “perfect” throughout
the experiment. This gives an upper bound for performangeisbvery difficult to achieve in practice
due to load the system cannot control (e.g, other virtualhimas running on the same box, periodic
background OS tasks, or even memory cache self-interferfeom the query application).

The other extreme scenario is where estimates are useleasdeethe background load changes
very frequently. In this case the network is setup assumingeavers have equal performance. This

scenario gives a lower bound for query performance.

Query Delays (ms)

6.1. Query Delay 76

Unknown Server Speeds

4096 10 o ‘ -
A Awal SW .
: REER: .
- 1571 $. e
s . l a p.< . DY
. - .0 . 9 6 L ROAR . .‘.) . ;.. 4
* . * 4 r : :‘-"."q '.-I E! i
64 '.'o .'-'.'.'.“%' ° * % 5 & il Y d‘:L’-' Lzl #‘,;#;-ﬂ#:ﬁ‘*#&r?&%% *1"'#
D T < 4f ﬁ;&»ﬁ*mwﬁ ﬁ"‘t: tall i
16+ PTN e ey O3 §A,' Y U]
2 =
e, PTN
4 ! ! ! ! l ! ! ! !
0 100 200 300 400 500 O 100 200 300 400 500
P p

Estimated Server Speeds, 50% accuracy

3
m
= | BaspW
2 b=
z]
3
> 1 &
g 815
o 1 ;
1
300 400 500 0 100 200 300 400 500
p p
Known Server Speeds
4096 w 3
) —
£1024 ¢ | B 25 W
2 =
© 256 i 8.
8 D 2 b |
> 64 1& o
g © ROAR ‘ IEPE T
g P o et it podi o]
& 16 T amt
4 : : : ‘ 1k > ‘ : :
0 100 200 300 400 500 0 100 200 300 400 500
p p

Figure 6.1: Basic Delay Comparison for SW, PTN and ROAR

To understand how things evolve between perfect and zerwlkdge, in our third scenario we
introduce error into the first phase server speed estimiid¢isese experiments, if real server speed is

objects/s the system will use an estimate chosen uniforndyrandomly in, %I

For the three scenarios we first plot the absolute query delaya function op in the top part of

Figure[G.1. In the bottom part we plot these relative to thtinegl described in the previous section.

In the “perfect” case, PTN and ROAR have qualitatively simpperformance and are close to the
optimal. PTN is on average 15% slower than the optimal. As aeetpointed out in Chapt&t 3, the
optimal solution is impractical and requires substangaler movement to maintain the optimal delays.

PTN provides good performance with a much simpler structure

ROAR is 53% slower than the optimal on average, and 33% wdizge PTN on average; this a

fundamental limitation inherited from SW, where freedongirery placement is limited. Adding more

6.1. Query Delay 77

parameter Range Default Value
n 50 to 1000 100
D lton/2 -
Speed estimation errgr 0to 100 0, 50, Infinity
cpu uniform, 1x to 128x variationn 8x variation
load 10% to 99% 30%

Table 6.1: Simulation Parameters

rings does improve latency, but also reduces the flexitiigefits of ROAR.

SW has significantly worse delays, up to ten times the optiovedr bound for small values of.
Further, for large values of SW does not cope with the load. Whgigrows the number of sub-queries
per node increases, and less powerful nodes will be forcathtmore sub-queries. Some of these nodes
will become overloaded, and build an infinite queue of quetgeservice. As SW does not take server
speeds into account when creating the network, its perfoces identical for all three scenarios.

Moving to the worst case where server speed estimates armwnk we get an entirely different
outcome for PTN. PTN does better than ROAR for small values, dut becomes increasingly over-
loaded wherp nears 250. At this point, some clusters will contain one &sser than the other ones,
asp does not divide:. Whenp is in the 250-333 range, some clusters will have 3 servessame 4
servers. The servers in the smaller clusters service 33% tnad. Wherp > 333, the imbalance be-
comes 50%. This effect is compounded with random allocatafrservers in clusters: when, by chance
a small cluster has only slow servers, they just can't copile thie load.

In comparison, ROAR delays increase to four times the optiima is more robust than PTN:
increasing always decreases delay with ROAR. Like SW, ROAR evenly lidamuery load across all
servers, regardless pf so it avoids the first problem PTN faces. Like PTN, ROAR dffeetter choice
between existing servers, so it always performs stricttyeln¢éhan SW. At this load level, ROAR sees no
performance degradation psncreases.

The middle plots in FigurEZ®8.1 show algorithm performancemkerver speed estimates are in-
acurrate. Both PTN and ROAR performance are within a fadttwo of optimal. PTN still outperforms
ROAR, but the gap is smaller (only 15%).

We have examined the impact of server estimates on query delgreater detail, with results
presented in the next sections. Overall, ROAR does bettér waccurate information, for reasons
explained above. We expect ROAR and PTN performance to beaable in practice, where server

speeds cannot be accurately predicted.

Parameter Exploration. To gain a deeper understanding of the performance diffesebetween the
algorithms we vary, p, load, server speed estimation accuracy, and CPU (the distitofiprocessing
capacity of the servers). We run the same experiments agalbbe parameter space is quite large, so a
complete exploration is very difficult. To make the analysistable, we choose default values for each

parameter (see Talle®b.1), and vary a small number of fresrpers.

6.1. Query Delay 78

Unknown Server Speeds Estimated Server Speeds, 50% accuracy

40 : ‘ 5 ‘ 2 : ‘
= PTN —— S PTN ——
£ 35/ROAR & 1.9 [ROAR & =
8 30} SW O 181
S) s
2 2571 L 1.7+]
3 20r P ——— 16l 0 o
g 5 — 1 ' P
§ 10] 15} -
o s¢ 144~

Y S — @ S & ¢
00— : : : 1.3— : : :
64 128 256 512 1024 64 128 256 512 1024
Number of servers Number of servers

Known Server Speeds

1.55 — : : :

15l PTN 4
S TROAR @ -

145}

14 ¢ e

135}
1.3 7

125}
12t]

T R —
11 ‘

64 128 256 512 1024
Number of servers

Figure 6.2: Variation of Query Delay with N

Vary n. We vary the number of servers from 50 to 1000. We report theageedelay increase compared
to the optimal as a function of in Figure[G.2.

A first observation is that the shape of the delay curve as etifumof p is similar across different
network sizes; hence we can only report average delays,psed to exact query delays as a function
of p. Further, this allows us to use smaller networks when rupeiperiments to get similar results,
while significantly reducing simulation time.

PTN with perfect knowledge does 15% worse than optimal,nigas of network size. ROAR does
progressively worse as the network grows, but the slopegarithmic and quite gentle.

With innacurate information, both ROAR and PTN struggletarimre; the increase in query delay
is still logarithmic with the network size, but is a bit gesitfor PTN.

When the speeds are unknown, ROAR performs the best for ampriesize. PTN performs much

worse in general, being 20 times slower than optimal. Asgef®W is worst of all.

Varying Load. In our next experiment we vary the utilisation from 10% to 99%nning experiments
for a network with 100 servers. We plot query delays relatiivéhe optimal, as well as the number of
times the algorithm was overloaded, out of the 50 runs (ttseoee run for each each valuefrom 1
ton/2).

SW quickly becomes overloaded; at 30% load it cannot copk thi¢ load for a quarter of the
values ofp. Again, we only show the SW curve on the first graph to help abdity. SW has the same

performance across all test scenarios.

6.1. Query Delay 79

Unknown Server Speeds

5 o "PTN e = v —— P
455 ROAR - #- 1 40 [ROAR @ G0 o @
SW e 1= SW o i
2 as| - ¢ A
© 9 g {
[a) 3r 2 20t /
+— = | ‘© Iy
25 “, (i 10l ﬁ
21 &7] // i
L 2 /
15— 1) ARG GE——
0.10.2030405060.70809 1 0.102030405060.70809 1
Load Load
Estimated Server Speeds
5 — 50 —— — ‘
PTN —+— PTN —+—
4.5 '/ROAR - #- T 1 ROAR - #--
/ = 407 1
4+] S
‘ /
> 357 3 30} /!
© /
8 il g /
E L /
25+t = 20
21 e] 10 /
15 1!—:4-:—*4-~+f:—»—* 1 / /
77777 S
1 s 0 * o o ot
0.10.2030405060.70809 1 0.102030405060.70809 1
Load Load
Known Server Speeds
3 L 50 —
PTN —+— PTN —+—
ROAR —#-— ROAR ~—#-—
~ 40+
2.5 c
3
> 4 O 30¢
o) 2 / o
[a)] / = 20 +
g
15+ /]
R S e e 10t
+ «-»0'/%’
1 —— 0 00—t
0.10.2030405060.70809 1 0.102030405060.70809 1
Load Load

Figure 6.3: Variation of Query Delay with Load

In the case where server speeds are unknown, PTN is oved@a86% load. ROAR can cope with
load up to 60%, being much more robust. As server speedsastinncrease in accuracy, PTN does
a lot better, coping with loads of up to 60% for imperfectmsties, and 90% for perfect estimates. In
contrast, ROAR has better performance for imperfect eséimyand similar performance when estimates

are perfect.

6.1. Query Delay 80

Across all scenarios and nearly all load levels, ROAR eitlogres with the load or is overloaded
for a small subset of the possible partitioning levels. WR&iN is overloaded for a given configuration,
it tends to be overloaded for many of the possible partitignévels. Overall, ROAR can be used for a

wider range of operating regimes.

Varying CPU capacity. We model server speeds by setting a lower and upper boundgleoabing
values for individual nodes from a uniform distribution. élhatio between the lower and the upper
bound is meant to capture the age difference of the serversgwaer servers are always faster, and
servers have a finite lifetime of a few years (three yearsraaog to Greenberg et al. in_[GHMP09]).
Let us take an example: assuming Moore’s Law holds and asguenserver lifetime of three years, the
ratio between the speeds of the newest and the oldest seragnmost eight.

We vary the difference between the minimum and maximum spestarting frommininimum =
mazximum and increase maximum untilt - mininimum (which corresponds to a six year period of
adding servers). Query delays are presented ifElh. 6.4.

When the network is unoptimized, query delays increasatigavith the age difference between
servers. This is to be expected, as weaker servers will tadgr@ssively more time to finish their tasks.

Using speed estimates to setup the network completely esahg shape of the curve. Surprisingly,
the difference between PTN, ROAR and optimal quickly reachmaximum. The default value we use
for all other experimentsiaxz/min = 8) is already on the flat part of the curve.

The reason for this flatness is simple: as enough serversi@gowerful enough, they will be able
to service most of the queries. Both ROAR and PTN are able ¢athesse servers; having an overall
perfect allocation is less important, as the other servérdermostly idle. As load increases, the flat

part of the delay curve moves to the right.

Varying the setup phase’s server speed estimation erroit is very important to understand how the
algorithms behave with different quality server speedwestes. The extremes of perfect knowledge or
no knowledge are unlikely to be of relevance in reality; samere in between these two will be the real
operating point of the algorithms.

We vary the estimation error from 0 to 99%: if estimation eisce, the network setup phase will
use an estimate of server speedandomly chosen in the intervll — e)z, (1 + e)z]. The delays of
PTN and ROAR are plotted in Fif_%.5.

The shape of the curve is not surprising, given the data peiathave already observed in our other
experiments: ROAR deals better with uncertainty than PTdesits query delays degrade more slowly
as uncertainty grows.

To have a ground truth comparison between ROAR and PTN wetndatw what the estimation
errors will be in practice. However, these numbers willlljidee different for different deployed systems,
due to a different mix of background load competing with thgoethm, and may depend even on the
exact type of search application being executed. In theahtthis graph tells us is that ROAR might be
able to cope better with unpredictable server performambih will make it preferable for deployment

scenarios where background load cannot be controlled.

6.1. Query Delay 81
Unknown Server Speeds

2:;; I S = ——
) / ROAR &
26 1 = 407 gw o o
2.4 ¢ g 1 5 &
> 22 TR 8 30}
o 2 ¢ o
0 18} /) 12 20¢ A
| o | 'Lc‘E L ~—
' PTN —— | 10]
ROAR —&— |
‘ : _SW o 0 * * * O
1 2 4 8 16 32 64 1 2 4 8 16 32 64
CPU Difference CPU Difference
Estimated Server Speeds
3 PTN —— -
ROAR & ROAR &
= 407
25+t 1 c
>
> 8 30}
© 2 o
[a) =) 20t
. g
L S SR S S N &
15) / 4 10
1‘”‘;7/ e 0 R
1 2 4 8 16 32 64 1 2 4 8 16 32 64
CPU Difference CPU Difference
Known Server Speeds
3 PTN —— MR-
ROAR - ROAR —#-—
~ 407
25+ c
>
> 8 30}
k9] 2 o
o = 20}
N
15+t
O Y R S 2 4 10
i
1¢— : : : : 0 > > * > >
1 2 4 8 16 32 64 1 2 4 8 16 32 64
CPU Difference CPU Difference

Figure 6.4: Variation of Query Delay with Server Heteroggne

6.1.3 Query Delay Comparison whemg > p

Our previous experiments all assumed that each query isisplithe smallest possible number of sub-
queries, given the current replication level (i.e, = p). For efficiency reasons, it may be possible
to run the system at smaller valuesofvhile providing query delay below the maximum threshold.
However, absolute query delay directly depends on load hsot$ived load fluctuations around the

mean might cause the algorithms to miss the delay targetsmwlly. In such cases, a good approach

is to temporarily increasg, to reduce query delay.

To examine this effect, we setup a 100 server network witlstzomp = 10, and varyp, from 10
to 50. We plot the absolute query delays in Hig. 6]6(a). Treshk of the delay curves for ROAR and

SW are similar to the ones in the previous section, where wied/a.

A surprising finding is PTN'’s performance: the query delagvethas steps of length 10 (the value

6.1. Query Delay 82

1.9 , . .

PTN —
1.8 [ROAR & I
1.7 ¢ /*

16+
15+
1.4
13
12+
11

Delay

1 2 4 8 16 32 64 128
Estimation Uncertainty

Figure 6.5: Algorithm Performance with Different Servere8d Estimation Errors

2048

1354

%2 T © T
) + SW + £ PTN —+—
g 1024 + ROAR ¢ B 13+ ‘ ROAR &
+
> 512+ PTN © 125/
Q + ’
S 256 = 12} e
3 T I
% 128 F % i1.15—m—-—— 47
© x 11}
g 64 > :
32 8 1.05¢
1 L L L
0 1 2 3 4
Sub-queries Split
(a) Varyingpq from 10 to 50 (p=10) (b) Small increase ipg for ROAR only

Figure 6.6: Increasingg and its effects on the algorithms

of p). Because of these, PTN’s delay is worse than ROAR'’s for mb#te time. The explanation is
straightforward: PTN sets up 10 clusters, and it only besi&fitm increasing, when it can split the
sub-query destined for each of these clusters. Hence, tierpance is best whep dividesp,, and
gets progressively worse when it does not. In contrast, R@ARSW are much more flexible in query

partitioning, and can effectively split using any valuepgf

As ROAR is so good at dealing with arbitrapy, a natural question arises: can we effectively use
this ability to reduce query delays? Rather than splittirguary intop, > p sub-queries, we take a
different approach: we split intp sub-queries, and then split again the sub-query that wauikhflast.
We repeat this step a small number of times.

The delays of ROAR and PTN (used as a baseline) are presentéd.[6.6(F). By increasing
pq by 2, query delays for ROAR decrease to 20% of optimal, be&ry ¢lose to PTN'’s performance.
Further increasing, bring more benefits, but also increases costs due to morguseres, and may be
undesirable. This result is very useful in practice: sélebt splitting the sub-query that would finish

last basically aligns ROAR'’s query delays to those of PTN.

Note that all the experiments in this section were run assgmérfect knowledge of server speeds;

the results are qualitatively similar for imperfect knodge. We omit these results for conciseness of

6.1. Query Delay 83

ROAR [
MultRing+FPropRanges
RangeAdjust+FPropRanges
MultRing+RangeAdjust
FropRanges

MultRing

RangeAdjust

W

1L

=]

0.5 1 1.5 2 2.5 3

Figure 6.7: Effects of ROAR Mechanisms on Performance

presentation.

6.1.4 Analysis of ROAR Mechanisms

ROAR includes a few mechanisms that differentiate it from: SW

e Assigning server ranges proportional to processing speeid mainly intended for better load
balancing, but also reduces query delays as more powerfigrsecan run more queries. This
mechanism uses estimates of server speeds, and its edfezsiyis directly related to the estima-

tion accuracy.

e Using multiple rings gives ROAR the power of two choices for scheduling querieschjuery
can choose a configuration of servers oudf'r possible, whereas SW only haspossible

configurations to choose from.

o Adjustment of sub-query rangesruns after the scheduler has assigned each sub-querypattem

ing to move work away from the most loaded node.

Together, these mechanisms make ROAR delay performancparable to PTN, and orders of
magnitude better than SW. It is equally interesting to tegset these end-to-end numbers, to understand
how each mechanism contributes to overall performance.

We use our default setup to run experiments using all passitinbinations of mechanisms. We
run basic SW, each mechanism enabled on its own, then allioatidns of two mechanisms, and finally
all three mechanisms.

The results are presented in Figlirel 6.7, with query delagsive to ROAR. The delay for SW
cannot be rigorously calculated, as SW is overloaded foresamtues ofp. The bar is there to provide a
baseline, albeit a hypothetical one.

Each of the mechanisms individually solves the overloadller, and reduces average query delay.

The biggest impact is due to Proportional Ranges. MultipfgR provide similar benefits, while Range

6.2. Fault Tolerance 84

Adjustment is not as effective. The results for Range Adjestt are surprisingly good, considering it is
just a local O(1) heuristic that softens the peak of subgdelays.

The performance of Proportional Ranges is also surprigiggbd; however it will not be as good
in practice. The experiments we ran assume perfect infeoman server speeds; our earlier experi-
ments have shown how imperfect information affects thequarnce of ROAR, and indirectly, of the
Proportional Ranges mechanism.

Taken pairwise, the mechanisms incur progressively lovedayd. The best combination, as ex-
pected, is Proportional Ranges and Multiple Rings. Finallithree mechanisms work together harmo-
niously in ROAR, giving the overall best performance.

These results are not necessarily surprising: Range Adgrgtruns last and never makes things
worse. It strictly increases performance in any configoratso it should function well with any other
optimisations. Multiple Rings literally takes a single RRAing and splits it in two, bringing very little
overhead yet providing two possibilities for placing eaab-gjuery. Proportional ranges complements
multiple rings, as it applies to each individual ring. Tha@ssgy and increased benefits come from their
combination. If any of the mechanisms mis-functions (agpPrtional Ranges does with incomplete

information), the other mechanisms keep performance a gels.

6.2 Fault Tolerance

Data center algorithms rely on stable populations of seri@perform their tasks. This is in stark con-
trast with larger scale peer-to-peer search algorithrke @iubbleStorm[[TKLBOI/]) where high server
churn is the norm, and needs to be taken into account in #hgodesign. In ROAR stable server popu-
lations allow optimisations like proportional ranges torlyaand the single administration allows using
a centralised membership server.

Nevertheless, servers fail even in data centers. The higaeumber of servers used, the higher the
overall probability that at least one or a few servers hailedat any point in time. We want to compare
PTN and ROAR fault tolerance, and a useful starting poinhédtudy of Yu et al. on availability of
multi-object operations [YGNO6].

Yu et al. study three classes of algorithms - SW, RAND and PaNd two classes of applications
requiring either all objects (strict operations) or a fratof objects (loose operations) to be read. They
find that for strict operations PTN gives best availabiltyth SW second and RAND third. For loose
operations, the order is reversed, with RAND best, SW seemddPTN third. The main insight is that
PTN attempts to maximise inter-object correlation, byisthe same groups of objects onto different
machines, and that is why it gives best availability whenoéifects are required. RAND does the
opposite, randomly placing replicas on machines, thusmiging inter-object correlation; RAND does
better when operations are loose.

RAND is not feasible to use for distributed rendezvous oji@na because of increased costs in
storage and/or queries. We focus the analysis on SW, PTN @4d®Rand restrict our analysis to the
more demanding strict operations.

We fix r = 3 (p = 34) and use our default setup with 100 servers and 8x CPU diféerbetween

6.2. Fault Tolerance 85

100

: : 5 : :
PTN —+— @ PTN —+—
— ROAR —&— I — ROAR —&—
g 87 sw oo S 4
£ 60} B £ 3|
Q 3
8 @ 8 o
s 40 1 , g 2} P
c c p e
5 20 s = S
e) —¥
0 V'S - e./:::::*/ ,)) 0 %‘) ‘w))
0 5 10 15 20 25 30 0 2 4 6 8 10
Failure Probability (%) Failure Probability (%)

Figure 6.8: Algorithm Unavailability Comparison for Stri©perations

servers. Each experiment selects a server failure pratyadnild runs many iterations, in each iteration
randomly failing servers across the network. It then schesdane query wittp, = 100 and checks
to see if all sub-queries were successfully scheduled; ifisavailability is 0%. Otherwise, if there are
sub-queries that can not be executed, unavailability i$4fa0 that configuration. We report the average
unavailability across the 1000 experiments.

ROAR stores a few more replicas than PTN and SW, because tfaitveding up” effect of object
range intersection with server ranges. The net increaseaverage 0.5 replicas per object, and it does
not really matter unlessis small. For these experiments, however, this differem@sdnatter. To make
the unavailability analysis fair we run ROAR wigh= 40 instead ofp = 34. This makes the average
replication rate the same for all algorithms.

Unavailability as a function of failure rate is presente&igurd6.8. In the left-hand side plot failure
rates grow up to 30%, and consequently unavailability iases significantly for all the algorithms. The
results confirm Yu et al.’s study, showing that PTN gives mhbetier availability for strict operations.
From a fault tolerance perspective, ROAR'’s multiple ringgmit behave like a hybrid between SW and
PTN. ROAR has worse availability than PTN, and much bettailahility than SW.

The data points for more than 10% loss rate are useful to gsights into the fundamental algo-
rithm behaviour, but are not realistic failure rates forade¢nters. In particular, annual disk failure rates
are around 3% [([SGD7]), so the weekly average number ofrégslis very small (a week seems to be
the upper bound to getting servers/disks replaced in cudaa centers). From this perspective, all the
algorithms have perfect availability, so the comparisadrrédevant in practice.

In the right hand side plot of Figufe 6.8 we zoom in on the tssualthe 0%-10% failure rate, and
only compare PTN and ROAR. ROAR has 1% unavailability for B#ufes and 5% for 10% failures. In
comparison PTN unavailability is 0% and 2% respectivelyweer, the random server failures model
assumes there are no correlated failures.

Another noteworthy point to consider are switch failuresatdcenters typically have three tiers
of switches, and switches at aggregation and core levelypieally redundant, as multiple paths exist
between any source-destination pair in the network JAFINGBL 09 ,[Gre0B]. Hence, failures of these

switches will typically mean no servers are disconnectewedver less overall throughput is available.

6.3. Changing the/r tradeoff 86

PTN SW ROAR
Store Object r r r2>2
Execute Query| p P p
Increasep ﬁ 0 0
Decrease ey =y B ey
Increaser ~ 2D D D
Decrease ~D 0 0

Table 6.2: Bandwidth consumption comparison (messagesgazation)

Top-of-rack (ToR) switch failures are a different story. tpical scenarios there is no redundancy, so
a single switch failure can take-out 20 to 40 servers. In &)ig¥rver network, these correspond to
2%-4% of servers failing. ToR switch failures are a valid cam and will cause large-scale failures
and disruption for all algorithms. Possible solutions intg replicating the data more, or doubling the

number of ToR switches and multihoming each server to two §wiches.

6.3 Changing thep/r tradeoff

To get a full comparison of the algorithms, we must undexstaow good they are at changipgat
runtime. We first focus on the issue of how much bandwidth eddhe algorithms consumes when
performing their various operations; TablI€l6.2 lists thebar of messages sent per operation. The costs
shown in the first two rows of the table, concerning storingeots and executing queries, are obvious
from the algorithms. It is worth noting that the cost for exéng queries is a lower bound corresponding
to the case when queries are sent to exacHgrvers.

Let D be the total aggregate size of the unique objects. When alapdTN incurs the highest
overhead. The calculations are simple and fall through fiteerway PTN operates. PTN increagdsy
removing% objects from existing clusters and replicating them on a aester containing roughly
n/(p+ 1) servers (which preserves load balancing). Whéxdecremented the same reasoning applies:
first objects from the cluster to be destroyed are stored exigiing clusters, and then the servers join
the remaining clusters, storing all the objects in thosstels.

We also list the amortised bandwidth cost to increment&leent-, computed as the cost to incre-
ment/decrement divided by the change in this brings. Note that in reality it is not always possible to
increment or decrement step changes in may change by much more than 1. However, this exercise
helps us understand better how close to the optimal theseithlopns come. Both SW and ROAR copy
less data when changing(and thus-), and are optimal from this point of view. PTN is suboptimial:

copiesD more data when both incrementing and decrementing

Convergence TimeWe now turn to convergence time, which we define as the time fndhen the
algorithm decides to changeto when the algorithm finishes copying the necessary replicarder to
ensure routing correctness.

SW and ROAR equally spread the copying of new objects acrbsemers (assuming roughly
equal ranges). PTN, however, places more load on some seWWéerp is decreased (and thus a cluster

is destroyed), the servers from this cluster join a new elustere, each server needs to cafiythe data

6.4. Comparison Conclusions 87

in the new cluster, roughl/p — 1. In comparison, in SW each server only needs to cbpy(p — 1).
This means that the time required to copy the data neededatteats for PTN isp times larger than in
SW.

To understand if this matters, we analyse two simple sces.afissume Google wishes to decrease
p; reports place ~ 1000 [Ded], and each machine stores 2GB of data (so the wholeaddasa® =
2TB). It follows that each node will have to copy roughly 2GB evhit joins the new cluster. This
takes roughly 20 seconds on gigabit links. In contrast,ithe heeded by SW and ROAR is 1000 times
smaller, namely 20 milliseconds.

A high-volume storage application would store on each sezmeugh data to fill a sizeable portion
of its hard drive, say 100GB at least. Let us assume the dasastll 27'B in size, and thup = 20.
To decrease, PTN needs to copy roughly 100GB, which would take 20 minotea gigabit link; the

same would take a single minute for SW or ROAR.

Distributed State. The fact that servers have equal roles in changiingSW and ROAR also reduces
the complexity needed to implement the change. Essentihliyng the change all servers are in either
statep or p — 1, and can be used as soon as they switch. The schedulingthiga®amlessly operates
in this transient state, and the costs are almost negligiblere is no need to distributedly agree on
what the state of the system is. This has implications fonteenbership and front-end servers for PTN,
which must be tightly synchronised. First, the servers mgste on which cluster should be destroyed,
which requires running a distributed coordination aldoritlike Paxos[[LamU1].

Secondly, let us consider how servers actually switch betvedusters. They will first copy all the
data needed in their new cluster, switch to the new clustémfoyming the scheduling servers, and drop
the data in the old clustevwwhendoes this switch happen? One strategy is to switch as soavsaibfe,

i.e. when the data has been copied; this would create a het#eon the cluster to be destroyed, as the
same number of queries would be handled by fewer serverdielworst case, a single server is left

to handle all the load of the cluster. To avoid this situatismme queries for the old cluster could be

redirected to remaining clusters, as these also store #tat @his temporarily increases the load of the
old clusters, which now serve the whole dataBenstead ofD(p — 1) /p.

Thus, to reduce capacity loss during the change, the basthaaems to be to switch all the servers
from the old cluster to their new clusters at once. This agaguires distributed coordination and appears

difficult to get right at large scales.

6.4 Comparison Conclusions

PTN has better availability at high failure rates and befteary delays when server speed can be perfectly
estimated. In data centers, however, failure rates aréyrial. Additionally, server speed is very
difficult to estimate perfectly—as we will also show in oupeximents.

In realistic scenarios PTN and ROAR offer comparable detad/tdgh availability. The key benefit
of ROAR is that it allows more flexibility. ROAR systems carewssnall increases tg, to gain immediate

benefits in query delay; PTN is more sluggish to respond th sureases, gs, needs to be a multiple

6.4. Comparison Conclusions 88

of p to get benefits. ROAR changes the ratio betwgamdr seamlessly and with optimal bandwidth
consumption, while PTN unequally loads servers during thenge and transfers significantly more
bytes. SW'’s performance is far inferior in all respects.

Can we use this flexibility for end-to-end performance iases, and cost decreases? We answer

this question positively in our experimental evaluatioCimaptefl .

Chapter 7

Experimental Evaluation

To evaluate ROAR we built PPS on top of ROAR and deployed tlséesy on 50 servers on the Hen
testbed at UCL and on the Amazon Elastic Compute Cloud. Maisiation has three major goals. First,
we wish to see how impacts the properties of the system, including the avegagey delay, throughput,
and utilization. This gives insight into the types of valdlest are appropriate fgrin practice, and will
tell us whether changing has any sizable impact.

Second, we wish to evaluate ROAR. How does throughput and/gietay scale with the number
of nodes involved in the search? How easy is it to chgngeruntime? How does ROAR cope with
failures? Is the frontend a scaling bottleneck? How wellldolbad balancing mechanisms work?

Third, we complete the evaluation with a head-to-head detemparison of ROAR and PTN. We
want to know how the two algorithms compare in realistic gbods, with inherent delay variability
due to OS runtimes and changing network conditions. In tloegss we will also cross-validate the

simulation results and gain insights into the predictapdf runtimes in real systems.

7.1 Experimental Setup

We implemented ROAR in Java. The implementation has apprabely 8 thousand lines of code (LOC),
including code for the ROAR servers (5,000 LOC), the mentliprserver (600 LOC) and the frontend
query manager (1,500 LOC).

We mainly used the Hen testbed at UCL to test ROAR. The testbathins approximately 100
net-booted servers from various vendors and purchaseffextedhit times. This heterogeneity helps our
evaluation, providing a realistic distribution of serverfprmance. TablE.1 provides a summary of the
models used in the experiments.

The Hen testbed is used by many researchers concurrentfyeath machine being exclusively
used by one user at a time, hence we were not able to use allatigimes simulatenously. Our exper-
iments were run on approxiamtely half of the machines whiehaaquired for relatively short periods
of time (one to a few days). The set of machines we used chasayesfantly with each different exper-
iment, providing confidence that the obtained results ateanartefact of the experimental setup. To
evaluate ROAR at scale we briefly rented out 1000 servers Aorazon'’s Elastic Compute Cloud and

ran experiments. Our findings are presented in SeEfidn 7.7.

7.2. The Application 90

Vendor Model Processor(s) Memory | Disk
Sun X4100 AMD Opteron 248 2GB SEAGATE
@2GHz ST973401LSUN72G
Dell PowerEdge 1850 Intel Xeon @3.00GHz 2GB SEAGATE ST373207LC

Dell PowerEdge 1950 2 dual-core Intel Xeon 2GB MAXTOR ATLAS10K5
5150 @2.66GHz
Dell PowerEdge 2950 2 quad-core Intel Xeon 8GB DELL PERC 5/i
X5355 @2.66GHz

Table 7.1: Server Models Used in Experimental Evaluation

7.2 The Application

Ideally we would have liked to evaluate ROAR using a fullskloweb search application distributed

across thousands of servers, as this is the most widely ustithdted rendezvous application.

Unsurprisingly though, such large-scale search engiresarfreely available for experimentation.
We considered implementing a miniature search engine ttamhall scale the query setup costs tend to
dominate the query times, so the results would not be so mgfni In the end we decided that to run a
small scale experiment but still see meaningful resultsneeded a more difficult matching application,
where the matching costs would be comparatively large. @ndcipplication still benefits significantly

from being parallelized on the scales we can achieve on etbyad.

The application we chose to stress ROAR is Privacy PresgiSagarch and was extensively dis-
cussed in chapté€l 5. In PPS, users each have many files (penh#épe order of millions) for which they
provide searchable metadata, and PPS’s job is to answeegf@rthat data. To create metadata for our
tests we used the files from a Linux filesystem. The test gsi@sed randomly chosen keywords. From

a usability point of view, we impose a delay bound of one sddbat the PPS system must meet.

We do not claim that PPS is an “optimal” application in any wayt merely note that real-world
search applications also vary considerably in their ratfixed to variable costs, as do the two versions
of PPS we used: low memory (PR3) and low cpu (PPI.C). For example, Google’'s web search
runs from memory, and has relatively low fixed costs becallsesars search the same web index. In
contrast, with Google’s Gmail, queries from different sebviously have to search different indexes.
It does not make sense to store all such indexes in memorylfosers. Loading a file from disk has
a large seek/rotate latency followed by a fast consecuéigd phase, so has a comparatively high fixed

cost.

As atest application PPS shares the main properties wittseaizh. The mechanisms are different,
but the average cost of matching in both cases has a largeccenfthat grows linearly with the number
of documents searched, although PPS search costs are pesgldat on the contents of the query. Both
applications are bottlenecked on CPU cycles or disk banttiwithe different versions of PPS have quite

different fixed costs, as we would also expect when compaegglar web search with webmail search.

7.3. Basic Tradeoff

Query Delay Variation with p

6 T T T T T T
PPS_LM2qgls —— i
PPS_LM 6 gfs 120
St PPS LM 10q/s =+ |
= : ' Target Delay _ 100
2 4 ;' :_.f i Qﬁ
< e 5 80
[} 3L ¢ | g
> - 60
g)
S 2t , o
o ®) 40
!) 20
0 0

5 10 15 20 25 30 35 40 45 50
p

91

CPU Load Variation with p

PPS LM 2 g/ls ——
PPS_LM 6 g/s -
PPS_LM 10 g/s e

Tt

/

10 20 30 40 50
p

Figure 7.1: Effect op on system performance with PR3

Query Delay Variation with p

6 ‘ ‘ '] T T
PPS_LC2q/s —=— 7
PPS_LC 6 qls = 120
> PPS_LC 10 g/s =
O Target Delay 100
2 41 7 -
g S 80
5 ©
a 3¢ | ;-
> t :
g 2 o | 5
o o.. = 40
1 | 20
i 0
5 10 15 20 25 30 35 40 45 50

p

CPU Load Variation with p

PPS_LC2q/s —s—
PPS_LC 6 g/s &
PPS LC10q/s o

R BN - ER—-
- :za o S e 5 |
L e & " o |

p

Figure 7.2: Effect op on system performance with PRE

7.3 Basic Tradeoff

To examine how impacts query delay and throughput we used a dataset of di@rfiles. From these

we created an encrypted metadata index consisting of 30delpmper file, plus some other metadata, We

distributed this index to our 50 testbed servers, and sedrithwith queries consisting of two randomly

chosen keywords that must both match for the file to match.l&\this is a slightly artificial workload,

the precise contents being searched are not terribly relegadistributed rendezvous is content-agnostic.

Our initial setup used mostly the slow servers (X4100 and D&b0), and ran from the buffer

cache. For PPS, it is unlikely that user data will be in memuingn a query arrives, so loading from

disk is very likely. However, hard disk drives are being emgld with solid state drives in enterprise

deployments, as these offer significantly more performdhnae state of the art hard drives. Any PPS

deployment will likely use solid state drives, thus perfarme numbers from disk-bound systems will

not be representative. To “simulate” faster disks we ratiedhe OS buffer cache.

To allow a single server to searchits part of the index in @eesd, we started with a valuepf= 5,

7.3. Basic Tradeoff 92

p=10

? 100 T T T T T T T
S 80
@ 60§
o
4 40 55 SV
Z 20| 1
O O 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

Time (s) Time (s)
Figure 7.3: Average CPU load for each node

the smallest value that has any hope of meeting our targethsédency. From here, we progressively
increasea all the way up to the largest possible value of 47, at whicmipevery server is processing
1/47 of every request. For each valuepofwe tried workloads from two queries per second up to ten

queries per second; these corresponded to light, modaratdyeavy workloads.

7.3.1 Query Latencies Decrease with p
The results are shown in Figuiesl7.1 7.2 for PRBand PPSLC respectively. Atlow and moderate

load, query latency scales inversely proportional,tas we would hope, and is similar for both versions
of PPS. It is clear that to achieve a target latency we needvejhgreater than a particular threshold.
However, this threshold is not fixed, but depends on the effémad. This should not be a surprise: a
query cannot complete until all its sub-queries completgere is inevitably some short-term variation
in the loads on the different machines, so some sub-quesatetayed.

The heavy workload is sustainable at anpy the LC version, and shows a similar slope to the
other workloads. However, average delay for LM decreaséally, then increases gs = 20. This
is because nodes are close to saturation at this point, ansinaall variation in query arrivals induces
longer delays. If we increagefurther, LM saturates some nodes and cannot cope with tltk [Dlais

example serves to show that fixed overheads decrease themomaxhroughput whep increases.

7.3.2 Query Overheads Increase with p
The same figures (right hand plots) show mean CPU load (asumezbly the “top” utility) for varying
values ofp and for each of the workloads. The error-bars show the stdraiviation. The trend is
clear: CPU utilization increases with For the low memory version, the curves show relative ireesa
of 80% (from 22% to 40%), 54%(from 53% to 85%), for the worldeaof two and six queries per
second respectively. For the LC version, the relative iases are of approximately 10% in both cases.
The differences between the two versions show the overhfead@ frequent garbage collection.

At the highest load, the increase is more modest for LM, bee#ive nodes are saturated. For LC,
the relative increase is 22% (from 67% to 82%).

To see this in more detail, Figurel .3 shows a 20-second geerfaCPU load for all our PREM

servers whemp = 10 andp = 47 with 6 queries per second. When= 10, individual load fluctuates

7.3. Basic Tradeoff 93

Model | PE 2950| PE 1950| PE 1850| Sun X4100
PPSLM 51w 50w 10w W™
PPSLC 18.9W 17W 3W 2W

Table 7.2: Energy Savings runninggat 5 instead ofp = 47

much more as queries come and go. Whes 47 there are few idle times and load is heavily and

constant.

7.3.3 Higher Overheads=Wasted Resources

Our cluster can handle two of these workloads with any vafye but using large values uses enough
extra CPU power to waste considerable energy (Tahle 7.2npacingp = 5 with p = 47, our newer
serverg were measured to consume 18W more with RRSand 50W more with PREM. Our older
serverg have less good CPU power management, so less savings. W thatehe latest Intel Nehalem
CPUs will show even greater savings than those shown.

Scaling up these numbers, if we had a testbed of 47 |lategtrgion servers, the energy gain for
running with a small value gf would range from 0.9KW to 3KW; at current electricity pridéss would
represent increased operating costs of $600 to $2000 per lyea moderately sized data-center with
30000 last-generation servers, the cost increase due teatbhe of p would be between 0.4 and 1.2
million dollars.

Each query requires a disk seek then a read of 250MB of camiigdata. When disk-bound,
increasing not only increases CPU overheads but also increases thefateks to reads, wasting 1/0
bandwidth. The Maxtor 10K V disks in our servers take 7.5mawgrage to seek and transfer data at
73MB/s. Wherp = 5 it takes each server 680ms to sequentially read its pareaddla; whemp = 47 it
takes 80ms. At this point seeks accounts for 10% of the teanisfies. In a disk-bound system using a
higherp could reduce maximum throughput by 10%.

Whenp increases, the workload on each server becomes more fragmnesmaller values of
create longer tasks and, on average, longer idle periodsseTidle periods, if long enougt (1s) could
be exploited to save energy by spinning down hard drivesioddgh this is not feasible for server-class
drives (spin-up/down time is on the order of tens of secaritls) feasible for laptop-class drives (with
spin-up/down times of well under a second). Concretelytlierworkload of 2 queries per second, it
should be possible to spin down the drives for 60% of the tisaging between 6 and 10W per server.
This technique is similar in concept to “write offloading”technique that increases inter request gaps
allowing disks to be spun down for longer periods [NDR0S8].

Finally, the bandwidth required to run a single query insmproportionalﬂ/with p. This does
not create a sizeable impact on energy consumption, butngiiéase usage of the scarce cross-section
bandwidth.

In summary, increasingabove the minimum needed to satisfy the required delay toimcdeases

1Dell PowerEdge 1950 and 2950
2Sun X4100 and Dell 1850
3In our PPS deployment the increase is modest: from 2.5KB kdB2der query

7.4. Changing Dynamically 94
350000 T \
Zero Updates =
__ 300000 r Low Update Rate o g
© High Update Rate «
§ 250000 ’.-.h'.'. ﬁ.-... S .'.'-'.l .'.l.-_ R e e o
LL
=g b * o s L, m e B gg Ho oo
5 200000 Bl i %g“ga%?& S “Lf%ﬂﬂf&ﬁf% N ‘DQE%D?.‘D.@DD{E
£ 150000 f e et e ;
g * * ¢
S 100000 | - . e et e
'E n ’: _— .o
50000 My o - o o . o R . o 0:
[] D‘ - .
0 UL . s s s
0 2 4 6 8 10 12

Time (s)

Figure 7.4: Effect of updates on server throughput

system load. Depending on the workload, very large valugsrmofy reduce the peak throughput that

can be handled, or at the very least waste resources and/energ

7.3.4 Update Overhead Increases with

To see how server throughput (matches/second) is affegtdhtkground updates of the dataset we
created medium (5K updates/sec) and high (20K updatesipeiafe rates. FigufeT.4 shows a single
server's throughput in these conditions in comparison witrupdate load. Unsurprisingly, the higher
the load the bigger the reduction in throughput. For the matddoad, the average drop in throughput is
20%; for the higher load, the drop is even sharper. In apjdioa like PPS, where the data are stored to
disk, this effect needs to be considered when determinidghanging-.

It is worth noting that this effect is not unique to ROAR: wihy distributed rendezvous scheme
the operator needs to consider using a laggdran might otherwise be required if the data replication

costs start to become non-negligible.

7.3.5 Does the trade-off matter?

We have seen that larger valuespajive lower delays but higher system load, so there is a ngtush
of p to the minimum value that achieves the desired query latéfeyhave also seen that higher update
rates, which can result from larger valuesrpfreduce server processing speed; thus there is a push to
minimize r. Taking these two together, it follows that a distributeddezvous system should be run
close to the minimum combination pfandr, that isp - r = n, wheren is the server count. When the
load changes, we will need to reconfiggrandr to match it.

To summarize, minimizing subject to latency constraints seems a sensible goal. Howawall
p implies larger, which, in turn, increases the bandwidth used to replidaechanging dataset and the
update processing load of the servers. Thus the ability hachically change the tradeoff betweeand

p is very useful to ensure that the system runs at a good nemnalpperating point.

7.4 Changingp Dynamically

One of the benefits of ROAR is its ability to repartition oretfty while still serving queries. To inves-

tigate how this works in practice we implemented a simplepéida strategy to changebased on the

7.4. Changing Dynamically 95

50 T T

Values of P ———
o
i
0 .) ‘ ‘
0 50 100 150 200 250
Time(s)
4 ; i '
Query Delay +

| Target Delay —— 4
z
g
[
a

100

90
~ 80
S 70
B 60
= 50
5 4
2 30
@ 20 }

10 |

0 g L

0 50 100 150 200 250
Time(s)

Figure 7.5: ROAR Changing Dynamically

average query latency seen by the front-end servers. Givawerage target delay of one second, the
front-end servers instructed the ROAR servers to agapthe minimum value that still yielded the tar-
get latency (allowing for an error of 10%). Increasjmbad no cost, of course, but to decrease it servers

needed to copy data; this increased their load, so is mareesting.

We ran an experiment with this adaptive strategy startirth wo replication angh = 40, as if the
system had just booted. We loaded the system with a modexatetsrate of six queries per second, and

plotted the behavior of the system as time goes by in Figide 7.

To start with, CPU load is very high and the query delay is tess it needs to be. We see that
ROAR can quickly change with minimal disruption to queries: within minutes averageU load
decreases while query delay stays within acceptable bounds

This same experiment can serve as an example of adaptatifiasio crowds: when load becomes
too high (above some predefined threshold) the system saerifuery latency for lower CPU load.

The strategy of minimizing while maintaining the desired query delay seems sensilgejny
reality many other factors need to be taken into account. cbis¢ of pushing dataset changes out to

nodes gets higher asdecreases, so using larger valueg ofight be desirable. In additiop,might need

7.5. Node Failures 96

CPU Load
g
©
©
o
-
o)
o
O
20) [1
First node failed -----
0 20 nod‘eslfailed ———— X) ;
0 50 100 150 200
Time (s)
Query Delay
2 — T T

| First node failed ----- ‘

! 20 nodes failed -----
0 15+ i i
& |
[i
[a} i
el i
Q i
= i
o L

Time (s)

Figure 7.6: Effects of 20 Node Failures on ROAR

to be increased to reduce the memory strain on each sen@sé@bdms to be a constraint in Google’s
case). Bandwidth utilization depends prioo. In some cases rather complex optimization functions
might be required; in any event, a ROAR system can implententeéquired changes nso long as an

optimization function can be defined that captures the agiegonstraints.

7.5 Node Failures

What is the impact of server failures on ROAR? We are moreésted in short term effects, as in the

long run the load balancing mechanism evens out load aclidbg @ervers (see next section).

To test the impact, we spt= 20, so that- was very small (approximately 2). This reduces ROAR'’s
options for alternative servers to the bare minimum, andbeapresents a worst case for the increase
in load on the remaining nodes caused by a node failure. \WMishsetup, we ran queries at a rate of six
per second, then killed a single server. Query delays resdaioughly the same. We noticed a small
increase in CPU load of roughly 10% for the two neighbors efféiled node. This agrees with our
analytic predictions in Sectidn4.4.

In the second experiment we generated queries at a lowe(Jaqter second) and progressively
killed 20 out of the 47 servers. To maintain correctness, idendt kill consecutive servers because
with such an artificially small value ofthere was not much redundancy. The effect on query delay and
server CPU load is plotted in Figurel.6. The average CPU doathles for most servers, as expected,
though query delays only increase marginally for this woakl. Clearly if the initial workload had been
higher than 50%, this failure would have pushed load abo®&4dénd so query delays would have been

affected. In such a scenario the correct course of actionditban be to decreage as shown in Section

7.6. Load Balancing 97

p=5 p=5,6 p=5,6,7,8,9,10

CPU Load (%)

il 9 o o
40 50 60 70 80 90 0O 10 20 30 40 50 60 70 80 90 0O 10 20 30 40 50 60 70 80 90
Time (s) Time (s) Time (s)

Figure 7.7: Fast Load Balancing witly > p

Fast Load Balancing: Query Delay Histogram

0.7 —
06 e
2 05p & . p=5..10 ~x— 1
g 2]
g 03p Y]
T 02f . N 1
01 x *, |
0 e e RS b S
0 500 1000 1500 2000 2500 3000 3500

Delay (ms)

Figure 7.8: Delay Distribution with Fast Load Balancing whesingp, > p

3.
To summarize, the results show that ROAR handles nodeéailyracefully, and so long as the load

does not exceed 100%, query execution is not disrupted.

7.6 Load Balancing

The previous experiments were conducted with mostly homeges servers. In a data center it is
unlikely that all servers will be equally fast, as machines laought in batches and computing power
increases from one batch to another. To test this effectnataded 15 powerful machines in our testbed
(each server with two quad-core processors). These runatie sillion metadata query four times

faster than our slower servers.

To cope with heterogeneous servers, ROAR implements twbBasancing mechanisms (Section
E8):
e The background process by which ranges migrate.

e A request scheduling mechanism implemented in the frodtiesd balancer.

These run simultaneously, though on different timescales.

The front-end load balancer was not enabled in any of therarpats up to this point, but with
heterogeneous servers it helps significantly. We startatebkervers, assigned them equal ranges, set
p =5 (r ~9), and generated six queries per second. Fifule 7.8 shovasthi®ution of delays when
the front-end load balancer is turned aif-€ 5), when it is allowed one extra subquegy= 5...6), and
when it is allowed to increage, as high as 10 if needed. It is clear that this mechanism istféeat

moving load onto the faster servers.

7.7. Large Scale Deployment 98

500 T T T

T T T T
After Load Balance «
Before Load Balance <
=5 400 E
o
% 300 P O 000 < QOO0 000 4 Q00O O 0000 00000 d
2 .
< . °
£ 200 - o .. .
] o Lot .,
3 e e °° ° * . ‘
100 . . . e . L
o .
° EXS <'><> ° o 8 ° 58200 °

0 5 10 15 20 25 30 35 40 45
Computer Number

Figure 7.9: Range Load Balancing

Figure[Z¥ shows the load on the machines as the load balkracas which machines are fastest.
In thep = 5 graph, we can see a band in CPU load at around 12.5%; thisspormds to the fast servers
which are given similar workload to the slower servers.pAss allowed to increase, this band moves
up, and the upper band (the slow servers) moves down. \Whisrellowed to grow up to 10, sometimes
slow servers are not given any work, simply because all thd tan be processed quicker on the fast
servers. When the load is increased, the slow serversstagttised again.

To test the long-term range load balancing, we started theewith equal ranges and ran one
query per second. The load balancing procedure iterateyg tima@s, evening out ranges between neigh-
bors where the load difference is greater then 1.5.

The results are encouraging: the big range differencesdestweighbors are amortized (HIg17.9).
The zig-zag shape of the resulting load allocation is thecthf the distributed, neighbor-only load bal-
ancing mechanism. The effects of load balancing are cleBigifiZ.I®. This range expansion increases
the effectiveness of the front-end balancer: for light Bbawst servers are not used at all, as the powerful
servers can run all the queries in less time.

Many of these unused servers can actually be put to sleepécesectricity. They do however need
to be updated when they are woken again. One strategy is t@ seake of them periodically for updates

to reduce the wake up time when they are actually needed.

7.7 Large Scale Deployment

Small-scale tests on our testbed show that ROAR works, bulsgewish to see how it scales. ROAR
storesr replicas of each data item, and splits each quemays while ensuring - » = n. This is the
lower bound forall distributed rendezvous algorithms, so we are confidenRB#R’s basic costs scale
well. Simulation indicates that the algorithms should echut there are always practical surprises when
scaling a system up significantly. Our immediate concereédiiontend scheduler, which is centralized.

We briefly acquired a thousand servers from Amazon ECZ |Ariagse are virtualized servers,
each with a 1.7Ghz CPU and 1.7GB of memory, plus a large lomal rive. Our front-end server is
instantiated on a more powerful machine with eight virtualgessors and 17GB of memory.

Basic performance of PPS on a single EC2 instance is rougtiiyttat of our slower HEN servers

because the CPU is slower: a query of one million metadatssitakes eight seconds.

7.7. Large Scale Deployment 99

100 T T T

CPU Load
80 1
g
= 60
I}
o
|
) 40
o
(@)
20)
0 ! A |
0 50 100 150 200 250 300 350
Time(s)
5 T T T T T T
+ Query Delay — +
4t]
N
@ 3r + + T
> + *
& . *
8 2t ° * 1
ut;Jr + *
+ + +
1 [bttt 0, . |
s W#*#M* I +&m++&+¢+;ﬁ #ﬁg&:’:}%»*’
0 1 1 1 1 1 1
0 50 100 150 200 250 300 350
Time(s)

Figure 7.10: Effects of Range Load Balancing

We created a larger dataset of 5 million entries, and rejglicé atr = 10 on 1000 servers. We then
ran one query per second at differentalues (minp for correctness is 100). TaHleF.3 summarizes the
results. Query delay initially decreasespagoes fromL00 to 250, but then increases after that. Average
CPU utilization increases withas we expect: it roughly doubles whggoes from 100 to 1000. As the
CPUs are not overloaded, the u-shaped delay curve is iimggu

We profiled the frontend server to see how local computatftects latency. Scheduling delay
increases roughly with log p and reaches 25ms on average whea 1000. The time to compose and
send the 500 byte query from the frontend application alscemses with: it takes 125ms on average
to send a message to all the 1000 servers. Although not iitdglitnese delays can be easily reduced
in an optimized implementation and are not a scaling concHnry are not large enough to explain the
u-shaped curve.

We then examined the query matching times on the ROAR nodhks.nTean performance is as
expected: delays decrease witfp. However, larger values @f exhibit higher variability in run-times:
variabilit;H increases from 1.2 to 4 whengoes from 100 to 1000.

To nail the cause of high delays observed, Fidurel7.11 shawalgime breakdown of frontend
delays and query delays for various valuep.oMany queries finish very quickly when= 1000, just
after all the data has been sent. Variable round-trip detaade us wonder if we were bottlenecked on
bandwidth, despite the low transmit rate of 4Mb/s. Briefdesith iperf showed this was not the case.

The answer is the synchronization of the query replies, lealpith small buffers at output-buffered

switches, a problem that is known as TCP incast [WVBS]. Whenp is large many servers will reply

4defined as the ratio between the finish time of the slowest andéhe average finish time of all nodes running a query.

7.7. Large Scale Deployment

p 100 | 250 | 500 | 1000

Delay (ms) 997 | 341 | 1132| 2183

CPU Usage 10% | 12% | 15% | 19%
Match Delay (ms) | 430 | 160 | 80 20
Match Variability 12 | 15| 25 4
Schedule Delay (ms)| 1.17| 3.4 | 9.2 23

Serialize Delay (ms)| 8.3 | 24 50 155

Table 7.3: ROAR performance running on 1000 servers in EC2

p=100 p=250 p=500 p=1000
100 T T T T T T

10 ¢ 1 o Y
. * v Y A
. : At ‘o “ s
. ’0 * < M * : ..
— 1 | . ‘:' 7 * . ‘0 * 0 * ‘: .
L7 hes e c LA e, oLt
> . o . R AR N RX) b e e
& e’ arauntigimin |25 {f,, Lo TR
@ hea [+ﬁ+*¥+++]
Qo1 } 1 oo ER T

byt o[t i

A +

) N + I*WW pudt 4 * +

s
0.01 Wi i 4
Query Delay «
Frontend Delay ~ +
0.001 | | | | | T 1T T |
0 50 100 50 100 50 100 50 100
Time (s)

Figure 7.11: Delay Breakdown as seen at Frontend Server

100

at roughly the same time, and all these replies will arrivewdianeously at the switch, overflowing the

output port of the link going to the frontend server. As we T€® between the frontend and each ROAR

server, a drop on any flow delays the whole query. The queeytcagach server is low, so TCP’s fast

retransmit cannot kick in and a lost packet has to wait for & T€@ransmit timeout. The large delays

spikes in Figur€Z1 show losses are bursty and tend to symizie over many timeouts, escalating the

problem,

A simple fix for TCP incast is to eliminate the RTO lower boumdl@ompute nanosecond accurate

TCP timers [[VPS0€]. Its unclear that this will solve the synchronizatiorrefransmissions. A simple

application-level alternative might mitigate these lgssthe frontend should resend unfinished query

parts as soon as most of the query has completed. At leastifapplication, this implies that UDP

might be a more appropriate transport for ROAR. Even witlamyt of these fixes, controllinggives a

simple way to mitigate the effects of incast, and to re-adlapsystem when the network configuration

changes.

We were not able to notice incast issues in our Hen deployimecduse the ForcelO switch Hen

uses is massively overbuffered, having 2.4MB of bufferiegport. Looking at the future, the industry

7.8. Frontend Scheduling Performance 101

180 :
160 ® PTNP=10% —
2 140l ®PTNP=25% |
= m PTN P=50%
® 120+ g ROAR P=10%] 1
A 100- O ROAR P=25% 4
0 ROAR P=50%

Scheduling

80 - .
60 - 8
40 - 8
20+ .
0

1, OOO 5,000 10,000
Number of Servers

Figure 7.12: Frontend Scheduling Delay for PTN and ROAR

has already moved to solve the TCP incast issue by sharingutifiers across ports. This does solve
incast, but creates interference between cross traffic.s,Tihe use of RED[FJ93] has been recently
proposed to manage queue sizes [AGM].

Our large-scale deployment gives us confidence that ROAHf isales well. It also provided
insight in the effects op, beyond the ones we observed in our small scale testbed rtinyar, larger
p values greatly exacerbates any inherent variability intino@s, increasing overall query delays. This

strengthens our belief that dynamically adaptirig advantageous.

7.8 Frontend Scheduling Performance

Our large scale deployment gives one data point showingthieafrontend can scale up to a thousand
nodes. Here we go further and examine its performance at¢raacple, and in comparison with the
simpler PTN scheduling routine.

To perform the comparison, the membership server was cdangeeate “fake” servers with ran-
dom ranges. A few thousand queries were then scheduled Ilifotitend, and the scheduling delay was
recorded. In contrast to the large scale experiment, thednm numbers here do not account for the
delay to serialize and send all the sub-queries, focusihgamthe time needed to schedule the query.

Results are presented in FI[g.—4.12 for one, five and ten tmolservers, and three valuesyofor
each. In Sectioi’ 48 we found the algorithm complexity tal§e) for PTN andO(n log p) for ROAR.
The experimental results show that in practiceltdyeP factor results in two to four times increase in
scheduling delay for ROAR compared to PTN.

Our prototype is written in Java and unoptimized, yet theohlis numbers are encouraging:
scheduling on 5000 servers (the estimated size of a Gooagtelseluster) takes on average 62ms com-
pared to PTN’'s 30ms. Batch-scheduling simultaneous guiergevery simple technique that can be used
to reduce query delays, and is quite effective when it is adedost: when queries are frequent. When
using batches of 5 queries, scheduling delay would dropdorat 10ms.

In its current incarnation, our prototype running on a gngbre can handle about 16 queries per

second without batch scheduling, and 100 queries per segibmtbatching. The scheduler is, however,

7.9. Query Delay Comparison: ROAR vs. PTN 102

In Memory + Disk Bound *
Buffer Cache x

1000 T T T T T T T T .

900 | ++4_++H—H—4+H—H—H+H—H+FH++)
800 r 1
700 ¢
600 r
500 x X 4

x

400 g
300 B kx|

x
X XX XX XXX sk kK
xx *xxxxxxxxxxxx¥**
*

200 |y XXX XXX i

100 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Server ID

X XX
XX XXX
s xR XK
XX

Processing Speed

Figure 7.13: Observed Server Processing Speeds

easily paralelizable to many cores or indeed to many mashared can easily be scaled to support very

high query rates.

7.9 Query Delay Comparison: ROAR vs. PTN

We have so far shown that ROAR can easily adjusthile queries are running and this brings end-to-
end benefits such as reduced power consumption and incréeedhput. One lingering question is,
however, how do ROAR’s query delays compare to PTN’s? Oulytioal evaluation offered insights
into when ROAR is worse, better or equal to PTN, but we sti#dhéo see how the algorithms perform
in practice.

To gain a better understanding of the differences, we implged PTN too and performed a head-
to-head comparison of the two algorithms. Implementing RS relatively straightforward, given the
code base we had for ROAR: the biggest changes were madert@ethbership server (that now creates
clustered ranges for nodes) and to the frontend server.

All our previous experiments ran from the buffer cache, aswas the setup that was closest to real
world deployment. Here, however, we wish to compare therdhguos in a range of operating regimes,
and see the differences. Besides the buffer cache, we rariments where data was read from disk
(disk-bound), and one where data was already in the menawfyec These three represent the spectrum
of operating regimes for PPS; reality will be somewhere itwieen.

Running experiments with data from hard disks is tricky:asslhuge amounts of data are read, the
OS buffer cache kicks in and reads do not reach the disk aranbTo avoid the buffer cache we create
200 users each with 1M objects. In total the metadata has 4@BBh are partitioned and replicated on
the servers such that= 10.

For the buffer cache and in memory experiments we create a sti@ssing test environment, with

5 million metadata being searched by each query. On ourstastachines, running this query would

SManually clearing the buffer cache is possible but trickgduese our servers netmount their root filesystem; peribigica

clearing the buffers for all 50 servers created such a higd that it brought down our NFS server.

7.9. Query Delay Comparison: ROAR vs. PTN 103

T 35

14l ‘ ‘ "ROAR 1/s] ROAR 1/s
i PTN 1/s o . PTN /s wwon
ROAR 3/s 3r ROAR 3/s

12§ PTN 3/s -~~~ 1 : PTN 3/s -~~~
OIS S R S z
= o g
© 08¢ °
a o
> >
g 0.6 B, g
& &

0.4t

02

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
P P
(a) Disk-Bound, 1M objects (b) Buffer-Cache, 5M objects
3 : ‘
ROAR 2/s
PTN 2/ wwun
25 % ROAR 4/s

PTN 4/s -~~~

2

15F

Query Delay (s)

1

0.5

(c) In Memory, 5M objects

Figure 7.14: Query Delay Comparison ROAR vs. PTN

take well over 4s.

We show the sorted server processing speeds for the thneargxein Figuré 7 13. Disk-bound is,
as expected, slowest of all and has three different plateaanesponding to the three hard drive models
in our slow, intermediate and fast servers. The speed diffax between the fastest and slowest server
is 2x. In memory processing is significantly faster, and hagradal distribution, with slower servers
being 3 times slower than faster ones. Finally, loading ftbembuffer cache is in between, with a 3.5x
difference between the fastest and slowest machines. Vaases validate our choices in the analytical

evaluation, where we used a 4x difference between the st@medastest servers.

Query delay results are presented in Figurel7.14. Each gitapls the algorithms running under
light load (1 or 2 queries/s) and moderate load (3-4 quaie§fiOAR and PTN have similar behavior
in all scenarios, with PTN outperforming ROAR when load i Id or 2 queries/s) by 5% to 40%. on
average. Under moderate load, ROAR outperforms PTN by 5%%a The explanation is simple: when
load is low machine performance is highly predictable, ahN Boes a better job of assigning more work
to faster servers. When load increases, server perforntsumnes more variable: concurrency across
gueries increases query delay variability, and the Javaalimachine memory management operations
(garbage collection, etc) affect the query runtimes. Irhsc&ses, assigning work only to the fastest

servers is not necessarily best. That is why ROAR - whichasdts work more across servers -

7.10. Evaluation Summary 104

outperforms PTN.

The main point of this comparison is that inherent varigpih runtime speed tends to negate the
effects of perfect scheduling: there is a fundamental tenisetween achieving the lowest query delays
and coping with variability in runtimes. ROAR does a fair jphobtaining query delays under moderate
load levels.

The shapes of the curves are similar for all three scenay@sthe slope is gentler for the disk-
bound experiment: there increasipdrings fewer benefits. Different users experience differead
speeds on the same machine, depending on where the usepféeds on disk and how contiguous it
is. Because of this variability, the frontend is fundaméytanable to estimate per user speeds from the
average it maintains per ROAR server. The more servers aodved in a search, the more it is likely
that one will be slow reading their part of the data.

Surprisingly, for the disk-bond experiment, the optim#éd achieve minimum delay depends on the
system’s load. As in the large scale experiment, incregsbognaximum does not guarantee minimum

delay. This implies that achieving minimal delay is not plokeswith staticp: adaptation is required.

7.10 Evaluation Summary

Our evaluation shows in a practical system that ROAR candddeale PPS to many objects (we ran as
many as 5 million) and many users while providing low querlageROAR allows easy adaptation of
p while the system is servicing queries providing a knob tarojze the system dynamically. We used
this to automatically adaptto reach a target delay, and measured the power benefitstihaedchad.

We cross-validated the analytical comparison to PTN, anddathat in practice ROAR achieves
similar query delays to PTN, while being able to seamledsingep at runtime. The ROAR scheduling
algorithm, although unoptimized, can support tens of easgoer CPU core, and can easily be scaled up.

To evaluate at scale, we ran ROAR on 1,000 servers on Amazerioivid that even at such scale
none of our centralized components became bottlenecksthatdhanging is an effective way to
control query delay. We also found that high valueg ofn increase end-to-end delays because of TCP
incast problems in certain network configurations. Thiséases our belief that the ability to seamlessly

changep is a useful addition to all distributed rendezvous systesesiun practice.

Chapter 8

Related Work

ROAR builds upon a large body of work in the distributed sgsditerature. ROAR is most related to
distributed rendezvous search systems running in datarsawhere data is placed on nodes and queries
routed without taking content into account. Existing sgstdn this category are reviewed in detail in
Sectiof8R. We provide background information on the a#ive of using content to distribute work
in Sectio 8L

There has been a tremendous amount of work in providing epeér search solutions, which
in turn has built upon work in structured overlays. ROAR 8silipon ideas from this work which is
reviewed in Sectiof 8l 3.

Content-based publish/subscribe systems are concegptladle to search, some researchers dub-
bing them as two sides of the same cAIN[BIC92]. Se¢fioh 8.viges an overview.

Large scale processing was initially researched in disteith databases targeting parallel execution
of SQL queries. We conclude our survey of related work withiefloutlook of distributed databases in

Sectio8b.

8.1 Content Based vs. Content Insensitive Distributed Seah

Is Distributed Rendezvous the proper solution for search&tehive position distributed rendezvous
against alternative solutions. Distributed Rendezvousigent insensitive: it does not use contents of
the data or the queries for replica placement or query ei@tuthe alternative is to use content when
executing distributed queries.

Distributed Rendezvous has two advantages over contesitise solutions: simplicity and gen-
erality. The fact that it does not take into account contee&ns that it is immune to skewed content
distributions or variations of such; thus mechanisms td wéh these are not needed. Distributed Ren-
dezvous is general in that it can support a wide variety ofigeend data types: any algorithm taking
as input data objects and answering yes/no can be used as/algRecan easily employ randomization
as it does not care about content. This is a big gain, as ivaligod load balancing. All giant-scale
services seem to employ randomization [Brle01].

On the downside, its content agnostic approach precludeterbbased optimizations, such as

indices on distributed tables, or smart clustering of webudeents based on content. Indeed, much

8.2. Distributed Rendezvous Solutions 106

research effort has gone to devising techniques to clusterdocuments based on content (i.e. LSI
based, keyword based), to cluster attribute values andostigmge queries (Mercury), etc.

In information retrieval, there are two main ways of pastiting a collection of documents amongst
servers: keyword-based or document-baked [MWZ06]. Doatribased partitioning is similar in spirit
to DR, as it does not take into account content when assigidngments to servers, or queries to
servers. This solution has natural load balancing, andseet manage as each server computes its
own index subset locally. However, if the collection is siion disk, more seeks are required than in
the keyword-based version.

Keyword-based partitioning uses keywords in documentscaradies to guide document storage
and query execution. It has fewer disk seeks but imbalanndnzieed kill it. Moffat et al. have
studied numerous techniques to improve load balancingtaodghput of keyword-based partitioning,
including replicating the highest volume keywords and bailag keywords across servers according
to their frequency; what they have found is that for a depleghon a small number of servers, the
throughput of the optimised keyword-based scheme is aladyislower than that of document-based
partitioning [MWZ06]. The main reason for this decreasesrert term load imbalances amongst the
servers. In short, a mechanism that seems better in theonpiie complex in practice and achieves
similar results to the simple document-based partitiomngractice.

Furthermore, content-based solutions suffer if contedaita and queries is highly skewed, if con-
tent distribution varies, and do not work when content isnovin—as is the case with privacy preserving

search.

8.2 Distributed Rendezvous Solutions

There are many proposed distributed rendezvous solutigheiliterature[BDHOE, FRAQS,|I TBFT04,
TKLBO7, [GS04]; some target peer to peer deployments and statagecenters, yet almost all offer a
fixed trade-off between the partitioning and replicatiorels.

The Google cluster architectufe [BDHO3] (PTN) is the cleaktluster-based solution, with a fixed
r-p trade-off. We have analyzed it extensively throughout thissis, finding that changing ther
tradeoff is quite difficult. ROAR achieves delays similatayes to PTN’s while being able to reconfigure
the system on the fly, at runtime.

Another similar solution is the Load Balancing Matrix (LBN(:S04]. LBM is the only solution
we are aware of that allows changinglynamically. LBM use the same cluster structure as PTN, but
at a virtual level: the clusters are mapped onto a Distribidash Table. Serverfrom cluster; is
mapped to the DHT server in chargefafsh(i, j). When repartitioning, LBM inherits all the problems
of the Google approach. Furthermore, LBM has load balanginglems as virtual cluster servers are
mapped using consistent hashing onto the Chord ring: wijh lpirobability, the busiest server will
hostlog n/ loglogn cluster servers. Because of the virtual mapping LBM losesntbe load balancing
properties of PTN. There is no easy way to fix this. One salutfothat each server has to insert
itself many times on the ring (as many kg n/loglogn), which significantly increases distributed

rendezvous costs for large networks. Furthermore, theadipgesimplicity of PTN - where all servers

8.3. Structured Overlays and Peer to Peer Search 107

in a cluster stored identical data - is lost, without any mggins.

BitZipper [TBET04] is a distributed rendezvous solution which is also rauia top of a DHT
and aimed at peer to peer deployment; here the tradeoff batveplication and partitioning is fixed, as
p ~ r ~ +/n. BitZipper is optimised to minimize total throughput. Intd@enters bandwidth usage for
search applications is not a big concern. If it were, ROAR mamised to contrgl andr such that they
are proportional ta/n, also minimizing bandwidth usage.

A few randomized solutions have also been proposed, andcatteesimilar to the RAND algorithm
we have described in Sectibh 3: Ferreira etlal. [FIRE] use random walks for both object storing and
for queries, while BubbleStorm [TKLB07] uses bubbles toespap object storing and query execution.
These algorithms are built for peer to peer systems and haeg¢ esilience to node churn (nodes coming
and going) and failures. For instance, BubbleStarm [TKIBf#A withstand 50% node failures, without
needing any centralised component. They offer probaicitistarantees of finding objects, and these may
not be good enough in data center like searches. Also, thenating costs are much higher (for instance
with BubbleStornp - » = 4n), needing more hardware and more energy to do the same aofouoitk.

For this reason, randomized solutions are not suitableteanter environments where failure rates are
low.

Glacier [HMDQ%] is a distributed storage system that regiks objects te equally-spaced servers
on a Chord ring to improve availability. It would be easy tont@Glacier into distributed rendezvous:
route each query to all the servers i & arc. However, to change the replication levels each server
needs to record the servers in charge of the previous andrepbta for every object, resulting in
memory and bandwidth costs and creating consistency issbies servers fail. ROAR deliberately
chooses the dual approach to eliminate these problemsiegygransient in nature) are routed to where
the objects would be stored; object-consistency issueedteed to synchronising with neighbours.

Beehive [RS04] replicates objects to achieve one hop logkagsuming object popularity is Zipf
distributed. Beehive’s replica placement algorithm staeplicas on servers at Hamming distance 1 in
the ID space, and only allows values fothat are a power of 2. It appears easy to use Beehive’s replica
placement strategy for distributed rendezvous, but thepbexity of object replication combined with
restrictions on values of limit possible benefits.

Chain replication[[vRS04] is similar in spirit to ROAR’s @ujt placement strategy. Van Rennesse
et al. show that to achieve consistency and high througlnijgct updates should be serialized at the
home server and queries should be executed by the activers€his works when individual objects are
accessed; in distributed rendezvous all objects must besaed so using this strategy is infeasible, as

the query must be broadcast to all the servers.

8.3 Structured Overlays and Peer to Peer Search

Structured overlays like Chord [SMt01], Pastry[[RDO1] or CANI[REF01] organise a large set of
servers into a network structure that has low degree and ilameter. Their biggest appeal is complete
decentralisation: nodes are completely self organisimgetare no centralised components.

Chord [SMK"01] assigns each server a random identifier in a 160 bit @ir@gace. Each server is

8.3. Structured Overlays and Peer to Peer Search 108

in charge of the range between himself and its predecessoaintains links to a few of its predecessor
and successor nodes, and dtson “finger” pointers to nodes further out on the ring. Key looksphe

basic operation supported by Chord: starting from an itoitiaode, the request is routed closer to the
desired ID by using the neighbour or finger pointers; on ayelag n steps are required. Objects are

replicated in Chord on their home node and a few successors.

Pastry [RDOLL] has a similar structure and similar propsttiieChord. CAN uses & dimensional

torus, having constant node degree and larger diameteChard.

ROAR borrows the idea of ring from Chord. ROAR replicatios lasubtle but important difference
from Chord: ROAR objects are replicated on a fixed ID rangeaiathan on a fixed number of servers.
This allows us to decouple server and object locations, ei@rproperty for practical distributed ren-
dezvous. Further, ROAR has centralised server membeithggrvers do not maintain finger pointers,
and it does not use logarithmic lookup to run queries. Alsthare possible in data centers, and allow

ROAR to obtain low query delays that couldn’t otherwise b&aoted.

A number of systems have been recently deployed in data«etd allow key-value stores or
database-like functionality, including Dynamo [DHJ4] and CassandrB[LMILO]. Dynamo is essentially
a one hop DHT built on top of Chord that favours availabilitdgpartition tolerance over consistency;
it uses vector clocks to detect conflicts and defers the abméisolution to the application. Cassandra is
similar to Dynamo, but offers richer functionality than tey-value store. Cassandra supports database-
like row and column-based operations, but does not exiylisitpport SQL. Both systems use data
replication and partitioning as building blocks, as ROAResloCassandra, in particular, allows quorum
reads and writes with configurable ratios; the quorum usesdme intersection property that ROAR
uses to achieve its functionality. Cassandra basic stareghanism is borrowed from Chord, and it has
many problems when used in a distributed rendezvous cofttege were discussed in detail in Chapter
B3).

Chord, CAN and Pastry only offer basic primitives to store agtrieved named items; hence they
are collectively called distributed hash tables (DHT).sSThasic functionality does not support key-
word search, however much research has gone into executiergeq on DHTSs, including keyword
search[[RV0B. TXD0d, TD04] and range queries [BAS04].

Straightforward partitioning of documents based on keylsois proposed by Reynolds at al
[RVO3]. Techniques are devised to minimise the amount ofroamication between servers, when inter-
secting document lists. Load balancing is ignored in thiskywavhich questions its scalability. ESearch
[TDO4] goes a step further and only uses the top 25 keywordadéh document for indexing, observing
that this suffices usually, and by replicating full documiefdrmation at these nodes. Load balancing is
performed for document storage by using DHT specific meamasii In effect, partitioning replicates a
keyword on multiple nodes, and therefore query load batapis not dealt with directly. We have seen

in our experiments that load balancing is paramount to >gehigh throughput.

In an attempt to even out the balancing of inverted indexemttes, Liu et al. propose to remove

inverted lists pertaining to highly used words and distiéhtinis information to the other nodes LLI04].

8.4. Content-Based Publish/Subscribe Systems 109

Conjunctive queries containing popular terms will be amgdenith documents that contain the less
popular terms. Information about the fusion dictionaneiglicated to all the nodes in the system, and so
are the lists of files that contain only these words. Whenipialkeywords are removed, their lists are
aggregated and a synthetic keyword is used to store docarettcontain those two keywords. This
in fact removes the initial mappings and introduces coteelanappings for frequently occurring pairs;
based on our analysis in [Ral06], we show that the numbenudiirg hops is not reduced drastically and
therefore the impact of this heuristic is not substantial.

PSearch[[TXD03] uses document and query content to stonengiertts and route queries on top
of CAN. Instead of using the actual terms, PSearch uses t8&mantic Indexing to map all the doc-
uments and queries onto a multidimensional semantic spdteh is then mapped onto a CAN with a
lower number of dimensions. The authors propose techniuesduce the number of needed dimen-
sions by using a rolling index and replicating each docunaefegw times on the overlay. They also
propose techniques to balance the document load on therseBespite these techniques, load is still
skewed: in the authors’ experiments, 35% of the servere 3@ of the indices with all the techniques
enabled. These results outline once again the fundamefftaliltly of properly balancing documents
with content-sensitive placement.

In general, directly using the peer to peer search techrifpredata center deployments seems
wrong. An interesting discussion about the feasibility cdlgg peer-to-peer search for web search is
provided in [LLHT03], and it is shown that currently the resource usage woitthie order of magnitude
higher than the resources available. Google is clear eg@ldrat in data centers web search is feasible.
To support it, however, techniques must be designed spabifio take advantage of the properties
of the data centers that differentiate them from peer to pgstems: zero churn, single administrative
domain, high bandwidth and low failure rates. While ideasfrROAR are more general and could be

applied to peer-to-peer search, ROAR has also been dedignesk in data centers.

8.4 Content-Based Publish/Subscribe Systems

Content-based publish/subscribe (CBPS) is an interactiodel where interests of subscribers, ex-
pressed as predicates over the desired attributes in atitifis, are stored in a content based matching
infrastructure. Publishers push notifications into theasfructure, and the notifications are typically
attribute name-value pairs. The infrastructure’s task iddcide which notifications should go to which
subscribers in an online manner. Research has focused otohdigtribute this intermediary to scale
interaction to a large number of users. Content-basedgiublibscribe systems are conceptually close
to search: if stored subscriptions are replaced by docwsnant notifications by queries, we have a
distributed search system. Hence, solutions from CBPSrcariniciple be applied to distributed search.
Existing architectures for content-based publish/subsaan be divided roughly in two categories:
fixed topology architectures (the traditional approachub/pub, including Siena [CRWD1], Gryphon
[ory9q], their optimisations and variants) and DHT-baseth#éectures, including Mercury [BASD4],
Homed [CPP04] and so on. In the first category, event rouimgtértwined with content-based match-

ing, with the noticeable exceptions of Medym [C505] and EQ®NFEQ]]. The second class of applica-

8.5. Relational Databases 110

tions usually focuses on resilience to node churn and faldtance (inherited from DHTS), attempting
to minimize the number of routing hops for matching and pgtin the same time less focus on event
routing.

Most architectures assumes fixed topologies (typicalysi@ directed acyclic graphs) that are cre-
ated by the users (Siena [CRWO01], Gryphpn [giy99], Medvm(dE&]y The algorithms are generally
conceived for fault-free operation. Assuming that the @mions between nodes are (manually) es-
tablished based on network proximity, fixed topology amttiires achieve minimal network delay for
delivering messages to each subscriber. Their biggesh#atyais low bandwidth usage: for each noti-
fication, a multicast tree is built which replicates the ficdition as late as possible. Perhaps the biggest
drawback is their worst-case behavior: the number of rgutops a notification traverses grows linearly
with the number of nodes in the system and every subscrigits replicated to every node (for both
Siena[CRWOI] and Gryphoh[gry99]). Also, application lesentent-matching is usually performed at
each hop, incurring significant delays for notificationsssing a large number of hops.

If these systems were used for distributed search, a lotebfitimizations they embed would
become meaningless. For instance, when running a quehealésults need to be returned to the front-
end: there is no need to create a multicast tree to subsgrdsaén CBPS. Further, CBPS event routing is
sequential, whereas distributed search systems such ageZoor ROAR send a query to many servers
in parallel to reduce query delay. To conclude, these swigtare not applicable in practice to distributed

search.

8.5 Relational Databases

Speeding up queries has always been a goal of database sysiath parallel databases [Car83,
CABK88,|IDGG"86,|[LDH"89,|SAL96,[TD03,[KW94] provided a shift in this direction. The trend
was to move away from mainframe computers using either dhaisk or shared-memory computer
architectures towards shared-nothing machines [DG98€to

To parallelise execution of queries the most effective égplne is to horizontally partition the input
table across many nodés [DG92], such that each node cantexieewuery in parallel on its subset of the
data; the results are then merged. The biggest dangerslilogsep query processing to larger datasets
and speeding up queries were identified to be skew (load amba), startup costs and self interference
from different parts of the same quely [CABK88. GIR0. DG92].

Partitioning can be round robin (suited for sequential sgahash-based (suited for sequential
scans and associative access) and range partitidning [P&88ge partitioning, used in Arbre, Bubba,
Gamma, Oracle and Tandem, is similar in concept to contas¢d placement of data and queries, and
can suffer from load imbalance. Adjusting the range sizescoaunter this effect, as in [CABK88] The
problem with using range partitioning for full text searstis that there are too many dimensions to
partition (e.g. see the latent semantic space, as in pSEBX&03])). As such, hash based-partitioning
(used by Arbre, Bubba, Gamma and Terradata) is preferrabkefirch. This is also what ROAR uses.

How much should a table be partitioned? Partitioning toolmmight have adverse effects, increas-

ing query delay and decreasing system througtiput [CABK&3@3. This is the same observation we

8.5. Relational Databases 111

made both qualitatively and quantitatively in this thedigaditional parallel databases have fixed parti-
tioning strategies, whereas ROAR provides a means to dyadisntrade-off query overhead vs. query
delay.

In general, research in distributed databases aims to etisxecution of powerful relational
queries in a distributed setting. ROAR is much simpler: jus a “select” operation executed in a dis-
tributed manner on a single table. In effect, ROAR can be asettool underlying traditional databases
to optimise access to large tables with poor indexing ogtidtt a conceptual level, ROAR is similar to
the exchange operator proposed by Graefe et al. to providaeskle query execution [GD93].
Distributed Computation. There are many other algorithms for distributing compotaimong many
machines, such as [BTADD4,|ADAT99,[DG04, YIF-08]. Google’s MapReducé [DGD4] offers a
simplified, functional programming model that hides pail&htion from the programmer. ROAR offers
a weaker programming abstraction, equivalent to the “mgetation, but differs in its handling of data
objects: while Map Reduce moves data to the servers penfigrthe computation, ROAR will run the
computation on enough servers such that all the data ojeetsisited without actually moving the
data objects. Instead, ROAR allows the application to chanhgvhich controls the minimum number
of servers that must be visited. The major difference betvR@®AR and MapReduce is their intended
use: MapReduce optimises execution of large jobs on hugselstthat take from seconds to hours to
execute, while ROAR is aimed at running sub-second quegamst smaller amounts of data. By not

copying data for every query allows ROAR to save bandwidth@tain smaller delays.

Chapter 9

Conclusions

The performance of distributed rendezvous systems suctebssearch engines is heavily influenced
by the patrtitioning levep, which controls how an ensemble of servers handle queri@stmme data.
This parameter is the primary control that determines $elatency, and so has a huge impact on the
usability of distributed search systems. We have foundttietjuery delay variation asincreases is not
necessarily monotonically decreasing, as it depends olo#iteon the servers and on the particularities
of the search application. Further, higher valuep aicrease the fixed costs associated to queries be
they hard drive seeks, OS related overheads, or networlknbdtidcosts. This dependency matters: on
our small cluster, running with = 50 instead ofp = 5 wastes energy costing 50$ per server per year.
In the three year lifetime of a 1,000$ server savings couldpé& 150%. While not astounding, these
savings are worthwhile.

Fixed costs associated to queries naturally pudown as long as delay targets are met. We have
further shown that object updates pusio be small, otherwise server throughput is affected. To be
efficient, a distributed rendezvous system needs to rus aptimal operating point, whefe: = n.

Despite this and the fact thatshould be continuously adapted according to the systerat ilo
order to achieve optimal performance, search engines suGloagle rely on the simple PTN algorithm
that does not allow for dynamic reconfigurationpofPTN’s simple structure fundamentally prevents it
from reconfiguring easily, as it loads nodes asymmetrialiyng changes, and reduces the capacity of

the system while change is taking place.

9.1 Contributions

The premise of this thesis is that allowing seamless recorign brings alive another dimension on
which the distributed rendezvous system can be optimisetiremusly to track the load it is serving.

We have introduced ROAR, a novel distributed rendezvousrilgn that allows on-the-fly re-
configuration ofp at minimal cost while still servicing queries. Further, RRA&an add and remove
servers without stopping the system, cope with temporadyp@rmanent server failures, and provide
very good load-balancing even in the face of servers hawiterbgeneous hardware capabilities. ROAR
uses rings organize servers, and uses fixed replicatioesangtore documents on servers. This allows

it to decouple query routing and replica placement fromesediensity on the ring, overcoming the main

9.1. Contributions 113

problems with the SW algorithm.

We have created an analytical model to study the propertiBOAR and compare it to PTN. We
have explored the parameter space comparing ROAR, PTN aral@W multiple dimensions including
query delay, availability, and the ability to reconfigure.

One major challenge in ROAR was to provide comparable quelgydo PTN. We achieved this

through three main techniques:

e Server range balancingassigns larger ranges to more powerful servers, helpingathuead

balancing and reducing query delays.

e Multiple rings provide the power of two choices for query execution, bregkiway from the-

choices available to the SW algorithm.

e Range adjustmentis a local heuristic that reduces the delay of the sub-quarging on the most

loaded server.

These three mechanisms work harmoniously together to eeB@AR query delays. Through
simulations we compared the query delays of PTN and ROARinfinthat ROAR outperforms PTN
when server speeds are fluctuating and can’t be perfectljiqteel, while PTN behaves better when
server speeds are more predictable. ROAR can reconfigundesssly as it places uniform, minimal
bandwidth load on all servers during the change. In confPa®f asymmetrically loads servers and
takes orders of magnitude more time to reconfigure. Furtinewlations have shown that ROAR and
PTN both give high availability,

To test ROAR in practice we implemented a privacy-presegrsgarch application that used ROAR
as its underlying algorithm, and ran experiments on a 5@esefedicated testbed and on a 1000-server
configuration using Amazon’s EC2.

Our practical experiments show that the ability to changétfming dynamically has many ben-
efits, from allowing the network to cope with load fluctuasogracefully to reducing bandwidth and
energy costs. ROAR works well in practice: it can cope wittufas and it balances load well. Given
a target query delay, ROAR can automatically reconfigurentterork to achieve that delay while min-
imising other costs. All these results give us confidence R@AR is a practical alternative to PTN,
offering an important knob to optimise system behaviopir a knob that does not exists in systems to-
day. Distributed rendezvous systems can make more effiegenof resources by continuously adapting
to load and environment changes.

We also performed a head-to-head comparison between ROAREN, measuring query delays.
The results cross-validated our simulations, showing R@AR delays are better than those of PTN
when load is moderate or high, while PTN is better when lodovis

The other major contribution of this work is Privacy PresegvSearch. PPS addresses a major
privacy concern raised by the “online” convergence of us¢a thy supporting search when user data are
stored encrypted. Simulation studies indicate that, &t fiea mobile devices, PPS should consume a lot

less bandwidth than and is thus preferable to the naiveisolaof encrypting the search index.

9.2. Future Work 114

To support PPS we have proposed novel cryptographic catisting to match numeric attributes,
and built a search system that allows moderately complesagyipreserving searches, including key-
word, modification date and file size searches. Our expetmhanalysis of PPS on a single machine
outlines the need for parallelism: a single query runningjragt 1 million metadata takes well over 4s.

We parallelised PPS with ROAR and achieved sub-second agigtatys for much larger datasets (5
million files). As user queries are relatively infrequenset of machines can be used to server many
clients. We believe it should be possible to build an ecowraityi viable PPS system; however this is not

the purpose of this -thesis.

9.2 Future Work

In the future, we hope to test ROAR more on large clustersthitisands of nodes, and explore different
optimisation criteria. Most interestingly, it would be gtéo see if ROAR can be directly applied to web
search in practice.

ROAR opens an interesting research question: what are tiiafnental techniques we can use to
create efficient distributed algorithms? Energy efficiemhputing has been mostly looking at individual
components such as CPU, disk or whole servers to try and rhakesnergy usage load adaptive. Our
work shows that different values pfalways change the total amount of work done by the system, and
that controllingp opens the door for further energy savings. In its quest fiiciefcy, ROAR makes the
distributed algorithm rather than the individual compasehe focus of optimisation. This new focus

seems promising.

Bibliography

[ADAT +99]

[AFLVO8]

[AGM *10]

[Ama]

[BAS04]

[BC92]

[BDHO3]

[Blo70]

[Bre01]

[BTAD +04]

[CABK8S]

[CDNFO01]

Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuta#tyid E. Culler, Joseph M.
Hellerstein, David Patterson, and Kathy Yelick. Clustewifth river: making the fast case

common. InProc. Workshop on 1/O in parallel and distributed systed99.

Mohammad Al-Fares, Alexander Loukissas, and Arkchdat. A scalable, commodity
data center network architecture.Pmoc. SIGCOMM 2008.

Mohammad Alizadeh, Albert Greenberg, David A. Maltzeddra Padhye, Parveen Patel,
Balaji Prabhakar, Sudipta Sengupta, and Murari Sridhaiata center tcp (dctcp). In
Proc. Sigcomm 201 &olume 40, 2010.

Amazon. Elastic compute cloud.

Ashwin R. Bharambe, Mukesh Agrawal, and SrinivaSashan. Mercury: supporting
scalable multi-attribute range queri&@GCOMM Comput. Commun. Re84(4), 2004.

Nicholas J. Belkin and W. Bruce Croft. Informationidiling and information retrieval: two
sides of the same coinGommun. ACM35(12):29-38, 1992.

L. A. Barroso, J. Dean, and U. Holzle. Web search fptanet: The google cluster archi-

tecture.Micro, IEEE, 23, 2003.

Burton H. Bloom. Space/time trade-offs in hash capvith allowable errorsCommuni-

cations of the ACM13(7), 1970.

Eric A. Brewer. Lessons from giant-scale servidBEE Internet Computings(4):46-55,
2001.

John Bent, Douglas Thain, Andrea C. Arpaci-Dusseau, ZRéim Arpaci-Dusseau, and

Miron Livny. Explicit control a batch-aware distributeddisystem. IINSDI, 2004.

George Copeland, William Alexander, Ellen Boughtand Tom Keller. Data placement in

bubba.SIGMOD Rec.17(3):99-108, 1988.

Gianpaolo Cugola, Elisabetta Di Nitto, and Alforfsuggetta. The jedi event-based infras-
tructure and its application to the development of the odasssnmEEE Trans. Softw. Eng.
27(9):827-850, 2001.

[CFSSO05]

[CGKOO06]

[CGKS95]

[CGL*09]

[CHL+08]

[CMO5a]

[CMO5b]

[Cor83]

[CPP04]

[CRWO1]

[CS05]

Bibliography 116

Chris Chambers, Wu-chang Feng, Sambit Sahu, abdrips Saha. Measurement-based
characterization of a collection of on-line games. IMC 2005: Proceedings of the 5th
ACM SIGCOMM conference on Internet Measuremeages 1-1, Berkeley, CA, USA,
2005. USENIX Association.

Reza Curtmola, Juan Garay, Seny Kamara, and Rafibvsky. Searchable symmetric
encryption: improved definitions and efficient construetioInCCS '06: Proceedings of
the 13th ACM conference on Computer and communicationsiggquages 79—-88, New
York, NY, USA, 2006. ACM.

Benny Chor, Oded Goldreich, Eyal Kushilevitz, addhu Sudan. Private information
retrieval. InProceedings of IEEE Symposium on Foundations of Compuien&x; FOCS
pages 41-50, 1995.

Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, amdh&ny D. Joseph. Under-
standing tcp incast throughput collapse in datacentergrésy INWREN 2009: Proceed-
ings of the 1st ACM workshop on Research on enterprise nkimgpmpages 73—-82, New
York, NY, USA, 2009. ACM.

Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigasiao, and Feng Zhao.
Energy-aware server provisioning and load dispatchingcfomection-intensive internet
services. INNSDI 2008: Proceedings of the 5th USENIX Symposium on NedddBys-
tems Design and Implementatigpages 337—350, Berkeley, CA, USA, 2008. USENIX

Association.

Yan-Cheng Chang and Michael Mitzenmacher. Priya@serving keyword searches on
remote encrypted data. Proc. ACNS$2005.

Yan-Cheng Chang and Michael Mitzenmacher. Privai@serving keyword searches on
remote encrypted data. KWCNS 2005.

Teradata Corp. Teradata: Dbc1012 data base compuieepts and facilities. Document
No. C02-0001-00, 1983.

Y. Choi, K Park, and D. Park. Homed: A peer-to-peeariay architecture for large-scale
content-based publish/subscribe systems23rthinternational Workshop on Distributed

Event-Based Systems (DEBS'3)04.

Antonio Carzaniga, David S. Rosenblum, and Alexarid Wolf. Design and evaluation

of a wide-area event notification servid®CM Trans. Comput. Sys.9(3):332-383, 2001.

Fengyun Cao and Jaswinder Singh. Medym: Match-esitly dynamic multicast for

content-based publish-subscribe networks. pages 2922808.

[CWO03]

[Dea]

[DG92]

[DG04]

[DGG*86]

[DHJ*07]

[DRO2]

[FJ93]

[FKN94]

[FRA*05]

[GD9O]

[GD93]

[GGLO3]

Bibliography 117

Antonio Carzaniga and Alexander L. Wolf. Forwardimga content-based network. In
Proceedings of ACM SIGCOMN)ages 163-174, Karlsruhe, Germany, August 2003.

Jeffrey Dean. Personal Communication. Google.

David DeWitt and Jim Gray. Parallel database systeting future of high performance
database system€ommun. ACM35(6):85-98, 1992.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Siegbldata processing on large
clusters. InProc. OSD] 2004.

David J. DeWitt, Robert H. Gerber, Goetz Graefe, Michadfeytens, Krishna B. Kumar,
and M. Muralikrishna. Gamma - a high performance dataflowalolzge machine. MLDB
'86: Proceedings of the 12th International Conference ory\earge Data Basespages
228-237, San Francisco, CA, USA, 1986. Morgan Kaufmannishais Inc.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,\auizan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan SivasubramaniarerRétsshall, and Werner Vo-
gels. Dynamo: amazon’s highly available key-value storePrbceedings of twenty-first
ACM SIGOPS symposium on Operating systems prinGilg&sP '07, pages 205-220,
New York, NY, USA, 2007. ACM.

Joan Daemen and Vincent RijmeFhe design of Rijndael: AES — the Advanced Encryp-
tion Standard 2002.

Sally Floyd and Van Jacobson. Random early detegateways for congestion avoidance.
IEEE Trans. Netw.1(4):397-413, 1993.

Uri Feige, Joe Killian, and Moni Naor. A minimal molder secure computation (extended
abstract). IIETOC '94: Proceedings of the twenty-sixth annual ACM syimposen Theory
of computingpages 554-563, New York, NY, USA, 1994. ACM.

Ronaldo A. Ferreira, Murali Krishna Ramanathan, Asaéi®wAnanth Grama, and Suresh
Jagannathan. Search with probabilistic guarantees imuatsted peer-to-peer networks.
In Proc. P2R 2005.

Shahram Ghandeharizadeh and David J. DeWitt. A omdti performance analysis of
alternative declustering strategies.Rroceedings of the Sixth International Conference on
Data Engineeringpages 466—475, Washington, DC, USA, 1990. IEEE Computeie§o

G. Graefe and D. L. Davison. Encapsulation of paliahe and architecture-independence

in extensible database query executifEE Trans. Softw. Eng19(8), 1993.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Ilgeuithe google file system. In
SOSP 2003: Proceedings of the nineteenth ACM symposium enatidyg systems princi-
ples pages 29-43, New York, NY, USA, 2003. ACM Press.

[GHMPO9]

[GLL*09]

[Goh03a]

[Goh03b]

[Gol01]

[Gre09]

[gry99]

[GS04]

[HGSW10]

[HMDO5]

[HMT04]

[IK97]

[KHFO06]

[KKG *+10]

Bibliography 118

Albert Greenberg, James Hamilton, David A. Makind Parveen Patel. The cost of a
cloud: research problems in data center netwolB&COMM Comput. Commun. Rev.
39(1):68-73, 2009.

Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhafumfeng Shi, Chen Tian,
Yongguang Zhang, and Songwu Lu. Bcube: a high performarceeiscentric network

architecture for modular data centers.FAroc. SIGCOMM 2009.
Eu-Jin Goh. Secure indexes. Cryptology ePrinhie, Report 2003/216, 2003.

Eu-Jin Goh. Secure indexes. Cryptology ePrinthive, Report 2003/216, 2003.
http://eprint.1acr.org/ 2003/ 216/.

Oded GoldreichFoundations of Cryptographyolume Basic Tools. Cambridge Univer-
sity Press, 2001.

Albert Greenberg el al. VL2: a scalable and flexibd¢adcenter network. IRroc. ACM
Sigcomm?2009.

An efficient multicast protocol for content-basegbfish-subscribe systems. I1€8DCS
'99: Proceedings of the 19th IEEE International ConferemeeDistributed Computing
Systemgpage 262, Washington, DC, USA, 1999. IEEE Computer Saciety

Jun Gao and Peter Steenkiste. Design and evaluatiandistributed scalable content

discovery systemlEEE Journal on Selected Areas in Communicatj@# January 2004.

Daniel Halperin, Ben Greensteiny, Anmol Shethyd ®avid Wetherall. Demystifying
802.11n power consumption. FProc. HotPower pages 1—, Berkeley, CA, USA, 2010.
USENIX Association.

Andreas Haeberlen, Alan Mislove, and Peter Druscl@acier: Highly durable, decen-

tralized storage despite massive correlated failureBrde. NSDJ 2005.

Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A jadgy-preserving index for range
queries. InProceedings of VLDB - Conference on Very Large Datab&2@@4.

Yuval Ishai and Eyal Kushilevitz. Private simultames messages protocols with applica-
tions. INISTCS '97: Proceedings of the Fifth Israel Symposium on treofy of Comput-
ing Systems (ISTCS '9fage 174, Washington, DC, USA, 1997. IEEE Computer Saciety

Eddie Kohler, Mark Handley, and Sally Floyd. Desiggndccp: congestion control without
reliability. ACM SIGCOMM 2006.

Michael Kounavis, Xiaozhu Kang, Ken Grewal, Mathew EsZeShay Gueron, and David
Durham. Encrypting the internet. Proc. Sigcomm 2012010.

http://eprint.iacr.org/2003/216/

[KW94]

[LamO1]

[LDH *89]

[LLO4]

[LLH +03]

[LM10]

[Mit01]

[MWZ06]

[NDROS8]

[NPI+08]

[0ST95]
[Rai06]

[RDO1]

Bibliography 119

Brigitte Kroll and Peter Widmayer. Distributing @arch tree among a growing number of
processorsSIGMOD Rec.23(2), 1994.

Leslie Lamport. Paxos made simp&GACT News32(4):51-58, December 2001.

R. Lorie, J. Daudenarde, G. Hallmark, J. Stamos, and tdnjo Adding intra-transaction
parallelism to an existing dbms: Early experiendBEE Data Engineering Newsletter
12(1), 1989.

Lintao Liu and Kang-Won Lee. Keyword fusion to suppefficient keyword-based search

in peer-to-peer file sharing. MCGRID 2004: Proceedings of the 2004 IEEE International
Symposium on Cluster Computing and the Gpdges 269-276, Washington, DC, USA,
2004. IEEE Computer Society.

Jinyang Li, Boon Loo, Joseph Hellerstein, M. KaashoekyiD Karger, and Robert Morris.
On the feasibility of peer-to-peer web indexing and searichPeer-to-Peer Systems, Il

volume 2735 oL ecture Notes in Computer Scien&pringer Berlin / Heidelberg, 2003.

Avinash Lakshman and Prashant Malik. Cassandra: cekealized structured storage
system.SIGOPS Oper. Syst. Re®4:35-40, April 2010.

Michael Mitzenmacher. The power of two choices imdamized load balancingEEE

Transactions on Parallel and Distributed Systerti3:1094-1104, 2001.

Alistair Moffat, William Webber, and Justin ZobelLoad balancing for term-distributed
parallel retrieval. InSIGIR 2006: Proceedings of the 29th annual internationalVAC
SIGIR conference on Research and development in informedtdeval pages 348—355,
New York, NY, USA, 2006. ACM.

Dushyanth Narayanan, Austin Donnelly, and AntormRtron. Write off-loading: Practi-

cal power management for enterprise storagans. Storage4(3):1-23, 2008.

Sergiu Nedevschi, Lucian Popa, Gianluca lannacconéjisSRatnasamy, and David
Wetherall. Reducing network energy consumption via slegpind rate-adaptation. In
NSDI 2008: Proceedings of the 5th USENIX Symposium on Ne¢éddBystems Design
and Implementatiorpages 323—-336, Berkeley, CA, USA, 2008. USENIX Associatio

National Institute of Standards and Technologyuse hash standard, 1995.
Costin Raiciu. Phd transfer report: On distributedine filtering. UCL, 2006.

Antony Rowstron and Peter Druschel. Pastry: Scalat#centralized object location, and
routing for large-scale peer-to-peer systenhgcture Notes in Computer Scien@218,
2001.

[RFH*01]

[RRO6]

[RRHO7]

[RS04]

[RVO3]

[SAL*96]

[SGO7]

[SMK*01]

[SNR*+10]

[Sto86]

[SWPOO]

[TBFT04]

[TDO3]

Bibliography 120

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richaadpik and Scott Schenker. A
scalable content-addressable networkPtac. SIGCOMM 2001.

Costin Raiciu and David S. Rosenblum. Enabling carfidlity in content-based pub-

lish/subscribe infrastructures. Rroc. Securecomn2006.

Costin Raiciu, David S. Rosenblum, and Mark HandIBystributed online filtering. In
Poster Session: ACM Sigcomg007.

Venugopalan Ramasubramanian and Emin Giin SirehiBe: O(1) lookup performance

for power-law query distributions in peer-to-peer oveslain Proc. NSD| 2004.

Patrick Reynolds and Amin Vahdat. Efficient peerpeer keyword searching. IMlid-
dleware 2003: Proceedings of the ACM/IFIP/USENIX 2003rmagional Conference on
Middleware pages 21-40, New York, NY, USA, 2003. Springer-Verlag NewkyY Inc.

Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Effer, Adam Sah, Jeff Sidell,
Carl Staelin, and Andrew Yu. Mariposa: a wide-area distedudatabase systenThe
VLDB Journa) 5(1), 1996.

Bianca Schroeder and Garth A. Gibson. Disk failurethe real world: what does an
mttf of 1,000,000 hours mean to you? WHAST '07: Proceedings of the 5th USENIX
conference on File and Storage Technologpesye 1, Berkeley, CA, USA, 2007. USENIX

Association.

lon Stoica, Robert Morris, David Karger, Frans Kaashaekl Hari Balakrishnan. Chord:
A scalable Peer-To-Peer lookup service for internet apptias. InProc. SIGCOMM
2001.

Aaron Schulman, Vishnu Navda, Ramachandran RamjeéSNeng, Pralhad Deshpande,
Calvin Grunewald, Kamal Jain, and Venkata N. PadmanabhanteBdr: a practical ap-
proach to energy-aware cellular data schedulingProc. Mobicom pages 85-96, New
York, NY, USA, 2010. ACM.

Michael Stonebraker. The case for shared nottidagabase Engineering:4-9, 1986.

Dawn Song, David Wagner, and Adrian Perrig. Prattechniques for searches on en-

crypted data. IfProceedings of the IEEE Symposium on Security and Priza0.

Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Juasgiésharju, and Alejandro Buch-
mann. Bit zipper Rendezvous—Optimal data placement foegai?2P queries. IRroc.

EDBT Workshop on Peer-to-Peer Computing and DataBa®34.

Feng Tian and David J. DeWitt. Tuple routing strategfor distributed eddies. IRroc.
VLDB, 2003.

[TDO4]

[Tec10]

[TKLBO7]

[TXDO03]

[VPS+09]

[VRS04]

[WAB *+06]

[web09]

[Yao086]

[YGNO6]

[YIF+08]

Bibliography 121

Chungiang Tang and Sandhya Dwarkadas. Hybrid gitizzll indexing for effcient peer-
to-peer information retrieval. INSDI 2004: Proceedings of the 1st conference on Sym-
posium on Networked Systems Design and Implementgtages 16-16, Berkeley, CA,
USA, 2004. USENIX Association.

Ars Technica. Ftc reminds us that storing data irctbed has drawbacks, January 2010.

Wesley W. Terpstra, Jussi Kangasharju, Christef, and Alejandro P. Buchmann. Bub-
blestorm: resilient, probabilistic, and exhaustive pwepeer search. IRroc. SIGCOMM
2007.

Chungiang Tang, Zhichen Xu, and Sandhya DwarkaBagr-to-peer information retrieval

using self-organizing semantic overlay networksPhoc. Sigcomm2003.

Vijay Vasudevan, Amar Phanishayee, Hiral Shah, ElievireDavid G. Andersen, Gre-
gory R. Ganger, Garth A. Gibson, and Brian Mueller. Safe dfet#ve fine-grained tcp

retransmissions for datacenter communicatiorAGM SIGCOMM 2009.

Robbert van Renesse and Fred B. Schneider. Chdicatapn for supporting high through-
put and availability. IProc. OSD| 2004.

Christian Wallenta, Mohamed Ahmed, lan Brown, Steverildda and Felipe Huici.
Analysing and modelling traffic of systems with highly dynaraser generated content.
University of Oxford Research Note RN/08/10, 2006.

The size of the world wide web. http://www.worldwidebsize.com/, November 2009.

Andrew C. Yao. How to generate and exchange secrigtsProceedings of the IEEE

Symposium of Foundations of Computer Science, FQ@86.

Haifeng Yu, Phillip B. Gibbons, and Suman Nath. Aeaility of multi-object operations.
In Proc. NSDJ 2006.

Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budlulfar Erlingsson, Pradeep Kumar
Gunda, and Jon Currey. Dryadling: a system for generalgaeplistributed data-parallel
computing using a high-level language. @SDI'08: Proceedings of the 8th USENIX
conference on Operating systems design and implementatges 1-14, Berkeley, CA,
USA, 2008. USENIX Association.

	Introduction
	Problem Space
	Problem Definition
	Running a Query

	The Distributed Rendezvous Trade-off
	Scope
	Server Reliability
	Communication Costs
	Application Delay Bounds

	Solution Space
	Partitioned Distributed Rendezvous
	Randomized Distributed Rendezvous
	Sliding Window Distributed Rendezvous
	Limitations of Existing Solutions

	ROAR: Rendezvous On A Ring
	Storing objects
	Forwarding Queries
	Adding Nodes
	Removing Nodes
	Changing the Replication Level
	Load Balancing: Proportional Ranges
	Multiple Sliding Windows
	Running Queries on Heterogeneous Servers
	Scheduling Algorithm
	Optimisations
	Multiple Front-End Servers
	Sending Queries Reliably

	Managing Ring Membership
	Adapting to Changing Load
	Reducing Cross-Sectional Bandwidth Usage

	Application: Privacy Preserving Search
	Motivation
	Limitations of Online Privacy

	Basic Approach and Scope
	Analysis of the Index-Based Solution
	Bandwidth Comparison

	Definition of Privacy Preserving Search
	Security Preliminaries
	Security Assumptions and Scope
	Problem Definition
	Limitations of Confidentiality

	Solutions for Privacy Preserving Search
	Equality Matching
	Keyword Matching
	Numeric Matching
	Supporting Ranked Queries
	Supporting Generic Queries

	Implementation
	Overview
	Managing Metadata
	Running Queries
	Metadata Encoding
	Multi-Predicate Queries

	Evaluation
	Dynamic predicate ordering
	Query delays with varying numbers of metadata

	Related Work
	Conclusions

	Analytical Evaluation
	Query Delay
	Bounding Optimal Query Delay
	Query Delay Comparison when pq=p
	Query Delay Comparison when pQ>p
	Analysis of ROAR Mechanisms

	Fault Tolerance
	Changing the p/r tradeoff
	Comparison Conclusions

	Experimental Evaluation
	Experimental Setup
	The Application
	Basic Tradeoff
	Query Latencies Decrease with p
	Query Overheads Increase with p
	Higher Overheads=Wasted Resources
	Update Overhead Increases with r
	Does the trade-off matter?

	Changing p Dynamically
	Node Failures
	Load Balancing
	Large Scale Deployment
	Frontend Scheduling Performance
	Query Delay Comparison: ROAR vs. PTN
	Evaluation Summary

	Related Work
	Content Based vs. Content Insensitive Distributed Search
	Distributed Rendezvous Solutions
	Structured Overlays and Peer to Peer Search
	Content-Based Publish/Subscribe Systems
	Relational Databases

	Conclusions
	Contributions
	Future Work

	Bibliography

