
ROAR: Increasing the Flexibility and
Performance of Distributed Search

Costin Raiciu

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

UCL .

Department of Computer Science

University College London

April 11, 2011

2

To Andrei, Cristina and my parents

Abstract

Search engines are a fundamental building block of the web. Be they general purpose web search engines,

product search engines for online catalogues or people search in online networks, search engines provide

easy access to a huge amount of information. To cope with large amounts of information, search engines

use many distributed servers to perform their functionality.

For instance, to search the web quickly, search engines partition the web index over many machines,

and consult every partition when answering a query. To increase throughput, replicas are added for each

of these machines. The key parameter of these search algorithms is the trade-off between replication

and partitioning: increasing the partitioning level typically improves query completion time since more

servers handle the query. However, partitioning too much also has drawbacks: startup costs for each

sub-query are not negligible, and will decrease total throughput. Finding the right operating point and

adapting to it can significantly improve performance and reduce costs.

In this thesis we propose that the tradeoff between partitioning and replication should be easily

configurable. To this end we introduce Rendezvous On a Ring (ROAR), a novel distributed algorithm

that enables on-the-fly re-configuration of the partitioning level. ROAR can add and remove servers

without stopping the system, cope with server failures, andprovide good load-balancing even with a

heterogeneous server pool.

We experimentally show that it is possible to dynamically adjust the partitioning level to cope with

different loads while meeting target query delays, and in doing so the system can reduce its power

consumption significantly.

To test ROAR we introduce Privacy Preserving Search: a particular search application that allows

users to store encrypted data online while being able to easily search that data. Our contributions include

novel protocols that allow PPS for numeric values, as well asa proof of concept implementation of PPS

running on top of ROAR and allowing users to match as many as 5 million files in well under 1s.

Acknowledgements

My PhD has brought me to the highs of exultation infused by fresh ideas and the lows of experiments

gone the wrong way. It was a journey I would always remember, and one I would always start again if I

could. I met, worked with, and made friends with many people during these years, and here I’d like to

express my gratitude to all of them for helping me become a researcher.

My advisor David Rosenblum, always calm and collected, gaveme the chance to study at UCL, and

helped me endure the many paper rejections and find a way to publish what was obviously a good idea -

ROAR, the basis of my PhD :)! Mark Handley, my second advisor and later my boss during the Trilogy

project has showed me what good research is, and introduced me to my now major area of interest -

computer networking.

My colleagues and friends Felipe Huici and Adam Greenhalgh from the nets group helped me steer

my way around Hen, and provided invaluable help when I neededit most - for paper deadlines. Petr

Marchenko and Andrea Bittau helped me unwind with regular fussball matches. My friend Mo always

put a smile on my face, even when I was really down. Paper discussions with people in the nets group

including faculty members Brad Karp, Damon Wischik and KyleJamieson, as well as colleagues Piers

O’ Hanlon, Georgios Nikolaidis helped me find interesting problems and compelling solutions in the

vast systems literature.

A big thanks goes to all my friends in the SSE group, where I spent the initial three years of my

PhD: Clovis Chapman, Genaina Rodrigues, Leticia Duboc, Mirco Musolesi, Stephanos Zachariadis,

Andy Maule, Danielle Quercia, Michelle Sama and many others.

Nithin Umapathi, a great friend I found in London, broke the monothony of research with intriguing

discussions about the world over coffee. His views of the world made a lasting impression on me.

A great thank to my parents that gave me a chance to do a PhD, by bringing me up to love school

and science, and who supported my throughout my PhD. Withouttheir help I wouldn’t be in London

finishing the PhD now.

Cristina was close to me during my highs and lows, and gave me enormous support throughout. It

is great to be with you! Our son Andrei, born during my PhD, made me want to leave home late and

come back early. He always puts a smile on my face and makes me feel fulfilled. I thank them both.

Contents

1 Introduction 11

2 Problem Space 15

2.1 Problem Definition 17

2.1.1 Running a Query .. 19

2.2 The Distributed Rendezvous Trade-off 20

2.3 Scope .. 20

2.3.1 Server Reliability 21

2.3.2 Communication Costs 21

2.3.3 Application Delay Bounds 22

3 Solution Space 23

3.1 Partitioned Distributed Rendezvous 24

3.2 Randomized Distributed Rendezvous 25

3.3 Sliding Window Distributed Rendezvous 26

3.4 Limitations of Existing Solutions 28

4 ROAR: Rendezvous On A Ring 29

4.1 Storing objects 30

4.2 Forwarding Queries 30

4.3 Adding Nodes 32

4.4 Removing Nodes 32

4.5 Changing the Replication Level 34

4.6 Load Balancing: Proportional Ranges 35

4.7 Multiple Sliding Windows 36

4.8 Running Queries on Heterogeneous Servers 36

4.8.1 Scheduling Algorithm 37

4.8.2 Optimisations 39

4.8.3 Multiple Front-End Servers 41

4.8.4 Sending Queries Reliably 41

4.9 Managing Ring Membership 42

Contents 6

4.9.1 Adapting to Changing Load 43

4.9.2 Reducing Cross-Sectional Bandwidth Usage 44

5 Application: Privacy Preserving Search 45

5.1 Motivation 45

5.1.1 Limitations of Online Privacy 46

5.2 Basic Approach and Scope 47

5.3 Analysis of the Index-Based Solution 47

5.3.1 Bandwidth Comparison 48

5.4 Definition of Privacy Preserving Search 50

5.4.1 Security Preliminaries 50

5.4.2 Security Assumptions and Scope 51

5.4.3 Problem Definition 51

5.4.4 Limitations of Confidentiality 53

5.5 Solutions for Privacy Preserving Search 54

5.5.1 Equality Matching 55

5.5.2 Keyword Matching .. . 56

5.5.3 Numeric Matching .. . 59

5.5.4 Supporting Ranked Queries 62

5.5.5 Supporting Generic Queries 62

5.6 Implementation 63

5.6.1 Overview .63

5.6.2 Managing Metadata .. . 64

5.6.3 Running Queries .. . 64

5.6.4 Metadata Encoding 65

5.6.5 Multi-Predicate Queries 65

5.7 Evaluation 66

5.7.1 Dynamic predicate ordering 69

5.7.2 Query delays with varying numbers of metadata 69

5.8 Related Work 71

5.9 Conclusions 72

6 Analytical Evaluation 73

6.1 Query Delay 73

6.1.1 Bounding Optimal Query Delay 74

6.1.2 Query Delay Comparison whenpq = p . 75

6.1.3 Query Delay Comparison whenpQ > p . 81

6.1.4 Analysis of ROAR Mechanisms 83

6.2 Fault Tolerance 84

Contents 7

6.3 Changing thep/r tradeoff . 86

6.4 Comparison Conclusions 87

7 Experimental Evaluation 89

7.1 Experimental Setup 89

7.2 The Application 90

7.3 Basic Tradeoff 91

7.3.1 Query Latencies Decrease with p 92

7.3.2 Query Overheads Increase with p 92

7.3.3 Higher Overheads=Wasted Resources 93

7.3.4 Update Overhead Increases withr . 94

7.3.5 Does the trade-off matter? 94

7.4 Changingp Dynamically . 94

7.5 Node Failures 96

7.6 Load Balancing 97

7.7 Large Scale Deployment 98

7.8 Frontend Scheduling Performance 101

7.9 Query Delay Comparison: ROAR vs. PTN 102

7.10 Evaluation Summary 104

8 Related Work 105

8.1 Content Based vs. Content Insensitive Distributed Search 105

8.2 Distributed Rendezvous Solutions 106

8.3 Structured Overlays and Peer to Peer Search 107

8.4 Content-Based Publish/Subscribe Systems 109

8.5 Relational Databases 110

9 Conclusions 112

9.1 Contributions 112

9.2 Future Work 114

Bibliography 114

List of Figures

1.1 Basic Distributed Rendezvous 12

3.1 Different Distributed Rendezvous algorithms (n = 12,p = 4 andr = 3) 24

4.1 Basic ROAR store and query mechanisms withn = 12, p = 4 andr = 3. Objects are stored in arches of length1

4.2 Duplicate matches are possible whenpq > p is used. In this case,r = 4, p = 3 andpq = 4. 31

4.3 Avoiding duplicate matching in ROAR. 31

4.4 A node failure can cause a query to miss a match. ROAR prevents this by splitting the failed node’s sub-query in

4.5 ROAR Scheduling Algorithm: Simple Example 39

4.6 Range Adjustment for Query Scheduling 40

5.1 Bandwidth Consumption Comparison between Index-Basedsolution and PPS 49

5.2 Data Structures Used by PPS 63

5.3 Running a Query with PPS: System Architecture 64

5.4 Execution traces for queries searching 1 million metadata 67

5.5 Query delays with in-memory data and different number ofmatching threads 68

5.6 PPS performance scaling with file collection size on a Dell 1950 69

5.7 PPS performance scaling with file collection size on a SunX4100 70

6.1 Basic Delay Comparison for SW, PTN and ROAR 76

6.2 Variation of Query Delay with N 78

6.3 Variation of Query Delay with Load 79

6.4 Variation of Query Delay with Server Heterogeneity 81

6.5 Algorithm Performance with Different Server Speed Estimation Errors 82

6.6 IncreasingpQ and its effects on the algorithms .82

6.7 Effects of ROAR Mechanisms on Performance 83

6.8 Algorithm Unavailability Comparison for Strict Operations 85

7.1 Effect ofp on system performance with PPSLM . 91

7.2 Effect ofp on system performance with PPSLC . 91

7.3 Average CPU load for each node 92

7.4 Effect of updates on server throughput 94

7.5 ROAR Changingp Dynamically . 95

List of Figures 9

7.6 Effects of 20 Node Failures on ROAR 96

7.7 Fast Load Balancing withpq > p . 97

7.8 Delay Distribution with Fast Load Balancing when usingpq > p 97

7.9 Range Load Balancing 98

7.10 Effects of Range Load Balancing 99

7.11 Delay Breakdown as seen at Frontend Server 100

7.12 Frontend Scheduling Delay for PTN and ROAR 101

7.13 Observed Server Processing Speeds 102

7.14 Query Delay Comparison ROAR vs. PTN 103

List of Tables

6.1 Simulation Parameters 77

6.2 Bandwidth consumption comparison (messages per operation) 86

7.1 Server Models Used in Experimental Evaluation 90

7.2 Energy Savings running atp = 5 instead ofp = 47 . 93

7.3 ROAR performance running on 1000 servers in EC2 100

Chapter 1

Introduction

Search, possibly the web’s most important application, is implemented as a distributed computation over

a large inverted Web index. In order to improve the performance of queries, this index is partitioned

into many parts, and each part is replicated on a cluster of commodity PCs. When a query is executed,

it is sent to one machine in each cluster so that the whole index is covered, and the results aggre-

gated [BDH03]. From a distributed algorithms point of view,which cluster each data item is stored on

and which machines each query is sent to are independent of the actualcontentof the data and queries.

Indeed, the algorithm is blind to this content: it is sufficient to ensure that each query reaches machines

that between them hold all the data. We call this class of algorithmsdistributed rendezvous.

Such algorithms contrast with other more constrained look-up algorithms such as Distributed Hash

Tables (DHTs), where a query is sent to precisely the node that can answer the request. To some extent,

distributed rendezvous can be thought of as brute-force distributed matching. However inelegant this

may seem, many real-world problems fall into this category,including:

• Web search - such as Google, Bing or Yahoo Search

• Product search provided by online shops such as EBay, Amazon.

• Image search and other complex searches that are difficult toindex properly

• The “map” operation of map/reduce computation can be thought of as an instance of distributed

rendezvous, where the query is the mapping function to be executed and the data is the input to

this function.

• Parallel databases

Successful web search engines such as Google or Bing use parallel index-search algo-

rithms [BDH03], which are a form of distributed rendezvous.The datasets involved can be many

terabytes in size [BDH03], can change rapidly (consider Google News, updated continuously as news

happens), and can have very high query rates. Only by spreading the search across large numbers of

servers can query latency be kept low while achieving high overall throughput.

Figure 1 illustrates the basic concept. The servers are divided into clusters and each data item to be

searched is replicated on all the machines in a single cluster. With this in place, a query is then sent to

12

one machine from each cluster, thus ensuring that the query is matched against the full index. Each data

entry is only matched against the query on a single machine, allowing arbitrarily complex matching rules

to be performed locally. Having performed the search, each machine ranks the matches and returns the

best ones. Finally, the results from all the query machines are merged, ranked once again, and returned

to the user.

Figure 1.1: Basic Distributed Rendezvous

Given this strategy, the obvious question is how many nodes should be in each cluster? Each query

must be sent to one node from each cluster, so increasing the number of clusters means splitting the

search index into more pieces. The good thing with involvingmore nodes in each search is that it

typically reduces the search completion time1. On the down side, per query overheads increase with

the number of nodes participating in each search: the bandwidth to transmit the query increases, and

each of the queried nodes starts a search thread, sends and receives data, etc. In general, these per-node

overheads do not depend on the amount of data being searched,i.e. are fixed. Sending the same query to

more nodes means that the system is “paying” more fixed overhead per query. This reduces the amount

of useful work the system can do, thus reducing throughput.

In essence, the problem is one of balancing search latency, which benefits from a larger number of

clusters, with total throughput for all nodes, which has a preference for a smaller number of clusters. A

sensible strategy would be to choose the smallest number of clusters that satisfies a latency target, such

as answering all queries in under a second. Once this target is satisfied, splitting into more clusters would

only decrease peak throughput.

Of course, for a static data set and a constant query rate there is no great problem figuring out the

number of clusters needed to satisfy a target latency, and from there to calculate the number of machines

in each cluster needed to satisfy the overall throughput. However, neither the data set nor the query

rate remain constant for most real applications, and the total number of machines cannot normally be

changed on short timescales.

Consider again Google’s search engine: over time the size ofthe web increases, so the size of

Google’s index grows. While machines can easily be added to existing clusters in order to maintain

throughput, keeping search latency constant requires repartitioning the servers into more clusters. In

such scenarios, the system becomes inefficient but keeps running. A worse case is when the index grows

so much that the portion of it each server needs to store outgrows the memory of the machine. As

Google’s web search algorithm runs from memory, it becomesnecessaryto repartition.

1assuming delay variance across nodes does not increase significantly

13

We have focused the discussion on Google to be more specific; the need to repartition dynamically

equally applies to other distributed rendezvous applications. In general, it seems that there are two

forces driving the need to repartition in distributed rendezvous applications: a) ensuring the system runs

as efficiently as possible given the current load, and b) ensuring the system does not hit scaling walls;

for instance, this could equate to ensuring it does not run out of memory or disk on any of the servers.

Current systems, such as Google, only repartition infrequently and in response to scaling con-

cerns [Dea]. The repartitioning process is equivalent to restarting the system in the new configuration

(although it can be done incrementally; a more detailed description of Google’s approach is provided in

Chapter 2). None of the deployed systems we know about can (let alone do) repartition dynamically to

increase efficiency. We believe this is a result of using cluster-based distributed rendezvous algorithms,

that make reconfiguration expensive and difficult. We take the view that if repartitioning were cheap and

non-disruptive to the running system, the system would leverage it to increase its overall efficiency.

This thesis sets out to build distributed rendezvous systems that use repartitioning as a knob to

control the properties of the system. Specifically, we propose a novel distributed rendezvous algorithm

called Rendezvous On A Ring (ROAR) that achieves most of the desirable properties of the cluster-based

algorithm while allowing reconfiguration with minimal bandwidth cost.

The main difference between ROAR and the cluster-based algorithm is the way replicas of data are

laid out on servers: instead of using clusters, ROAR arranges servers in a virtual ring and stores each

replica on a portion of the ring. The biggest gain is that repartitioning now only equates to expanding or

contracting these areas. The biggest challenge is effectively using heterogeneous servers to reduce query

delay and its variation. The core of the problem is the “sliding window” positioning of replicas ROAR

uses. This technique effectively reduces the number of server combinations a query can be sent to, and

hence it is more difficult to include faster servers in more queries.

We present the design of ROAR and throughly explore its properties. We present and evaluate

several techniques that together overcome the delay challenge. We evaluate ROAR against the cluster-

based solution, and against the theoretical best algorithm. Experiments on a 50-server deployment in the

Hen testbed, together with experiments on 1000 servers on Amazon’s EC2 show ROAR’s practicality.

To test ROAR we chose the Privacy Preserving Search (PPS) application. PPS is an application

where untrusted servers can match encrypted queries against encrypted data without knowing the con-

tents of the queries or the data. PPS could be used, for instance, to enable privacy in online services

such Microsoft Office Live and Amazon S2. This thesis contributes a security model for PPS and novel

techniques to support matching numeric predicates againstnumeric data.

PPS is both disk and CPU intensive and achieving reasonable query delays for large datasets re-

quires parallelization. Distributed Rendezvous in general, and ROAR in particular, is a natural solution

to scale PPS to large datasets and high query rates. We show that PPS can scale to millions of items and

high query rates by running on more servers.

This thesis is structured as follows. Chapter 2 provides an overview of the problem space, including

relevant applications, scope and requirements. Chapter 3 analyses the solution space focusing on the

14

way different algorithms place their data on servers, and reviews in depth the most relevant existing

literature on distributed rendezvous. Chapter 4 presents our solution, ROAR. Chapter 5 presents the

PPS application, together with our solution for performingprivacy preserving search. We perform an

analytical evaluation of ROAR comparing it to other approaches in Chapter 6. Chapter 7 contains an

in-depth evaluation of ROAR and PPS running on top ROAR. Related work is reviewed in Chapter 8.

We conclude in Chapter 9.

Chapter 2

Problem Space

The Web has expanded enormously since its inception, merely20 years ago. In this short period, more

and more data has become available online, totalling more than 50 billion pages today [web09]. For this

huge amount of data to be useful, users need ways to discover relevant information quickly. Search has

emerged as a backbone for the Web, supporting the Web’s growth by offering a simple interface that

allows users to find interesting data.

There are many flavours of search available on the Internet, each tailored to meet different needs of

the user. Web-search engines (such as Google, Bing, Yahoo Search) are the most general example: they

create and store a reasonably accurate snapshot of the Web, and use it to answer user queries. Online

retailers such as eBay or Amazon offer product search to their users, allowing them to find interesting

items in large product databases. News sites typically use categories to allow users quick access to

desired content, but also offer search to allow for more specific queries. Online data repositories such as

Flickr or Picassa (storing photos), Google Docs or Microsoft Office Live (storing documents) also offer

search to allow their users quick access to information. In fact, almost all major websites today use some

form of search to help users sift through large amounts of data.

Searching large databases is not technically easy. As the datasets involved can be huge, they cannot

fit the memory or even disk of any single server. Even if they did, running a query against the entire

database takes a long amount of time, much more than the time users are willing to wait for a response.

Search systems must provide correct answers fast, typically well under one second. Finally, search

systems must be built with scalability in mind: the dataset sizes are constantly increasing, and search

volumes will likely increase too. Solving for the current dataset sizes and query loads is not enough. A

good solution must be able to smoothly adapt to changing workloads.

To address these issues, most of the existing search solutions rely on two basic tools:partitioning

the query andreplication of the data.

Partitioning allows running the query in parallel on many servers. The dataset is partitioned among

many servers, such that each server will store a subset of thetotal data, and all servers collectively store

all the data. To run a query, the system will send it toall the servers. Each server locally runs the query

against its part of the dataset, and returns (partial) results. These results are merged into the final answer,

which is sent to the user. For simplicity of presentation, wewill refer to sending the query to the servers

16

holding different parts of the data aspartitioning the query. However, we note that the query itself is not

split in any way, but rather the data that is matched by the query.

Partitioning the query to more servers typically reduces the query search time: the time a server

takes to run a query against its data is smaller as the datasetgets smaller. Partitioning more would always

reduce delay if end-to-end delay were only determined by local query search times. However, there are

other delays that affect end-to-end query delay: network delays in sending the query and receiving the

results typically increase with the number of servers. If wepartition too much, the network delays will

tend to dominate the local query delays, and at this point partitioning further only increases delay.

At first glance, partitioning is work conserving: the total amount of work done is constant, regard-

less of the partitioning level. This is because there is no duplicated work: each server only works on

its unique subset of the data, and no other server works on thesame data. Globally, the dataset is only

matched once against the query, regardless of the number of servers involved in the search.

However, this view is not accurate: there are overheads associated with starting a query on a server,

and these overheads scale up when the partitioning level increases. For each query, each server processes

the query message, starts a search thread, waits for the thread to finish, and sends a reply message.

This overhead is constant, as it does not depend on the size ofthe data being searched. Further, the

network will send proportionally more messages as more servers are involved in the search. The front-

end server—receiving the query from the user and sending it to the query servers—will work harder to

schedule a query on more servers (as the complexity is at least linear, as we will show in Chapter 3).

To summarise, the total per-query overheads increase when the partitioning level increases. This

is work the system does, but is not useful per se; hence, it negatively affects the maximum throughput

of the system. Further, for the same amount of useful work, the system has to do more total work as

the partitioning level increases. This increases energy usage at the least; in the evaluation we show this

effect for the PPS application.

Partitioning is useful to split the data into chunks that fit on, and can be quickly searched by, indi-

vidual servers. Partitioning alone is not enough: if any single server fails, the subset of the data it stored

becomes unavailable to queries. In such cases, the search system will either return incomplete results

or just stop responding to queries. Even if the servers were perfectly reliable, scaling the system with

partitioning alone is insufficient. If query load increases, servers are typically added to the system to

cope with the additional load. This would cause the partitioning level to increase, which in turn can have

negative effects on end-to-end delay and will increase overheads,

Replicationhelps with both these problems. The dataset is partitioned as before, but the number of

partitions is now less than the number of servers. Then, eachof these parts will be replicated on a few

servers. To run a query , the system will send it to enough servers that hold all the data between them.

Having more than one replica of each data part increases fault tolerance and availability. Adding

servers to the system, and loading these servers with replicas of existing data is the easiest way to scale

the system up when query load increases.

Replication comes with its own overheads: the more replicasof the dataset, the bigger the update

2.1. Problem Definition 17

cost (in terms of network traffic and local processing). Typical search databases do not change that often,

so this may not be a big issue. However, there are datasets that change frequently (e.g. news); in such

cases, the update costs may become a limiting factor in system performance.

As with partitioning, replication alone is not sufficient tosupport search. When the data set grows,

the amount each server has to store and process grows. Veritable scaling walls will be hit when the

amount of stored data exceeds any individual server’s capacity; also query delay will increase to unac-

ceptable levels when the data set becomes too large. Finally, having more replicas to update will increase

the time needed to reach consistency in the system.

The main problem with existing search engines is that they make it difficult to change the replication

or partitioning level. The typical mode of operation is to estimate dataset size and update frequency, as

well as query load, and use these to statically compute the required levels of partitioning and replication.

If these parameters require changing, the system is effectively “restarted” with the new parameters [Dea].

This by itself is not a big issue if these estimates are accurate, but they rarely are: query loads, in

particular, are notoriously bursty (e.g., due to “flash crowds”), the dataset sizes continuously increase

and their update rate changes. The task then is to “optimise”the parameters a-priori. If one uses worst-

case predictions to derive the parameters, the system is prepared for the worst but is highly inefficient.

If one uses average case predictions, the system will fail tomeet its targets (such as delay) when load

exceeds expectation, and will be inefficient when load undershoots. Hence, it is important to allow

systemreconfiguration at runtime.

Current systems repartition infrequently [Dea], typically when the dataset size exceeds the memory

of the nodes. Replicas can be added as query load dictates. These reconfigurations typically require

manual input and disrupt the system. This means that such events are the exception, rather than the

norm.

Contribution. We take the view that fine-grained adaptation of the replication and partitioning levels

can increase the overall efficiency of the system, and will allow systems to cope with wider ranges of

traffic loads while maintaining good service.

For reconfiguration to becomeadaptation, it must be fast, automatic and seamless. The system

must be able to service running queries with minimal disruption while reconfiguration is taking place.

Current algorithms, in particular the Google one, fail to achieve these requirements.

In this thesis we examine the fundamental algorithmic reasons that prevent the existing solutions

from achieving adaptation and design a novel algorithm thatmeets these goals.

2.1 Problem Definition

Distributed Rendezvous (DR)is a solution to search problems that uses the two basic toolsof replica-

tion and partitioning. Essentially, distributed rendezvous aims to meet (rendezvous) each query with all

the data, in a distributed way. It is an algorithm that decides how data is split and how queries are routed

to meet the data. It does not dictate how the query is performed locally, on each server (which depends

on the type of search provided).

2.1. Problem Definition 18

We use the term “distributed rendezvous” instead of “distributed search” for two main reasons.

Firstly, we want to focus on the distributed algorithm storing and splitting the data and routing the

queries to servers, not on the search algorithm used locallyto select the results. Secondly, there are other

applications besides search that can use distributed rendezvous: online filtering of content is one such

example [RRH07], and the map operation in map-reduce computation is another.

Distributed rendezvous is “dumb” because it does not use content to decide where it should store

certain data, nor does it use query content to route the queryto the interesting data. It routes the query to

meetall the data, which is, in a sense, a distributed version of bruteforce matching. Locally, however,

each server will typically use smart algorithms to get the query results from its local dataset.

How come distributed rendezvous-like solutions are used inpractice by Google, Microsoft, etc.?

Surely, smarter content-based solutions are preferable! The biggest advantages of distributed rendezvous

over content-sensitive solutions are its simplicity and generality. We provide an overview of alternative

solutions and outline the reasons for DR’s widespread use inSection 8.2.

Definition 1 (Distributed Rendezvous). Distributed Rendezvous is a class of distributed algorithmthat

takes a collection ofn servers and a parameterr, the replication level for data objects. It offers two basic

operations:

1. Store Object: takes as input a data object and stores it onr servers.

2. Run Query: when presented with a query, it will forward the query to enough servers to ensure

all the data objects are queried.

A third operation that may be implemented by distributed rendezvous algorithms is the ability to

changer on the fly. On request, replicas will be added or deleted to achieve the desired replication level;

meanwhile queries should still be serviced as usual, possibly with a reduction in capacity.

To achieve full query functionality, a few other operationsmust be implemented on top of distributed

rendezvous: each node must locally search its data objects with the given query, and find matches; results

must be sent back to the user. We intentionally leave these out of the DR definition, as they are application

specific.

Brewer [Bre01] definesharvestandyield for distributed rendezvous systems.harvestis the fraction

of data objects a query visits. When harvest is 100%, all dataobjects are visited so the query is given

an exact answer; when harvest is less, an approximate answeris returned.yield is the number of queries

that are serviced out of the total number of queries. Ideally, we would like to service all queries and

thus haveyield close to 100%. However, when systems are overloaded it may bedesirable to drop some

queries altogether to ensure the rest of the queries are executed.

Comments on Def. 1.By definition, we require harvest to be 100% as some applications will require

exact answers.

We intentionally choose the same replication level for all objects. This is the next step after not

considering content: we treat all data objects equally. Some applications may need to give more weight

to certain objects if harvest is less than 100%; this is to ensure that some important objects are always

2.1. Problem Definition 19

visited. These mechanisms can be layered on top of a distributed rendezvous algorithm as needed, with-

out changing the underlying behaviour for the majority of objects. Hence we consider them orthogonal

to the basic distributed rendezvous problem.

In practice, when designing a distributed system, one asks the question: how many servers are

needed to support a certain query throughput, given a collection of data objects? Here, we take the

dual approach where we assumen, the number of servers, is given and and ask what is the maximum

query throughput. An answer to the latter question implies the answer to the former. We prefer the dual

formulation as it allows us to reason about the properties ofthe algorithms more easily.

A secondary question is: what is the proper replication level? The common approach is to choose

the replication level a-priori according to requirements such as availability. We take the view that the op-

timal replication level is difficult to characterise beforehand and may even change as the system evolves.

Therefore we choose to exposer as a knob to the application.

Definition 2 (Partitioning Level). Givenn andr, let the partitioning levelp be the minimum number of

servers a query must visit such that it collectively meets all the data objects.

Definition 3 (Load Imbalance). Given an assignment of items to servers, letassignedi be the number

of items assigned to serveri. We define load imbalancelb as:

lb =
maxn

i=1 assignedi

(
∑n

i=1 assignedi)/n

In short, load imbalance is the ratio between the maximum load assigned to a server and the average

load. When items are split eventually among servers the imbalance is1; when all items are assigned to

a single server the imbalance isn.

In the definition above, items can be either replicas or queries.

2.1.1 Running a Query

Splitting work among multiple servers serves to pool the resources of those servers together, making

them act as a single resource. DR can help pool the disks, the CPUs and the memory of the nodes. In

this section we aim to create models of how these resources can be shared.

Definition 4 (Object). An object is a collection of bytes that is stored in the DR system. It has an

identifier associated with it, uniformly distributed from an object identifier space. For example, assume

this space is unsigned integers.

Definition 5 (Query). A query is a predicate (a polynomial time computation) that takes as input a data

object and answers yes/no indicating whether the object matches the predicate or not.

To execute a query is to run it against all stored objects withIDs in the object identifier space. To

partially execute a query is to run it against objects with IDs in a subset of the identifier space. To split

a query on many servers is to partition the identifier space into (a few) sub-queries, and assign them to

different servers.

Definition 6 (Splitting a query). The query in Distributed Rendezvous contains partitioninginformation

that informs servers which of their objects should be matched against the query.

2.2. The Distributed Rendezvous Trade-off 20

The query does not need to specify exact object identifiers, but rather the range of objects this query

needs to match.

2.2 The Distributed Rendezvous Trade-off

What is the relationship betweenr, p, andn? The answer depends on load balancing.

Let us consider the case when we have perfect load balancing for object replicas (i.e.lbdata =

1). Let the number of data objects beD. Each server will store approximatelyDr/n objects. To

achieve correctness, a query must visit enough servers suchthat it visits all data objects. DividingD by

the number of objects on each server, we find that the minimum number of servers to be visited—the

partitioning levelp—is p = n/r. Thus:

rp = n (2.1)

Another way to think of this equation is to place then servers in a matrix withr rows, where each

data object is stored in all the servers from one random column. When a query arrives, it must visit all

the servers in a random row from the matrix.

This is the main trade-off distributed rendezvous offers. There is a direct relationship between the

number of replicas for each data object and the number of servers a query must visit. As a consequence,

when parameterizing DR we can choose eitherr or p; givenn, the other is implicit.

Increasingr increases availability, and also increases the ability to avoid slow servers - thus im-

proving query delay. Smallerr means less bandwidth is used for storage, as each object update needs to

be sent to fewer servers.

We note thatp is the minimum number of servers that ensures correct query execution. In reality,

values larger thanp can be used for any given query. If utilisation is low, using higher values ofp will

result in lower delay for CPU bound queries, as long as duplicate matches are avoided across servers.

In distributed rendezvousr is no longer just a tool for increasing availability, but a way to control

other properties of the system. For instance, to achieve consistency, chain replication [vRS04] serialises

updates at the first replica and only allows reads at the server hosting the first replica. DR only settles

for eventual consistency but can instead user to affect other properties of the distributed system such as

bandwidth consumption or delay.

2.3 Scope

What are the DR-like problems we are trying to support? Answering this question will help us narrow

the large problem space.

We envisage two main categories of problems:

• Query Applications. Here, a query is presented to the distributed system, which executes it

and returns the results. Examples are many: Google/Microsoft/Yahoo web search, eBay/Amazon

product search, Privacy Preserving Search, etc. We assume this service will run in a data-center,

with low delay and high bandwidth between servers.

2.3. Scope 21

• Online Filtering Applications. Here, users express their interests which are stored in the

database. When new documents arrive, they are matched against existing interests and forwarded

to interested users. This is the dual of the query scenario: user interests are stored instead of doc-

uments. Such a system could be used to quickly disseminate RSS feeds. A possible deployment

is the Web servers themselves.

Different applications have different bottlenecks. The privacy preserving search application we

experimented with is CPU bound. Web-search seems to be CPU ormemory bound [Dea]. other types of

searches are disk-bound. The online filtering example may bebandwidth bound, as documents must be

sent to many users.

The main focus of this thesis is the first type of application.

Although there are many potential constraints on creating asolution, three are of particular impor-

tance:

• the reliability of the servers, which affects the availability of the system;

• the cost of communications between the servers; and

• the acceptable delay bounds of the application.

For any particular stable scenario, with a particular ratioof stored objects to queries, it is possible

to choose a value ofr which optimises these objectives. For example, Google might wish to minimise

bandwidth costs, subject to the threshold constraints of one second search latency and five-nines avail-

ability. However, if conditions change, given thatr is the only free parameter, it may be important to

change the replication levelon-the-flyto re-optimise the system.

2.3.1 Server Reliability

The applications we envisage, while distributed, are most likely to run on maintained servers with rela-

tively stable overlay membership (i.e. servers are allocated to the search application for a long time) and

infrequent failures. Thus we prefer solutions suited for comparatively low churn and failures.

Different algorithms hit different points in the availability/cost/delay tradeoff space. However, re-

gardless of the algorithm, increasingr increases availability. Applications can monitor availability when

running queries and adaptr appropriately.

Failure Model. We assume server behaviour is fail-stop, and that failures are independent.

Data Consistency.We assume lazy replication is used to store objects, and thuseventual consistency is

achieved. This is appropriate for the target applications,where objects updates are comparatively rare to

query rates, and a few transient false positives or negatives are acceptable.

2.3.2 Communication Costs

Bandwidth is often the bottleneck in wide-area deploymentsand even between racks in data cen-

ters [DG04], and thus it may limit the query-processing rate. In addition, many applications care

about throughput, a prime example being map/reduce systems, where queries are executed offline against

stored data. The online filtering application is bandwidth-bound if run in a wide-area setting.

2.3. Scope 22

In general, if bandwidth costs are high then reducing bandwidth usage is an objective. While this

is obvious in the wide-area, this may be even true even in datacenters with scarce inter-rack capacity

available, and the new focus on energy consumption: reducing bandwidth usage also reduces energy

related costs [NPI+08].

How does bandwidth usage depend onr? Let Bdata be the bandwidth of incoming data object

updates and inserts. LetBquery be the bandwidth of incoming query traffic, andBresults the bandwidth

used by query replies. The total bandwidth consumptionB of the system is:rBdata+pBquery+Bresults.

Bresults does not depend onr, p or n and can be considered constant for this analysis.

Using Eq. 2.1, it is straightforward to show that the value ofr that minimises the bandwidth is

ropt =
√

n ·Bquery/Bdata.

If we sub-optimally chose an extreme value ofr, either very small or very large, this requires

O(
√

n) more bandwidth than optimal.

2.3.3 Application Delay Bounds

While interactive applications care about bandwidth costs, their primary concern is keeping query times

short. When DR partitions a query, latency is reduced asp servers work in parallel on disjoint subsets of

the data. The largerp is, the smaller the resulting delay.

Further, depending on the overall load, running the same query on the same number of servers may

take a different amount of time. For instance, approximating the system with anM/D/1 queue, waiting

time increases with load (ρ) asρ/(1− ρ).

We can effectively write a functionminP that takes as input the servers’ processing capacity and

the load in the system, and outputs the minimal value ofp that achieves the target delay. For different

values of load,minP will be different.

Chapter 3

Solution Space

Our end goal is an algorithm that can easily adapt to changes in both query rates and data update fre-

quency, providing bounded search times as efficiently as possible. Efficiency favours using partitioning

and replication levels such thatpr = n. Within this envelope, lowerp values are preferred if query rates

are high, and lowerr values are preferred if data updates are frequent.

Our first requirement for a candidate solution is to efficiently support the basic functionality : run-

ning queries and storing data (pr = n). The algorithm must allow changing the ratio betweenp andr

when the number of serversn is fixed, while at the same time allowing us to changep andr by adding

or removing servers.

Adding and removing servers is the basic way to scale systemsup and down. We are introducing

a new load adaptation technique that changes the ratio betweenp andr, while keepingn fixed. Such

reconfiguration is desirable when the new load can be handledby reconfiguring the existing servers,

and is the only viable strategy when additional compute capacity is not available. Even when additional

compute capacity is available, powering up new servers and bringing them to a consistent state can take

minutes. Adapting the ratio ofp andr can provide a seamless experience to the users until the new

servers are up and running.

What are the possible Distributed Rendezvous algorithms toachieve these goals? Many different

solutions are possible, each choosing a different set of design trade-offs. The basic solution must dictate

how to split data into parts and where to replicate each part as well as how to run the query such that

all the data is visited. These two components are tightly related; choosing a solution for one constrains

sensible choices for the other. It is easier to reason about replica placement strategies, so we start our

solution exploration here.

In their study of reliability, Yu et al. identified three mainclasses of replica placement algo-

rithm [YGN06]: Partition, Random, andSliding Window. We will analyse algorithms from these classes

in our quest to obtain a practical DR algorithm. In this chapter we develop skeleton DR solutions for

each of these classes, specifying replica placement strategies and ways to dynamically adjust the repli-

cation/partitioning level. A valid question arises: are these algorithms diverse enough that they capture

all the interesting parts of the solution space? To reassureourselves that these algorithms cover a wide

enough spectrum, we informally discuss optimality criteria and how these algorithms score against them.

3.1. Partitioned Distributed Rendezvous 24

(a) Partitioned DR, boxes are clusters. (b) Randomized DR,c = 2.

(c) Sliding Window DR. (d) Dual Sliding Window DR.

Figure 3.1: Different Distributed Rendezvous algorithms (n = 12,p = 4 andr = 3)

In our analysis (chapter 6) we perform a thorough comparisonto the optimal solutions.

We conclude this chapter with a brief high-level comparisonbetween these different DR solutions.

3.1 Partitioned Distributed Rendezvous

Intuitively, the simplest way to organise servers is in a matrix where each replica is stored on one row

of servers and each query is executed by a column of servers. The problem with this view is that, in

reality, r (or p) rarely dividen and thus we do not have a perfect matrix. The solution is then either to

run queries not necessarily in a column, but on one server in each row; or the dual is to run queries on a

column, but store replicas once in every column. The first strategy is better for a number of reasons, so

we discuss it first.

The Partitioned (PTN) strategy is parameterised byp. It divides then servers intop clusters each

with approximatelyn/p servers; each object is then stored on all the servers in one randomly chosen

cluster. For routing, queries are sent to one server1 in each cluster (see Figure 3.1(a)). This is the

algorithm used by Google [BDH03]; we call it PTN.

Partitioned algorithms can changep, but the change is disruptive. To decreasep, servers must

first be freed to store the new replicas, which is done by destroying a cluster. Each object from this

cluster must be stored on all servers in one of the remaining clusters. Finally, the free servers can be

split between the remaining clusters and each must then retrieve a copy of the objects stored in its new

cluster.

Increasingp is simpler: a few servers from each cluster simply leave and form a new cluster.

Initially this cluster will store no data, so to improve loadbalancing some objects can be transferred to it

from existing clusters.

1Typically this choice is influenced by load balancing.

3.2. Randomized Distributed Rendezvous 25

Coordinating the change ofp remains an issue. In a data center, one server can simply be chosen

as the master. Changingp in a distributed manner is more difficult because the actionsof servers differ:

some need to leave and re-join, others must replicate objects, and some others must delete objects. Just

designating which servers should leave a cluster requires some form of distributed agreement. The

network structure also needs to change when clusters are created or destroyed; depending on how this is

done, it may add additional costs or result in some missed queries during the transition.

Finally, r or p can be changed by modifying the number of servers. When increasingn, it is

simplest to add the new servers to the existing clusters, thus increasingr. In theory it is possible to

create a cluster with new servers (i.e. increase p) and repartition the existing objects, but this only works

when a whole new cluster is added; otherwise, a small clustercan adversely affect the performance of

the whole system. Whenn is reduced, eitherr or p can be easily controlled by removing servers from

each cluster or destroying entire clusters.

What type of query delay does PTN experience? We are not readyto answer this question just yet,

but we just observe the number of choices the algorithm has when assigning a query. For each of thep

query parts, the algorithm can choose betweenr servers; thus the number of possible combinations is

rp.

To achieve maximum throughput, PTN needs to make sure that clusters are computationally equiva-

lent (so that none becomes a bottleneck until they are all fully utilised). That means the sum of processing

speeds of servers in each cluster is roughly constant acrossall clusters.

A dual PTN approach.

Instead of creatingp clusters, and having all machines identical in each cluster, we can creater

clusters instead. Each data object will be storedr times, once in each cluster. Inside a cluster, a data

object will go to a random machine in the cluster. When a queryarrives, it is executed by all the servers

in a randomly selected cluster.

The nice thing about the original PTN approach is that all servers in a cluster are identical: they

store the same replicas. This seriously simplifies cluster management, and is not the case with the dual

approach; the dual approach is suited for multiple data center deployments, where replicas are clustered

geographically and it is possible to run a query completely inside a data center.

This special case can also be handled optimally with the original PTN: simply create a higher level

partitioning of the servers into data center clusters, and then apply PTN inside each cluster of servers.

This is simple enough, and yet it reaps all the benefits of the dual approach.

We have run analyses of this dual approach and found performance similar to PTN in all cases

except the multiple data center scenario described above; for simplicity of presentation, we omit these

(rather obvious) results. We do not consider the Dual PTN as acandidate solution for DR.

3.2 Randomized Distributed Rendezvous
In the Randomized (RAND) strategy replicas of objects are placed randomly on servers during a random

walk through the overlay of lengthc · r, and queries are routed toc · n/r randomly chosen servers, as

in [TKLB07, FRA+05] (see Figure 3.1(b)).c is a constant of the algorithm.

3.3. Sliding Window Distributed Rendezvous 26

Unlike the other algorithms we discuss, harvest is not necessarily 100% (i.e. not all objects may be

visited by a query): randomized strategies only give a probabilistic guarantee that a query will return all

matches. The constantc serves to tune the probability of a query missing a stored object. The typical

value forc is 2, which yields a harvest of 98%.2

Randomized algorithms can easily change the replication level. To increaser, the last server of each

object’s random walk simply replicates the object to an additional server. To decreaser, the last server

of the random walk discards the object. For the probability of a miss to remain unchanged, all servers

(including the frontend servers) need to agree onr so they can maintainp = n/r for their queries;

typically, a gossip protocol is used for this.

Whenn is increased, eitherr can be increased (by creating new replicas of existing objects), orp

can be increased (by moving some existing replicas from running servers). Similarly, when servers are

removedr or p are decreased.

The randomized DR algorithms give probabilistic coverage guarantees and have higher costs than

deterministic algorithms such as PTN: each query is sent to twice the number of servers, and each object

is also stored on twice as many servers forc = 2. For these reasons, and despite the ease of changing

ther/p tradeoff, they seem of little practical importance to data center deployments, and will receive no

further attention in this thesis. They do offer, however, high robustness in face of massive server failures

and thus seem better suited for peer to peer type deployments; BubbleStorm is a randomized algorithm

suited for these deployments [TKLB07].

3.3 Sliding Window Distributed Rendezvous

An important observation is that there is no need to divide the nodes into disjoint clusters: what is

important is that each data item is replicated onr nodes, and that we can arrange for every query to visit

at least one of these nodes.

The simplest solution in this case is probably a sliding window algorithm, where then nodes are

arranged in a circle. The first data item is then stored on nodes 1...r, the second is stored on nodes

2...(r + 1), and thekth on nodesk...(r + k), with all arithmetic performed modulon. Now if a query

visits everyrth node it is guaranteed to reach every data item, as shown in figure 3.1(c). Such an algorithm

has some very nice properties:

• Each node stores the same number of items, and if a round-robin algorithm is used to start queries,

each node handles the same number of queries (assumingr dividesn). In this sense it is identical

to the basic partitioning scheme.

• Increasingr by one merely requires replicating each data item onto the successor node on the ring.

• Decreasingr by one merely requires deleting each data item from the node furthest around the

ring that currently stores it.

2While sufficiently high harvest is achievable with smallc, 100% harvest is impossible to guarantee unless the query isflooded

to all nodes.

3.3. Sliding Window Distributed Rendezvous 27

Thus each node plays an equal role when changingr (and consequentlyp). When decreasingr, no

additional data needs to be copied. When increasingr by one, each node needs to copy1/n
th of the data.

During the transition, search continues to function. Ifr is decreasing, searches must use the new value

of p during the transition to ensure correctness. Ifr is increasing, searches must use the old value ofp

until the transition is complete.

Despite these nice properties, such an algorithm comes withshortcomings. First, while it works

very well with a fixed number of reliable nodes, it does less well if a node fails. If such a failure

happens, queries that would have visited this node will no longer match its data items, so some fast

recovery mechanism would be needed to replace the failed node. In the meantime, queries would have

to visit both the preceding and subsequent nodes to ensure that all data items continue to be matched,

causing load concentration on these nodes. In addition, as the data set changes over time, old data items

disappear and are not perfectly replaced by new items. Thus the initially perfect load balancing degrades

over time.

More generally, the most basic problem with the simple sliding window algorithm stems from the

fact that the nodes have a discrete position on the ring. Datais then replicated across consecutive nodes

holding a range of these discrete positions. If the list of nodes changes (either nodes are added, shutdown

to save power, or fail), this impacts the relative positionsof nodes, and so has non-local consequences.

Beyond this, another problem is that all nodes are treated equally, also a result of the discrete nature

of the node positions on the ring. In practice, it is rare thatall nodes in a data center are of identical

performance, as equipment tends to be purchased over time. An explicit goal is to be able to effectively

utilise heterogeneous servers according to their capabilities.

How many choices does SW have when assigning a query? SW can only choose the starting point

for each query, as this determines all the other points wherethe query hits. This means we only haver

choices. This is much smaller than PTN’srp choices, so we expect query delays to be higher for SW.

Let the above be the optimal sliding window algorithm, SW.

A dual SW approach

The SW algorithm stores replicas onr successive servers on the ring. Its dual is to store each data

object onr equidistant points on the ring, while running each query on all the servers with ids in an arc

of size1/r on the ring. This is the approach used by Glacier [HMD05], andis presented in Fig. 3.1(d).

Changing the replication level in the dual SW algorithm is more complicated than in SW. Because

replicas are equidistant, on each replication level changesome replicas will change servers, and will

need to be relocated; a simple analysis shows that if we haven servers, a1/n fraction of objects will

need to be relocated on each change.

Even worse, to implement this relocation, the nodes need to remember which node holds the previ-

ous and next replica for each object they store. Checking liveness of adjacent replicas implies probing

quite a few nodes.

In contrast, in SW the previous and next replicas are implicit (stored on the predecessor and suc-

cessor); no objects are relocated whenr changes; and monitoring liveness is much easier, as it suffices

3.4. Limitations of Existing Solutions 28

to monitor the immediate neighbours.

In a distributed setting, running queries is simpler for thedual approach if queries are run recursively

(i.e. forward to next neighbour). In reality, queries will be run in parallel to minimise delay, which

means the querying node will have to know and contact a few other nodes directly; hence the complexity

is similar in both SW and its dual approach. Given its complexity, we drop dual SW from our candidate

list.

3.4 Limitations of Existing Solutions
The three algorithms we presented are suited for different parts of the problem we are attacking. RAND

stands out as it is designed for peer-to-peer like deployments, with highly unreliable, high churn pop-

ulations of servers. Such deployments are completely different from the data center deployments we

envision, with low churn and failure rates. To achieve reliability, RAND increases the basic Distributed

Rendezvous costs. For instance, if we want each query to visit 98% of the data, RAND will spend four

times more resources than optimal. At the end of the day, thismeans we need much more hardware

to cope with the same data and query rates. Thus, it does not make sense to use RAND in data-center

deployments.

PTN is simple from an administrative point of view and has lowbasic costs for data storage and

queries. It has good load balancing and efficiently supportschangingr or p by adding or removing

servers. PTN’s main drawback is its approach to changing theratio of p to r whenn is fixed. PTN

transfers more data and takes longer on each reconfiguration. PTN also reduces overall capacity while

this change is taking place. These limitations arise mainlyfrom the asymmetric workload imposed on

servers during reconfiguration: a subset of servers will drop their data and reload new data, while the

others do nothing. This behaviour emerges from the cluster structure itself and is fundamental to PTN.

It is the price PTN pays for simple administration.

SW too has low basic costs for storage and queries. In contrast with PTN, it naturally allows

changing ofp andr whenn is fixed. The process simply involves extending or reducing the replication

range of each object, and transfers the minimal amount of data required for reconfiguration. In contrast

to the asymmetry in PTN, each server plays an equal role during the reconfiguration process. SW has

other problems, though. It does a poor job of load balancing and copes badly with adding and removing

nodes, as well as node failures.

In this thesis we will show it is possible to elegantly solve the issues of PTN and SW with a handful

of techniques. The resulting algorithm, ROAR (Rendezvous On A Ring), achieves the best of both PTN

and SW: it allows easy reconfiguration as SW does, while providing good load balancing and coping

with server churn and failures.

Chapter 4

ROAR: Rendezvous On A Ring

The problems mentioned above led us to develop a new algorithm that we call Rendezvous On A Ring

(ROAR). ROAR uses the sliding window arrangement of replicas while avoiding its drawbacks. ROAR’s

insight is that the discreteness of replica placement is themain source of problems. In basic SW, replicas

of an object will be stored onr servers from a given starting point. When servers leave, thereplicas need

to adjusted accordingly, causing a lot of churn.

Rather than simply arranging servers in a circular list, ROAR uses a continuous circular ID space

(for simplicity assume its range to be[0, 1]). Each server is given a continuous range of this ID space

that it is responsible for, such that all points on the ring are owned by some server. Thus ROAR uses the

ring in a similar way to Chord [SMK+01], although that is where the similarity ends.

To decouple replica placement from server replication, we define for each object a continuous range

on the ring called “replication range”. The object will be stored on all servers whose range intersects its

replication range. When a server leaves no operations are necessary to ensure consistency, as objects’

replication ranges are constant; some objects will simply lose one replica. Similarly, when a node joins,

it will load the objects it should store; replicas stored on other servers will not be affected.

Figure 4.1: Basic ROAR store and query mechanisms withn = 12, p = 4 andr = 3. Objects are stored

in arches of length1/p and queries sent top servers at1/p intervals, thus ensuring that a query visits all

stored objects (denoted by letters).

The partitioning levelp defines the length of the replication range. Givenp, ROAR stores each

object on the servers whose range intersects an arc of size1/p on the ring (the replication range, see

figure 4.1); for searching, ROAR randomly chooses a startingpoint on the ring and forwards each query

4.1. Storing objects 30

to p equally-spaced points around the ring.

Whereas the basic sliding window algorithm stores a data item on exactlyr consecutive nodes,

ROAR stores on an arc of the ring in which, on average, there arer servers.

While the basic concept is very simple, there are a number of details that matter for correctness.

4.1 Storing objects

Each data item is assigned a uniformly random identifier in[0, 1]. The data item now needs to be

replicated on all the servers that are responsible for the ring segment of length1/p that starts with the

data item’s ID. How this replication is actually done is independent of the basic functioning of ROAR.

Several strategies are viable, depending on the deploymentscenario:

• Push the data item to the first server, and then forward it fromserver to server around the ring.

• Have all the servers mount a shared filesystem (such as GFS [GGL03]) where the filenames embed

the node identifiers. Servers periodically check the filesystem for files with IDs that should be

stored in their range.

• Push the data item to all the relevant ring servers from a backend update server that knows the ring

topology.

A peer-to-peer solution using ROAR might use the first, whereas organisations with existing dis-

tributed filesystems might choose the second. Our implementation uses the second, with NFS as a

filesystem and a special file structure to store the objects (see Section 5.6 for details).

4.2 Forwarding Queries

To perform a search, a query from a client is first sent to a front-end server. These front-end servers

are responsible for partitioning the query and sending the sub-queries top nodes on the ring. In our

implementation, every front-end server is kept updated with the ranges of IDs on the ring for which each

node is responsible.

We first discuss the simpler case when all servers are equallypowerful; the general case is discussed

in Section 4.8.1. The front-end server then picks a random IDq on the ring for this query, and sends

sub-queries in parallel to the node responsible for IDq and the nodes responsible for IDsq + 1/p, q +

2/p, . . . , q + (p − 1)/p, modulo 1. As these IDs are1/p apart on the ring and as each data item is

replicated on a range of at least1/p, it is easy to see that the query will reach a node that holds every

data item (refer to figure 4.1). Each server that receives thequery matches it against its data items and

returns the matches (or the best matches if the query is for a very popular term) to the front-end server,

which assembles the final list and returns it to the client.

The description above captures the basic idea of the ROAR algorithm, but not the whole story. The

real benefit comes from an additional observation: if the front-end server chooses a partitioning valuepq

for a query that is larger thanp, the algorithm still matches all the data items. By default though, this

would waste effort, as the query might hit more than one server that holds the same data item (as shown

4.2. Forwarding Queries 31

Figure 4.2: Duplicate matches are possible whenpq > p is used. In this case,r = 4, p = 3 andpq = 4.

in figure 4.2). However, if we embed the valuepq into the query, the servers can divide up the matching

task by object ID so that no two servers match the same data item. To do this deterministically, a server

that receives a query with logical destinationidquery only runs the query against data items (objects) that

satisfy the following two conditions:

idobject < idquery (4.1)

idobject + 1/pq >= idquery (4.2)

Data items that do not satisfy the second condition will be matched by the preceding server that

received a sub-query (figure 4.3(a)), while data items failing the first condition will be matched by the

server receiving the following sub-query (figure 4.3(b)).i d o b j e c t :l o g i c a l p o s i t i o no f o b j e c t i d o b j e c t + 1 / p :m a x e x t e n t o fr e p l i c a t i o n r a n g eo f o b j e c t
p r e c e d i n gs u b q u e r y s u b q u e r ya t i d q u e r yr a n g e o fn o d e b r a n g e o fn o d e c1 / p q n o m a t c h a si d o b j e c t + 1 / p q < i d q u e r y r a n g e o fn o d e d1 / p qr a n g e o fn o d e a

m a t c h
(a) Match by first sub-queryi d o b j e c t :l o g i c a l p o s i t i o no f o b j e c t i d o b j e c t + 1 / p :m a x e x t e n t o fr e p l i c a t i o n r a n g eo f o b j e c t

p r e c e d i n gs u b P q u e r y s u b P q u e r ya t i d q u e r yr a n g e o fn o d e b r a n g e o fn o d e c1 / p q m a t c h :i d o b j e c t + 1 / p q < i d q u e r yr a n g e o fn o d e d1 / p qr a n g e o fn o d e an o m a t c h :q u e r y b e f o r eo b j e c t
(b) Match by second sub-query

Figure 4.3: Avoiding duplicate matching in ROAR.

Why then is it so useful to be able to run queries with values ofp greater than the bare minimum

needed to match all data items? There are two main reasons:

4.3. Adding Nodes 32

• Spreading a query across more nodes decreases latency. ROARcan dynamically trade off latency

for total throughput (or if the nodes are not saturated, power consumption) without needing to first

change the replication level.

• Allowing different values ofpq to be used for queries allows the basic partitioning to be changed

while still serving queries.

4.3 Adding Nodes

To be able to function correctly, each server just needs to know its ID range, and this should match up

with the ranges of its immediate neighbours on the ring.1

When a server joins the system, it is inserted between two other servers on the ring. The query

load seen by a server is directly proportional to the fraction of the ring it is responsible for. Thus a

simple strategy for inserting nodes is to pick the most heavily loaded node, and insert the new node as its

neighbour. We discuss other insertion strategies, as well as a practical way to implement them in Section

4.9.

To start with, the new node has an infinitely small range, and so does not yet receive any queries.

The node begins by replicating all the data items that traverse its ID. This download could be from its

neighbour, but more likely it will be from a back-end filesystem to avoid putting extra load on an already

loaded server.

Once the data download has finished, the new node communicates directly with its two neighbours

to determine which of them is most loaded. It now starts to grow its range into that of the most loaded

neighbour, requesting additional data items that overlap the range as it grows. Every few seconds it

updates the front end servers with its new range, and also updates its neighbour so that the neighbour can

drop data items in the overlapping range.

As the new node’s range grows, its load will start to increase. Once the new node’s load starts

to approach that of its neighbours, the rate of replication is slowed to a low background rate. In fact,

nodesalwayscompare load with their neighbours and expand their range very slowly into that of a more

loaded neighbour. In this way, the nodes progressively distribute themselves around the ring, not with

equal ranges, but with ranges that are the correct size to balance the load on the nodes, even if the nodes

have heterogeneous processing power.

4.4 Removing Nodes

A node can be removed from the ring in a controlled manner by informing its neighbours that its load

is now infinite. The two neighbours will grow their ranges into the range of the node to be removed by

downloading the additional data needed. This data is typically a small fraction of the data a node already

has: if each data item is replicated onr servers on average, then1/rth of the data on a node starts or

finishes at that node; it is this data that the neighbour will not already have. If a node hask data items

already and its neighbour wants to shut down, it will need to downloadk/2r new data items if it takes

1This is not always strictly required for correctness, but isneeded for efficiency.

4.4. Removing Nodes 33

(a) A failure causing a mis-

match.

(b) ROAR’s failure-

handling mechanism.

Figure 4.4: A node failure can cause a query to miss a match. ROAR prevents this by splitting the failed

node’s sub-query in two and sending these to its predecessorand successor nodes.

over half of the neighbour’s range.

The query load will increase by as much as 50% on the neighbours of the node being shut down,

as their range has increased by 50%. However, in practice theneighbours’ neighbours will expand their

ranges as they see the load start to increase, so this upper bound is not normally reached.

What happens though if a node fails without warning? The failure will be discovered very quickly

by the front-end servers, so they know not to route any more queries to it. However, we still want to

match the data-items the failed node would have answered. Wecould simply choose initial values for

the start of the query on the ring so that the failed node is nothit, but this would reduce the overall

capacity by a fraction of1/r for a single failure, and might be infeasible for multiple failures.

Instead the front end server ignores the failures when deciding the starting point of the query, but

when it needs to send a query to a failed node, it uses a fall-back strategy. Each data item was replicated

over an average ofr servers that span a range of1/p; any of these servers could match the query instead

of the failed node. We need to split the sub-query that would have been sent to the failed node in two

because some data items’ range might have ended on the failednode and some might have started on the

failed node. So long as we send the sub-query to two nodes, onebefore and one after the failed node,

and so long as these nodes are not more than1/p apart, then we are sure to match every data item that

the failed node could match.

The general idea is shown in figure 4.4. The first subfigure shows how a failed node causes queries

to miss a match against items a and b. The second subfigure depicts ROAR’s fall-back strategy, whereby a

sub-query meant for the failed node is split in two and sent tothe failed node’s predecessor and successor

nodes. The former is needed in case the item’s range ended at the failed node (as is the case with item a)

and the latter in case the item’s range started at the failed node (item b). To maximise the load spreading,

we choose a pair of new targets for the sub-query as follows:

1. Letfaillo be the lowest ID held by the failed node andfailhi be the highest ID held by the failed

node.

2. Choose a new first sub-query destinationidq1 randomly such that:

failhi − (1/p− δ) < idq1 < faillo.

4.5. Changing the Replication Level 34

δ is a small value that captures any uncertainty in the value of1/p. It is chosen so that1/p− δ is

guaranteed to be less than1/pold for all recently used values ofpold.

3. Choose a new second sub-query destinationidq2 such that:

idq2 = idq1 + (1/p− δ)

This guarantees the new sub-queries are not so far apart thata data item can fall between them.

Thus all data items will be matched.

4. Send both new sub-queries, but in the query request specify the original query ID. This is so that the

only data items to be matched are those that the failed node would have matched, avoiding overlap

with other sub-queries. Additionally, because the two new subqueries are maximally separated,

their data sets are maximally disjoint, so they will producevery few duplicate matches.

The overall effect is that immediately after a node has failed and before any node has had a chance

to download any failed items, all the queries are still beingresponded to correctly. The number of

sub-queries being sent has increased by a fraction of1/n because one extra query is needed for those

queries that would have hit the failed node. The total matching load does not increase as nodes do not

duplicate each other’s work, but approximately2n/p nodes share the extra1/nth of the load, so their

load temporarily increases by a fraction of2/p.

The same general algorithm applies for multiple failed nodes, but if either of the new sub-queries

hits a second failed node, the process is simply repeated from step (2), choosing a new random value.

4.5 Changing the Replication Level
So far we have seen that for a given replication levelr, we can partition queries for varying values of

pq, so long aspq · r >= n. However, if, in an attempt to keep query latency low we are consistently

running with values ofpq significantly larger than the minimum needed, then it does not make sense to

keep sending all the updates to all the nodes. Maintaining a replication level higher than needed incurs

extra bandwidth costs, and eats CPU and network bandwidth that could have been used to serve queries.

Instead, we want to repartition by reducingr, hence increasing the minimump.

If p is increased andr decreased, all the ROAR nodes have to do is drop a few objects from their

local store. As it is always safe to run queries with higherpq than needed, the front-end servers can just

switch to the newpq immediately, and let the ROAR nodes catch up in their own time.

Conversely, a ROAR system may discover that it is running with pq · r = n, using the minimum

currently-available partitioning level. If the query latency is well below threshold, thenp is probably too

large. This may be limiting throughput, but in any event it iscosting CPU cycles and hence increasing

energy requirements2.

To decreasep to p′, r must increase, and this is done by replicating each object1/p− 1/p′ further

round the ring. The ROAR servers need to download the required objects from the filesystem, which can

take some time. Further, the nodes will not all complete the download simultaneously. For correctness,

2The reader may think that the effect is negligible, but the temperature in our air-conditioned machine room runs 4◦ Celsius

hotter when our 43 ROAR nodes are fully loaded than when they are idling.

4.6. Load Balancing: Proportional Ranges 35

when decreasingp to p′, the front-end servers continue to partition queriesp ways until they receive

positive confirmation that every one of the ROAR nodes has obtained all the extra data needed. Only

then do they switch to partitioning queriesp′ ways.

4.6 Load Balancing: Proportional Ranges

ROAR performs load balancing by adjusting the size of the segment of the ring that a node is responsible

for. With queries, the mean query rate seen by a node is directly proportional to the node’s rangegi. As

mentioned previously, ROAR evens out load by a slow background process in which each node extends

its range into that of a more loaded neighbour. The goal is notto even out ranges, but to even out load so

that a node’s range is in accordance with its processing power.

With stored data items, if the ROAR system indexesD items in total, the number that need to be

stored on a node with a range of sizeg is the number of items that intersect the start of the node’s range

plus the number of items that start within the node’s range; this isD/p + D · gi. On average1/p = rḡ,

so for sensible values ofr, theD/p term dominates, and the amount of data stored by each node is fairly

even between nodes.

Our discussion in Section 4.2 assumed all servers are equally powerful; in that case randomly

choosing the starting point3 gives perfect load balancing and minimal average delay.

When servers are not equally powerful, assigning larger ranges to faster servers allows perfect query

load balancing, whereby each server will serve queries according to its processing capacity. In this way,

servers are uniformly loaded and no server is a bottleneck until the system as a whole cannot support the

query load. However, when the system is lightly loaded, perfect load balancing is not needed. In such

cases, it is best if we run thep sub-queries on the most powerfulp nodes, as this minimizes query delay.

PTN naturally optimises for both load balancing and query delay at the same time: load balancing

is ensured by havingp equally powerful clusters of nodes, while query delay is minimised by choosing

in each cluster the server that would first finish the sub-query. ROAR load balancing is given by unequal

node ranges. To minimize query delay, the ROAR scheduler considers different starting points for the

query and picks the starting point that finishes first (we present an algorithm that achieves this in section

4.8.1). Compared to PTN, ROAR has a lot fewer choices in its selection of servers to run the query: it

must choose betweenr configurations. In comparison, PTN has to choose betweenrp configurations;

that is why PTN has better delay than ROAR. In the next sectionwe show how to change the basic ROAR

to get better query delay.

Another way to get better query delays and to improve query load balancing is to increasepq, the

number of servers that run each query. This is not the preferred way, as it increases overheads due to

sending queries. However, it can be selectively used to ensure that certain max query delay bounds are

met; we present a heuristic algorithm for this purpose in section 4.8.2.

3Or choosing the lightest loaded of two to smooth out load, as in the power of two choices [Mit01]

4.7. Multiple Sliding Windows 36

4.7 Multiple Sliding Windows
To improve query delays for ROAR, we use a simple variation that makes it more PTN-like. Instead of

having all servers belong to a single logical ring, create a small number of rings (say 2) and have each

server belong to only one of the rings. Objects would be stored in both rings, withr/2 replicas in each.

A query would still touchp equidistant points, where each point belongs to either of the rings.

Becausep is the same, on average each object still hasr replicas; adding a second ring does not add

overhead for storing objects or running queries. It does, however, mandate that any object has at least

two replicas (as it is stored once on each ring), sor cannot be lower then 2.

For availability purposes,r ≥ 2 anyways, so this is not a drawback. If we used more rings, this

limitation would become important. At the extremes, we could creater rings. This turns the ROAR

algorithm into the Dual PTN algorithm, so we lose all the benefits of SW to easily change the tradeoff.

With two rings, ROAR has more choices when running queries, namelyr ·2p−1. This is much better

than SW’sr choices, but less than PTN’srp. We show in simulation that using multiple rings increases

availability when search operations are strict, i.e. all objects must be visited by a single query for the

query to succeed. Also, multiple rings allow much simpler adaptation to daily load fluctuations, as we

discuss in Section 4.9.1.

4.8 Running Queries on Heterogeneous Servers
As mentioned previously, the front-end server receives thequery from the user, splits it and runs it on

the ROAR nodes, and finally aggregates and returns the resultto the end-user. The front-end logs query

delays, and controlsp - the query partitioning level. The front-end server also maintains statistics about

each ROAR node:

• The node’s range (which implies the node’s minimum value ofp)

• Node’s liveness (last time seen up)

• The outstanding queries scheduled on the node, and their expected finish time

• The processing speed of the node (this includes other background load not from ROAR)

When a new query arrives, the front-end will split it intop sub-queries. Using information about

outstanding queries and node processing speed, it decides which servers should process the query and

sends the query to those servers, setting timers for each sub-query. These timers are used to detect node

failures quickly: if a query response times out, the node is marked as dead. The unfinished sub-query is

split further into two smaller sub-queries that are rescheduled on the failed node’s neighbours.

As results return, the front-end assembles the reply; when all results are received, the query is

marked as finished and its finish time recorded; the results are sent back to the user. Also, estimates are

made for each sub-query for the processing speed of the server, and an exponentially weighted average

processing speed is updated with the new data.

ROAR needs to send queries quickly and reliably to the matching servers; our implementation uses

TCP for reasons explained below, but other choices are possible.

4.8. Running Queries on Heterogeneous Servers 37

4.8.1 Scheduling Algorithm

ROAR uses server processing speed estimates together with sub-query size to estimate sub-query exe-

cution times. ROAR does not model network delays, as in data centers round trip times are well under

1ms, being negligible compared to query execution times. Itis straightforward to extend this algorithm

to take into account network-induced delays.

We describe the scheduling algorithm for the single ring version of ROAR first, and show how it

can be extended to support multiple rings later. ROAR has to choose a starting point for each query

to minimise the delay. There arer possible combinations of servers that can be chosen. To testall

combinations, it suffices to pick the starting point of ap way query in the first1/p range of the ring; this

is because all the otherp−1 are equidistant, sweeping different parts of the ring. The simplest algorithm

is to choose one or a few random starting points and use the onethat gives the smallest delay. To get

perfect results, however, we need to pick many random starting points (a lot more thanr).

A deterministic approach is the following. Letid be the starting point of the query. Iterate with

id from 0 to 1/p increasingid with a smalldelta, computing the expected query delay, and choosing

the fastest point. To get all possible combinations we need asmalldelta; however, on each iteration we

need to find out which node is in charge of each of thep points, and compute the delta; this significantly

increases costs.

Our final algorithm dynamically changesdelta to minimise the number of iterations. The insight is

to moveid at each step by enough to hit at least one different server in the “selected” configuration. The

finish times for all the other servers are already known; all we need is to compute the finish time of the

new server, and check if it affects the overall query delay. The pseudocode is given in Algorithm 1.

The algorithm has an initialisation phase where sub-query and total query delays are computed for

id = 0. The functionnodein chargedoes a binary search through the list of server identifiers tofind

the server in charge of a sub-query. The functionestimatefinishuses server speed and load estimations

as well as sub-query size (1/p) to predict the execution time for the sub-query. We use a binary heap to

maintain distances to the closest node from each query pointwhenid = 0. The heap functions use the

distance field for ordering within the heap.

On each iteration, the server with the smallest distanced clockwise to any of thep query points

is chosen, andid is set to the corresponding distance (these distances are strictly increasing). The next

server is given by the functionsuccessorand the distance to it calculated and re-inserted in the heap. A

subtle point is that by maintaining absolute distances (i.e. always assumeid = 0 and compute distances

to the correspondingi/p) we do not have to update the distances in the heap when theid changes.

The algorithm stores the currently best query delay and bestid. It also keeps the delay of the current

server configuration. When we switch one server with another, we compute the delay of the new server;

if it is greater than the current delay, we re-set the currentdelay. If, however, the new delay is smaller

than the current query delay AND the node being replaced was the slowest node, we iterate all server

delays and recompute the max (this last part iterates over all p so it is slow; this is why the algorithm

tries to avoid it when possible).

4.8. Running Queries on Heterogeneous Servers 38

Algorithm 1 ROAR Scheduling Algorithm
delayq ← 0

for i = 0 . . . p− 1 do

assigned[i]← node in charge(i/p)

finish[i]← estimate finish(assigned[i], 1/p)

if delayq < finish[i] then

delayq ← finish[i]

end if

d.distance← assigned[i]− i/p

d.pos← i

insert heap(d)

end for

delaybest = delayq

idbest = 0

id = 0

while id < 1/p do

d← remove heap()

id← d.distance + 1

assigned[d.pos]← succesor(assigned[d.pos])

isMax← finish[d.pos] == delayq

finish[d.pos]← estimate finish(assigned[d.pos], 1/p)

if isMax and finish[d.pos] < delayq then

delayq = max(finish)

else

if finish[d.pos] > delayq then

delayq = finish[d.pos]

end if

end if

if delayq < delaybest then

idbest ← id

delaybest ← delayq

end if

d.distance← assigned[d.pos]− d.pos/p

insert heap(d)

end while

4.8. Running Queries on Heterogeneous Servers 39

Figure 4.5: ROAR Scheduling Algorithm: Simple Example

An example is provided in Figure 4.5, with four nodes andp = 2; let the circle length be 1. The

dashed line intersects the ring at the two query points (p1 andp2). The parallel blue arcs show the

distances maintained in the heap. For simplicity, theassignedarray contains the user-friendly node

identifiers (1-4) rather then their positions on the ring (0.2, 0.33, 0.55, 0.95).

The algorithm starts withid = 0 and servers 2 and 4 are assigned the respective sub queries. In

the heap distances are maintained to server 4, and server 2. Next, theid is increased past server 4; now

servers 2 and 1 run sub-queries, and the heap is updated to include the distance to node 1. Note that the

distance does not depend on the current value ofid, being computed relative to positions 0 and 0.5 on

the ring. The next step is to increaseid to 0.33, past server 3; now servers 4 and 1 run the query. The

next step would pass node 1, selecting the starting configuration with servers 2 and 4 running the query.

At this pointid is close to1/p (i.e. 1/2) and the algorithm finishes.

The complexity of the algorithm isO(n log p). n is given by the number of iterations: we have one

step per node in the system.log p comes from removing the closest server on each iteration from the

heap, and adding the new server. Finally, we show experimentally that theO(p) required when we are

replacing the slowest server with a faster one is amortised over then iterations.

In comparison, our straw-man deterministic algorithm has complexityO(np). In practice this dif-

ference matters: ifp ∼ n ∼ 1000, our algorithm is 100 times faster.

Scheduling for the PTN algorithm is simpler. For each sub-query, the front-end will iterate through

all the servers in a cluster. Together, the complexity isO(n). For the practical example above, we found

that ROAR scheduling is 3 times slower thanPTN , taking 20ms instead of 8.5ms.

Scheduling for Multiple Rings. It is straightforward to extend the above algorithm for multiple rings.

Two things will change: first, when computing the assignmentand finish time for a sub-query, the

algorithm will consider both rings and use the fastest server. Second, when searching the successor

of a node to update the distances, it will consider nodes fromboth rings, effectivelyoverlayingnode

identifiers from both rings. The complexity of the algorithmremains the same.

4.8.2 Optimisations

Range Adjustments.The scheduling algorithm and all our previous discussion ofROAR (except dealing

with failures) assume sub-queries have equal size. Their sizes is dictated by the smallestp than the

system is currently configured to support. If we chose biggersub-queries there will for sure be one or a

4.8. Running Queries on Heterogeneous Servers 40

Figure 4.6: Range Adjustment for Query Scheduling

few nodes who would not be able to correctly run their part.

However, we make the observation that we can increase the length of some sub-queries while still

allowing correct execution. The reason for this is the fact that ROAR over-replicates in some cases, when

object replication ranges briefly intersect node ranges.

Figure 4.6 illustrates this concept. Nodesa andd run two consecutive sub-queries. It is always safe

to reduce noded’s sub-query by moving pointA to the right: all the objects withid greater thanA are

already replicated ontoa, as long asA < ida.

We can also increase the sub-query allocated to noded by movingA to the left. The constraint here

is thatA + 1/pq > idc; in other words, we can shiftA left as long as the objects withid greater thanA

are replicated ond.

We use this technique to take work away from the node that finishes last and push it to its neigh-

bours. The aim is to equalise the finishing time across the neighbours, as long as the above two con-

straints are met.

The algorithm is very simple, taking near constant time. We experimentally show it is most effective

when the replication level is low, making node ranges and sub-query sizes comparable in size.

Increasing the Number of Sub-Queries.Query delay is dictated by the slowest server to finish running

its sub-query. While scheduling, the front-end knows whichsub-query will be late to finish, potentially

delaying the whole query. To avoid this, the front-end can dynamically split the slow sub-query and

allocate it to faster nodes, with a technique is similar to the one used to deal with failures. This process

can be repeated, with the front-end always selecting the slowest sub-query, splitting it and allocating

each sub-query to the fastest servers that can run them.

4.8. Running Queries on Heterogeneous Servers 41

For a given value ofp and a fixed starting point of the query, tasks of size1/p can be run by a

single server in the system. For the samep, each half size sub-query (1/2p) can be run by as many

asr servers. Hence sub-query splitting not only reduces the load of the slowest node, but also offers

numerous alternatives for sub-query placement.

In contrast to the range adjustment optimisation presentedabove, this optimisation increases fixed

overheads associated to each query: the more we split, the more messages the front-end needs to send,

the more query threads are started on the ROAR servers, etc.

We show in the analysis section that most of the benefits come from splitting a single sub-query, so

the costs of using this technique may be worthwhile. Anotherway to reap most benefits without paying

the costs is to use it only when the slowest server is significantly slower than the others.

4.8.3 Multiple Front-End Servers

Although the scheduler is centralised, our experimental analysis shows that a machine can support thou-

sands of servers at high query rates. However, it is important to be able to use multiple front-end servers

for fault tolerance, and to further increase scalability.

If fault-tolerance is the only concern, it is straightforward to maintain a backup front-end server,

pushing the relatively rare long-term topology changes to both master and backup servers. It is not

necessary to push other state—such as server processing speeds, or liveness information— to the backup.

The latter will quickly learn all this information when it comes online, providing little if any disruption

to query delays.

The value ofp should be kept updated on the backup, but this is an optimisation rather than a

requirement. If the backup does not know what value ofp is safe to use it can either start usingp = n

(which will always work) and progressively decreasep. Another option is guess a value ofp and use it

to split queries. If the servers do not have enough replicas they will reply saying they haven’t matched

the whole query. Then, the front-end can decreasep and retry.

It is easy to use multiple front-end servers in parallel. Theexact behaviour depends on how query

delays vary with the number of concurrent tasks. Memory and CPU-bound query processing will typi-

cally runt concurrent taskst times slower; in such cases, the front-end schedulers can schedule queries

independently, in a completely decoupled fashion. To avoidoscillations in server processing power esti-

mates and in query allocations, statistics about servers should be averaged over many queries. The same

applies for disk-bound query processing, assuming reads are big enough to avoid disk head thrashing.

4.8.4 Sending Queries Reliably

The front-end needs to reliably send sub-queries from the front-end to the ROAR servers and to carry

back the results. TCP is the obvious transport protocol to use as it offers reliable delivery, has stable

implementations and a well known API.

Yet standard TCP suffers long timeouts when the connection is application limited. The queries are

small, so at any time there is little data in flight between thescheduler and any of the ROAR servers. If a

packet gets lost, fast-retransmit is not triggered; instead, a long retransmit timeout4 must expire before

4The TCP standard suggests setting the minimum RTO to 1 second. Most OSes set it to smaller values. Linux uses 200ms.

4.9. Managing Ring Membership 42

the query is re-sent. By that time most of the query results may be already received at the front-end, and

the scheduler may reschedule the missing query onto anotherserver. Retransmitting the query is useless,

yet TCP must send its outstanding data to function properly.This is the head-of-line blocking problem:

the controller cannot schedule a new query until the old one is needlessly executed.

Whenp is small enough and the network is relatively idle, packet losses are very rare so this is not

an issue. However, whenp grows large (say 1000) we havep servers replying to the front-end at roughly

the same time. Such synchronisation overflows the switch buffer on the link to the front-end (this is

called the TCP incast problem [CGL+09, VPS+09]). To make matters worse, even retransmissions after

timeouts may be synchronized, causing further loss.

A very simple fix is to drastically reduce or even eliminate TCP’s min RTO bound, as proposed in

[CGL+09, VPS+09]. In this way, retransmissions will happen after a few ms,and most of the problems

above vanish. There is still head-of-line blocking, however on much shorter timescales (ms). As query

delays are on the order of tens and hundreds of ms, blocking for a few ms is not an issue.

If it were an issue, we could use UDP enhanced with application-level acknowledgements, but the

difficulty is to avoid congestion collapse in pathological cases. A better choice would be to use DCCP

[KHF06] that provides congestion control without mandating reliable transmission (thus eliminating

head-of-line blocking).

4.9 Managing Ring Membership

We have discussed at a high level how nodes are added and removed in ROAR. Here, we describe our

practical instantiation of these ideas, and provide further details on how ROAR membership works in

practice.

We use a centralised membership server to keep track of nodes’ assigned ranges, and to ensure that

the system is load balanced. The membership server downloads periodic statistics from the front-end

servers about node liveness and processing speed. It uses all this information to:

• Insert new servers at hotspots.

• Enable or disable server local load balancing

• Decide when to move servers to different parts of the ring or even across different rings

• Redistribute the failed node’s range between its neighbours when long-term failures are detected.

The membership server can be configured to organise servers in one or more rings. It attempts to

give equal processing capacity to each ring, as this gives the best query delay (as we show in the Analysis

section).

When a new server joins, the default behaviour is to pick the ring with least processing capacity

and to add the server into the hottest spot of that ring. The membership server does not utilise individual

server load estimates to decide how to allocate ranges, as these can be skewed by the front-end’s prefer-

ence for fast servers when allocating sub-queries. Instead, it uses the ratio of range to processing power

4.9. Managing Ring Membership 43

as a proxy for the load of that node. The front-end will produce such an allocation only when the system

load nears 100%.

Once a node is given a range, it will start downloading the required objects from the backend file-

store. As it completes all objects for the range (or a part of it) it informs the membership server. At this

point, the membership server marks the server as up and records its available range. This information is

then pushed to the front-end servers, which will start scheduling queries on this node. When shrinking

a node’s range, the membership server first shrinks its recorded range, updates the front-end, and only

then tells the node to shrink its range.

As we have mentioned, the ROAR servers perform local load-balancing independently, periodically

announcing their new ranges to the membership server. To avoid churn, we set a threshold on the

load difference between nodes (10% for our implementation): if the difference is less, the nodes stop

balancing the ranges. The membership server can disable local range balancing if desired; this is done by

pushing a range update to the corresponding nodes with a “Fixed” flag. This is to allow administrators

to tweak node ranges as desired.

Further, local load-balancing can take a long time to balance if one area of the ring is really “hot”

and the opposite area is “cool”: pairwise range changes propagating out of the hot area will create a lot

of unneeded object churn and will take a long time to load balance. The membership server has a global

view of the ring and will simply move nodes from “cool” placesof the ring to the hot ones, significantly

speeding up this process.

The membership server maintains a history of range allocations to servers. If a server is taken out

for maintenance and brought back up it will get the same rangeit had before; it only needs to download

deltas in its object list since it was previously online.

Finally, as with the front-end server, the membership server can be replicated for availability pur-

poses, with only one master server active at any point in time.

We have discussed the basic operation of the membership server; we now look at how it can be

used to optimise for common data centers that have daily loadfluctuations, and how it can reduce cross-

sectional bandwidth usage.

4.9.1 Adapting to Changing Load

Most online services see fluctuating load with diurnal and weekly patterns [CHL+08, CFSS05,

WAB+06]. The ratio between the mean load in different parts of theday or week is 2x to 4x. A service

provider could keep all of their nodes up all the time, but that would waste energy. It is better either to

turn off some of these servers when load is low, or to use them for other tasks [CHL+08].

If ROAR uses a single ring, it can shut servers down in a pattern that does not dangerously reduce

the number of replicas in any part of the ring, hence maintaining high system availability. However,

the ring will be now fragmented, and the number of choices forany query will be even less than ther

choices in SW. It makes more sense to use multiple rings for such scenarios, and turn off entire rings

when needed.

We have already mentioned how the rings are populated. Say ROAR has been configured to use 4

4.9. Managing Ring Membership 44

rings, with each ring maintaining two replicas of the data. The membership server will use load statistics

provided by the front-end server to decide how many rings it should have running at any given point

in time. The system can easily bring some of the rings online or shut them down to track the average

load, and to match the predicted future load. The time neededto bring a ring online is of concern. The

membership server assigns the same node ranges to returningservers, so start-up delay can be minimised

if the same servers are periodically shut-down and brought back up.

4.9.2 Reducing Cross-Sectional Bandwidth Usage

Typical data-center networking architectures connect racks of servers with one switch per rack, and have

one or two layers of switches that interconnect the racks. The tree hierarchy causes bandwidth further

up in the tree to be scarce compared to intra-rack bandwidth.Although it is possible to increase the

cross-sectional bandwidth, achieving full bandwidth between any two nodes is very expensive. As a

consequence, cross-sectional bandwidth usage is a major concern in data center algorithm design. In

this context, it becomes important to understand how ROAR compares with simple partitioning in cross-

sectional bandwidth usage.

Assume that object replication is much more expensive - bandwidth wise - than running queries.

This is true for most distributed search applications we have analysed. The case when queries are band-

width hungry can be optimised in a similar way.

PTN could place one cluster of nodes (i.e. nodes with the samedata) in as few racks as possible,

say l. To update the data, each item needs to be sent to a single machine in each rack, minimising

cross-sectional bandwidth consumption.

ROAR can similarly use physical placement of servers to minimise update cost, by having the

membership server assign servers in the same rack to be consecutive on the ring. In this case, each

update will be pushed to l or (l + 1) racks. ROAR will generate (l + 1)D cross-sectional traffic for each

update, which is marginally more PTN.

To implement this optimisation in ROAR, it suffices to use thepeer-to-peer like object update algo-

rithm we have described: the updates for an object are pushedto the server responsible for that object’s

ID. This server forwards to its successor, and so forth, as long as the successor is within the replication

range. Almost all of these hops will be intra-rack.

The downside of such server placement in both ROAR and PTN is vulnerability to correlated server

failures in the same rack. These are not all that unlikely: ifthe top-of-the-rack server fails, or the rack’s

power supply burns out, the whole rack is wiped out. Finally,our back-of-the-envelope estimations for

web search in the analysis section show cross-sectional bandwidth usage is not of concern.

Chapter 5

Application: Privacy Preserving Search

Online storage of personal data (such as videos, photos, documents) is now becoming commonplace.

However, data are typically stored as “plaintext” which makes it easy for online companies, law enforce-

ment agencies and hackers to access users’ data without themknowing it. Serious privacy concerns have

already been raised by the Federal Trade Comission [Tec10].To protect their privacy, users could in

theory encrypt data before storing them online. The downside is that accessing the data becomes much

more difficult. In particular, searching is not directly possible.

In this chapter we present Privacy Preserving Search, a search application well suited for paraleliza-

tion with ROAR. With Privacy Preserving Search the client stores encrypted metadata on the server(s),

describing photos, documents, pictures, email messages, and so on. The client then creates encrypted

queries and gives them to the server. Privacy Preserving Search techniques allow the server to select the

encrypted metadata that matches the query without knowing the contents of the query or the metadata.

These are returned to the client, which decrypts them.

We begin by describing the motivation for Privacy Preserving Search and focus on the techniques

that make it possible, targetting common query types appearing in practice: keyword and numeric match-

ing. We present a novel construction to support numeric matching and to rank query results. Finally we

analyze the scaling bottlenecks PPS faces and discuss how toparalelize PPS with ROAR.

5.1 Motivation

We are witnessing a compelling shift towards what is called an ”online” operating system. While online

email has been around for quite some time (e.g. Gmail, Yahoo mail, Hotmail), other parts of the users’

desktop are being shifted online as we speak: documents (Google Docs, Microsoft Office Live), pictures

(Picassa, Flickr), videos (YouTube). It seems that the partof the local hard drive that contains personal

data is moving online.

The main benefits to end-users are easy sharing, availability and accessibility: personal files are

now always online and can be accessed from anywhere by just using a web browser. Further, they are

guaranteed to last: the online providers use massive redundancy, and anything short of a large scale

disaster will likely not affect their durability. This is not true for files on users’ hard drives, where a

failure can make years’ worth of personal data disappear.

5.1. Motivation 46

Service providers such as Google aggregate and store users’private data including documents,

videos, photos, email, friends lists, browsing history, search history, and so on. This entails higher

privacy risks: the user has little or no control over who accesses its data and when. The Federal Trade

Commission has recently brought up these issues, pointing out the increased privacy risks of online

data storage: “the ability of cloud computing services to collect and centrally store increasing amounts

of consumer data, combined with the ease with which such centrally stored data may be shared with

others, create a risk that larger amounts of data may be used by entities in ways not originally intended

or understood by consumers” [Tec10].

If this data were only stored locally, on the users’ devices,all these privacy risks would be much

smaller. Ideally, we would like to have the same privacy for our online files as if they resided on our own

devices (assuming these are secure).

The basic recipe to protect the privacy of user data in the cloud is simple. Users should symmetri-

cally encrypt their files using their private key before storing them on the servers. To go further and even

hide the file size, files could be broken into blocks and storedas such. When reading, several blocks

would be used to compose larger files. In effect, the online providers would offer a simple block storage

device, that users would use to store and retrieve their files. This is similar to the S3 service already

offered by Amazon.

This storage service underlies most online services, and seems enough for any application if the

server is not needed to implement other functionality. Instead of using the local hard drive, the soft-

ware running on the user’s machine will download/decrypt necessary files before using them and en-

crypt/upload them afterwards. One exception is securing email, where messages are created by other

users. There, public key cryptography could be used insteadfor message encryption.

When the number of files becomes large, it becomes cumbersomefor users to find information of

interest. Traditional file system hierarchies help to some extent. Search is the missing ingredient as it

is user friendly, faster and more powerful especially on portable devices like mobile phones. Search

has become ubiquitous in accessing web and local information, so it is likely it will be central in pro-

viding an agreeable user experience. The success of Apple’sSpotlight search service in Mac OS X is

representative of this new trend for quick access to information. Search obviates the need for deep, cum-

bersome hierarchies of directories and folders. Fast search is a requirement if privacy preserving online

applications are to become successful.

5.1.1 Limitations of Online Privacy

We acknowledge that certain online features are difficult toimplement in a privacy preserving manner.

These include converting files, image or video editing (e.g.changing sizes for images, bit-rates for

videos), etc. While it is convenient to have this functionality online, we observe that the same function-

ality can be run on any home machine, given the appropriate software. Thus, if privacy is important,

running the software locally is the option.

Encryption significantly increases user privacy, but is notperfect. There are fundamental privacy

limitations given by the fact that the servers store user data. Servers analysing client requests will be

5.2. Basic Approach and Scope 47

able to infer which blocks are likely to be part of the same fileand which files are important at any given

point in time.

5.2 Basic Approach and Scope

Privacy preserving search is the main focus of this work, andit has two types of solutions. The obvious

solution is to create and maintain an index of files on the servers, downloading it before queries and

uploading it after files change. The second solution is to perform the search on the servers themselves,

using encrypted queries ran against encrypted metadata describing the files. In the latter case, when a

file changes, its corresponding metadata is updated.

To guide the comparison of these solutions, let us examine the typical deployment environment for

PPS. Today most users use personal computers to access theironline data. However, there is a strong

trend towards integrating more and more functionality on mobile devices, so these may well be the

gateway to the user’s files in the near future. Further, the number of devices each user owns is increasing:

typical users have a work computer, a home computer and possibly a laptop, a mobile device, a portable

music player, and so forth.

Device lifetimes vary wildly, with portable devices typically having a much smaller lifetime than

their desktop counterparts (because they break more easily, are stolen, or simply because devices with

new desirable features appear). Thus, it seems a bad design decision to place the focus on a unique

piece of equipment, and even to assume a user’s device set will stay constant. Online storage ensures an

easy transition between devices, and is effectively the only long lived device the user owns. A design

requirement is that all these devices should be able to seamlessly access and search the online repository.

Among these devices network connection speeds vary significantly (from 1Gbps/s for Gigabit Eth-

ernet to as low as 28.8Kb/s for GPRS) and so do costs: wired Internet connections typically have a flat

rate and unlimited traffic, while mobile connections have a monthly quota and volume charging when

the quota is exceeded. Further, battery for mobile devices drains quickly when sending or receiving data.

Another design requirement is to minimise bandwidth usage to reduce costs and increase battery life on

mobile devices.

Finally, while the main application of privacy preserving search is to allow users search their online

repositories of files, additional uses also seem plausible.Push-based notifications are very useful as they

provide the users the ability to create filters and install them on the servers to be notified when certain

events occur.

5.3 Analysis of the Index-Based Solution

The simplest way to implement the index-based solution is toupdate the encrypted index on each file

change, and to download the index whenever it changes. This unnecessarily wastes bandwidth for both

updates and queries. A better algorithm is to encode and encrypt each index change as a delta to the

index and store it online separately. When the user runs a query, it typically needs to download only the

latest deltas instead of the whole index; it locally appliesthe deltas to the index and only then runs the

search locally. As the deltas themselves can become numerous, the index is updated to include all the

5.3. Analysis of the Index-Based Solution 48

deltas periodically or when a threshold number of deltas have been created.

The index-based solution is simple: no additional mechanism is needed at the servers for imple-

menting it. It is well suited for users that mostly use a single device, but behaves poorly when users have

many devices and have to frequently download the index.

The index-based solution does not work well for pushing notifications. Filters like “notify me

when this file is updated”, “when somebody sends a message containing URGENT in the title” seem

very useful to prompt the user’s attention when rare events happen. The alternative in the index-based

solution is to periodically check the index, or to be notifiedwhen updates are added to the index. Both

approaches waste bandwidth.

As we have noted, wasted bandwidth may be acceptable in an Internet setting where pricing is

mostly flat, yet it entails high costs and decreases battery lifetime for mobile users.

5.3.1 Bandwidth Comparison

We performed a simple comparison of bandwidth usage in the index-based solution and in our encrypted

search solution (presented later). We assumed the online storage contains 50.000 files1. We create a

simple index by listing all the filenames in a text file, which we compress and encrypt. The size of the

output is 500KB, requiring around 10B per file. Updates to this index are encoded as filename and the

change (added, deleted, updated). Compression is less efficient on updates; one update, compressed and

encrypted, takes 200B. In our privacy preserving search implementation, we create one metadata for

each file. The size of the metadata is 500B; a single encryptedquery also takes 500B.

We built a simple analytical model of bandwidth usage by bothalgorithms. The bandwidth used by

PPS is500fu + 2500fq, where the first term accounts for the frequency of updates and the second term

account for the frequency of queries, and assumes only 10 results of 200B each are returned.

To approximate the bandwidth used by the index-based approach we proceed in two steps. Let the

maximum number of deltas beδmax.

First, the expected bandwidth use due to updates isfu(500.000+200(δmax−1)) 1
δmax

. The formula

reflects the fact that inδmax updates, the index is stored once completely, andδmax−1 updates are sent.

To compute the bandwidth used in queries, lets first assume updates are generated on another com-

puter than the one that does the search. Before each search, the computer checks the online version

of the index and downloads the index, deltas or both depending on the local version. To begin, let the

frequency of queriesfq be smaller to the frequency of updatesfu. Depending when the query arrives,

the querying computer will download the index, one delta, two deltas, up toδmax − 1 deltas. Assuming

these are equally likely, the expected query bandwidth usage isfq(500000+ 100δmax(δmax− 1)) 1
δmax

.

The value ofδmax that minimises bandwidth consumption depends on bothfq andfu. We com-

pute the optimal value and plot the ratio of bandwidth consumption in the index-based approach to the

bandwidth used in PPS, varying query and update frequencies.

In general we expect the number of updates to be larger than the number of queries, but do not

1This was the number of files in the authors’ home directory four years ago; now the same directory has grown to nearly a

million entries

5.3. Analysis of the Index-Based Solution 49

 0 200 400 600 800 1000

 0 200 400 600 800 1000

 0
 2
 4
 6
 8

 10

0 local updates

Index-Based solution
PPS

File Update Frequency
Query Frequency

 0 200 400 600 800 1000

 0 200 400 600 800 1000

 0
 2
 4
 6
 8

 10
50% Local Updates

File Update Frequency
Query Frequency

 0 200 400 600 800 1000

 0 200 400 600 800 1000

 0
 2
 4
 6
 8

 10 90% Local Updates

File Update Frequency
Query Frequency

Figure 5.1: Bandwidth Consumption Comparison between Index-Based solution and PPS

restrict the analysis to this case. When the query frequencyis larger than the update frequency, we

modify the formula above to use the update frequency when computing bandwidth required for queries.

We vary both update and query frequencies from 1 to 1000 and consider three cases: one where

all the updates are generated by another machine, one where half of the updates are local (and do not

need downloading) and one where 90% of updates are local. In figure 5.1 we plot the relative bandwidth

usage of the index-based solution when compared to the PPS solution.

The results are not surprising, and they show that the index-based solution consumes more band-

width overall, as it generates eight times more bandwidth when updates are non-local, and nearly twice

more traffic more when most updates are local.

For mobile devices, this has several implications. First, bandwidth costs will be significantly higher.

Secondly, the time required to run a query will be higher too.In the case where the index is 500KB,

5.4. Definition of Privacy Preserving Search 50

downloading it using state of the art 3G connection running at 1Mb/s takes around 5s. This is too

slow to be usable, and it is bound to get worse with more files. Download times scale linearly with

the size of the index, so the more files we have, the longer it takes to search them. Finally, more traffic

significantly reduces the battery life of the phone, becausethe wireless interfaces are quite energy-hungry

[SNR+10, HGSW10].

In summary, the index-based approach has high worst-case delays, does not scale well with the

number of files, and consumes a lot more wide-area bandwidth than PPS. Additionally, it is difficult to

apply to online email, and cannot properly support asynchronous notifications.

The PPS solution we propose lowers wide-area bandwidth costs, but requires significant processing

support in a data center. We will show during the course of this thesis that it is possible to keep search

times very low for a wide range of objects searched.

5.4 Definition of Privacy Preserving Search

We wish to allow an untrusted third party, the online server,to match encrypted queries against encrypted

data provided by a user. We assume the user has a private key ituses to encrypts both queries and

(meta)data.

The real file data is not encrypted with the algorithms we describe below, but rather with a traditional

symmetric encryption algorithm such as AES [DR02]. The metadata describing the file (also referred

to as data, for simplicity, during this thesis) is encryptedand attached to the original symmetrically

encrypted file, such that the server can return the matching file if requested.

We take the view that not only files can be stored on the server,but also long-standing queries (also

called queries). When (meta)data is added, modified or deleted on the server (by the user), the server

will match the new metadata against the standing queries andnotify the user if it matches. We conflate

the two mechanisms as together they offer all the functionality needed by the user.

5.4.1 Security Preliminaries

We say that a functionf is negligiblein t if, for any polynomialp there existst0 such that for allt > t0,

f(t) < 1/p(t). We use PPT as a shorthand forprobabilistic polynomial time.

We provide the following standard definitions from the literature on provable security [Gol01],

which we will use throughout this chapter.

Pseudorandom Function.A pseudorandom function is computationally indistinguishable from a ran-

dom function. Formally, a function family{FK : {0, 1}n → {0, 1}m|K ∈ {0, 1}t} is pseudoran-

dom if for every PPT oracle algorithmA the following value is negligible int: |Pr[AFK (·)(1t) =

1]−Pr[AR(1t) = 1]|, whereR is a random function selected uniformly at random from the set of func-

tions from{0, 1}n → {0, 1}m. The probabilities are taken over the choice ofK andR, respectively.

Pseudorandom Permutation.A pseudorandom permutation is computationally indistinguishable from

a truly random permutation. Formally, a permutation family{EK : {0, 1}n → {0, 1}n|K ∈
{0, 1}t} is pseudorandom if for every PPT oracle algorithmA, the following value is negligible int:

|Pr[AEK(·)(1t) = 1]− Pr[Aπ(1t) = 1]|, whereπ is a permutation selected uniformly at random from

5.4. Definition of Privacy Preserving Search 51

the set of bijections from{0, 1}n → {0, 1}n. The probabilities are taken over the choice ofK andπ,

respectively.

5.4.2 Security Assumptions and Scope

We use the term “user” to describe a number of different devices, possibly belonging to different people,

which were authorised—by being given either the secret key or an encrypted query— to search the

system. We assume that each of these devices is trustworthy.How the key is shared between these

devices is orthogonal to the privacy preserving protocol; typically a smart card could be used.

We assume that servers are computationally bounded and do not deviate from the privacy preserving

search protocol—they correctly return matching files to theuser. Otherwise, denial of service attacks

could be mounted easily, affecting the correct operation ofthe infrastructure. If we bear in mind that

these services are in some way paid for by the user, it seems irrational for servers to risk losing users by

denying them service.

5.4.3 Problem Definition

Definition 7 (Privacy Preserving Search (PPS)). Consider a userU that stores a number of files on a

server, and that has two types of inputs. The user generates asequence of metadata, with one metadata

describing one file at any given point in time. The user also generates queries, a subset of which may be

active at any point in time. PPS is a multi-round protocol betweenU and a third partyS, the server. In

each round one of the following can take place: a)U submits a one time query toS; b) U submits or

withdraws a long standing query toS; or c)U sends a metadata toR. A correct implementation of PPS

with security parametert must satisfy the following:

1. Correctness.S must be able to determine in PPT the subset of long standing queries that match

new metadata, andS must be able to find the set of metadata matching a one-time query.

2. Security. Fork ∈ N, defineV iewk as all the communicationsS has received fromU before round

k. DefinePlaintextk = {M1, . . . , Mi, Q1, . . . , Qj} as the set of metadata and queries fromU

before roundk.

Let Ok be an oracle that has access toPlaintextk and exports the two following functions:

match(idxQ,idxM), defined iffidxQ ∈ {1, . . . , j} andidxM ∈ {1, . . . , i} that answers whether

the query denoted byidxQ matches the metadataidxM . , and

coveridxQ1
, idxQ2

, where the indices are defined in{1, . . . , j}, which replies with yes or no to

indicate whether queryidxQ1
covers queryidxQ2

. A queryQ1 covers the queryQ2 if the metadata

matched byQ1 are always a superset of the metadata matched byQ2.

Finally, defineV iew∗
k = {i, j, Ok}.

A PPS scheme is secure if, fork ∈ N, for any PPT algorithmA, any functionh, there ex-

ists a PPT algorithmA∗ such that the following value is negligible int: |Pr[A(V iewk, 1t) =

h(Plaintextk)]− Pr[A∗(V iew∗
k, 1t) = h(Plaintextk)]|

5.4. Definition of Privacy Preserving Search 52

In other words, we require that information leaked to the server is the same as in an ideal protocol where

the server performs its functionality by submitting the indexes of the queries and metadata it wishes to

match (idxQ andidxM) to an oracle (Ok) with access to the plaintext versions. The above definition

implies the following:

• Metadata Security. Metadata encryption is semantically secure for multiple messages (as defined

by Goldreich [Gol01]) in the absence of queries. When queries are available, the only thing that is

leaked is whether a metadata matches the query or not. The metadata that are not matched by the

available queries are computationally indistinguishablefrom random bits.

• Query Security. Queries can be distinguished with the covering relation, and therefore their en-

cryption scheme is not semantically secure. A stronger security model could require that the query

encryption scheme is also semantically secure. In this workwe discard this stronger model for

practical purposes: efficient solutions for executing continuous queries rely on the coverage rela-

tion between queries, which mandates that a server should know if two queries are related [CW03].

Further, even in the one-time query scenario, when a a query is run against a large number of meta-

data and returns a non-trivial number of results (i.e. not zero, and not all the metadata), one can

strongly infer that queries that return exactly the same results (although the results are encrypted)

are equal. By acknowledging that in practice it is very difficult to obtain query indistinguishability

we are able to obtain more practical solutions.

• Metadata Unforgeability. It is infeasible for an adversary to create valid encrypted metadata.

This is important, since an adversary able to craft arbitrary metadata can use regression techniques

to infer an approximation of the query function.

• Query Unforgeability. It is infeasible for an adversary to create valid encrypted queries. Oth-

erwise, the adversary can use binary search to discover the value of the metadata in logarithmic

time. An important consequence of query and metadata un-forgeability is that plaintext queries or

metadata cannot be used in the matching process (since theseare easy to create by adversaries).

• Match Isolation. It is infeasible to compute anything from the messages seen at the server that

cannot be computed by applyingmatchandcover(using an oracle) to the indexes of queries and

metadata.

The definition above can be generalised naturally to the multi-server case where the number of matching

servers is arbitrarily large.

Any solution for PPS consists of the following five algorithms, the first four being required and the

fifth optional:

Keygen(t): run by the user,U outputs the private keyK when given the security parametert as input

EncryptQuery(K,Q): run by the user, outputs the encrypted queryQe when given the plaintext

queryQ and the private keyK

5.4. Definition of Privacy Preserving Search 53

EncryptMetadata(K,M): run by the user, outputs the encrypted metadataMe when given the meta-

dataQ and the private keyK

Match(Me,Qe): run by the server, receives as parameters an encrypted metadataMe and an encrypted

queryQe and outputs 1 ifQe matchesMe or 0 otherwise

Cover(Q1,Q2): run by the server, receives as parameters two encrypted queriesQ1 andQ2 and outputs

1 if Q1 coversQ2 or 0 otherwise

For simplicity of exposition, we use the term “encrypt” to denote a secure encoding of queries and

metadata that allows PPS. However, we point out that the schemes presented here are not traditional

symmetric encryption schemes, since decryption is not usually possible.

5.4.4 Limitations of Confidentiality

Regardless of the protocols used, the maximum level of attainable confidentiality in PPS is quite limited.

These limitations arise from the functionality the server is required to perform (i.e., to decide if an

encrypted query matches an encrypted metadata) and are inherent to the PPS problem. Here, we present

a brief overview of these limitations.

Limited Metadata Indistinguishability

Queries stored by a server can be used to distinguish certainmetadata (e.g., to tell if they are equal) by

matching the queries against the metadata: this uses the fact that the server must be able to match queries

against metadata, and is independent of the encryption scheme used for metadata. The more queries

that are available, the more likely the server is to accurately distinguish metadata. In the case where the

server has a complete basis of queries, it can distinguish all metadata with zero probability of error.

Statistical Attacks

The server can find for each query it runs how many of the files match. If the server has additional

information about the corpus it can infer with some degree ofconfidence what the search term could be

by looking at the number of matches and the frequency of the search.

While this problem is significant for general purpose web-search queries, we believe that when

a user searches its own files the file content and the searches will vary significantly across users, and

therefore may yield limited information without specific profiling for the actual user.

Confidentiality-Generality Tradeoff

We define thecomplexityof a query type as 1
minS

, whereminS is the minimal number of queries

needed to recognise all metadata. There is a direct correlation between the complexity of a query and

the information it leaks about metadata. For instance, the simplest query function is equality testing: one

such query will allow a server to distinguish metadata that are equal to the specified value. To distinguish

all possible metadata without error (i.e., to have a basis),the server needsO(2n) distinct queries, where

n is the size of the metadata in bits. The more complex queries are, the more information is leaked about

metadata. For instance, a query that accepts all metadata with thekth bit set to a specific value, will

5.5. Solutions for Privacy Preserving Search 54

allow the server to distinguish information about thekth bit of all metadata. In this case, onlyO(n)

queries are needed to distinguish metadata with zero probability of error.

5.5 Solutions for Privacy Preserving Search
What features of documents should be searchable? Traditional filesystems provide tools like “find” and

“grep” to match through filenames, file attributes and file content. Consequently, we split searchable file

information in three searchable attributes: file name and path, file content and attributes like size and

modification date.

To support practical searches on file name and file content we need to support keyword matching:

the ability to tell if a keyword is contained in a collection of keywords. For filename matching keyword

matching should suffice, and clearly all the components of a path must be searchable. For document

content, on the other hand, it makes little sense to include all the keywords contained in each document

in the searchable attribute: when one searches for the keyword “the” all the documents written in English

would be returned. Basic information retrieval techniquesonly index the most important features of

each document, i.e. the words with the highest discriminating power. Thus, we imagine that for each

document a small number of keywords will be searchable (say 50).

To support matching on filesize and access dates we must support number matching: the ability to

tell if a given encrypted number lies within a range.

Combining keyword matching and number matching, we can enhance the precision of content

search as follows. Assume each keyword is ranked based on itsimportance in the document; the ability

to search for documents where a certain keyword is the most important feature, or in the first 10 most

important features, allows us to indirectly obtain ranked results.

In this section, we present PPS algorithms for these tasks. We identify in the literature two algo-

rithms that support basic keyword matching from Goh [Goh03a] and Chang et al. [CM05a] and list them

here, showing they both conform to our security definition. Using these as building blocks, we present

novel constructions that allow PPS number matching and ranking of search results. We also discuss

techniques to support more general queries.

In the descriptions of the basic PPS schemes, we assume each metadata is a single value, and

each query is a single predicate. Because all of the interesting protocols we describe below are based

on keyword matching, all the different types of file information can be easily bundled into a single

searchable “attribute” at the server; we describe how we implement this in section 5.6.

Practical queries may involve multiple keywords and may refer to file attributes such as last modifi-

cation date. Ideally, we would like to “compose” all these predicates into a single query which the server

runs. However, as we will see in our discussion in section 5.5.5, this is quite expensive for two-keyword

queries and prohibitively so for general purpose multi-predicate queries.

We use a less secure but practical alternative, encoding predicates separately and having the server

compose them. With this scheme the server gains more information than necessary. For instance, a query

requesting keywords A and B will reveal to the server which metadata match A and which metadata

match B, instead of only revealing the metadata that match both A and B.

5.5. Solutions for Privacy Preserving Search 55

5.5.1 Equality Matching

We begin by showing how to support simple equal filtering of attributes. Although this scheme is not

powerful enough to be used in practice, it is useful as a starting point for understanding the other mech-

anisms.

To support equality matches, we use the first step of the solution proposed by Song et al. for searches

on encrypted data [SWP00]. The idea is to compute the “hidden” value of an attribute by passing its

plaintext value as argument to a pseudorandom function, keyed with the secret key. The encrypted query

is the hidden value of the plaintext. Encrypted metadata arecomposed of two parts: a random noncer,

generated by the user, and the result of feedingr to a pseudorandom function, keyed with the hidden

value of the attribute’s plaintext.

Let F be a pseudorandom function. The algorithms forEqualPPS are:

Keygen(t): selectK from {0, 1}t uniformly at random

EncryptQuery(K,Q): returnFK(Q)

EncryptMetadata(K,M): select rnd uniformly at random. Leth = FK(M). Return

(rnd, Fh(rnd)).

Match(Me,Qe): Let Me = (rnd, two). Return 1 ifFQe
(rnd) = two, 0 otherwise

Cover(Q1,Q2): Return 1 ifQ1 = Q2 (bitwise), 0 otherwise

Theorem 1. Equalis a correct implementation of PPS.

Proof. It is easy to see from the descriptions that all the schemes wepropose correctly match queries

against metadata and conservatively solve query coverage (i.e., they can give false negatives, but not

false positives). We have also experimentally tested the correctness of our schemes. Henceforth, the

proofs only analyse the security of the proposed schemes.

We want to show that for anyk, any functionh and any algorithmA (i.e., running at the server),

there is an algorithmA∗ (i.e., running with access to the oracle) such that the following value is negli-

gible in t, the security parameter:δ = |Pr[A(V iewk, 1t) = h(Plaintextk)] − Pr[A∗(V iew∗
k, 1t) =

h(Plaintextk)]|.
The idea, borrowed from Chang et al. [CM05b], is to prove thatA∗ can useV iew∗

k to construct a

view V iew′
k that is computationally indistinguishable fromV iewk. If this is the case,A∗ can simulate

the desired functionality by callingA with parameterV iew′
k, and thereforeδ is negligible.

Without loss of generality, assume that the PPS protocol consists of two consecutive phases:regis-

tration (consecutive rounds in which the user sends their metadata to the server) andoperational(con-

secutive rounds where the user sends queries to the server).It is simple to see that if the protocol

is secure in this case, it is also secure when metadata updates and queries are interleaved. Assume

Plaintextk = {M1, . . . , Mn, Q1, . . . , Qk}, that is, thekth round in theoperationalphase. Then,

V iewk is {(rnd1, ffK(M1)(rnd1), . . . , (rndn, ffK(Mn)(rndn), fK(Q1), . . . , fK(Qk)}.

5.5. Solutions for Privacy Preserving Search 56

Let us consider the special cases first. Assumek = 0, that is, there are no queries.A∗ selects all

entries inV iew′
k (corresponding to encrypted metadata) uniformly at random. In this case,A∗ simulates

A properly, otherwise we can use (A, A∗) to distinguish pseudo-random bits from random bits.

Next, assumen = 0, meaning that no metadata have been received yet. In this case,A∗ proceeds

as follows. For eachi = 1 . . . k, check to see if there existsj < i such thatOi.cover(j,i)=1. If suchj

does not exist, select queryQi in V iew′
0 uniformly at random. Otherwise, setQi = Qj.

A∗ feeds this view toA. The only difference betweenV iewk andV iew′
k is the way the distinct

queries are chosen. We claim that whateverA can compute fromV iew′
k can also be computed using

V iewk; otherwise the pair (A, A∗) can be used to distinguish pseudo-random bits from truly random

bits.

Now consider the general case.A∗ generatesk queries as described above and adds them toV iew′
k.

Let Qd = Q1, . . . , Qm be the set of independent queries. Next,A∗ generatesn notifications as follows.

For all i = 1, . . . , n A∗ checks if there existsj ∈ {1, . . . , k} such thatOk.match(i,j)=1. If so,A∗

generates a random noncernd and adds (rnd, fQj
(rnd)) to V iew′

k; otherwise it adds a value selected

uniformly at random.

There are two differences betweenV iewk andV iew′
k: a) distinct queries are pseudo-random as

opposed to truly random, and b) metadata that are not matchedby the distinct queries are generated truly

randomly instead of pseudo-randomly (i.e., usingf). Therefore, ifA can compute something more from

V iewk we can use it to distinguish pseudo-random bits from random-bits. This concludes the proof.�

This scheme is cheap from both the computation and communication points of view. Computation-

wise, the scheme adds a few cheap operations to creating queries/metadata and a single function appli-

cation for matching.

5.5.2 Keyword Matching

In this section we describe two existing solutions for keyword matching that achieve similar security yet

have different costs. As keyword matching will be used as a building block for our proposed protocols

for matching numbers, and also for matching keywords, having to choose between two solutions with

different practical characteristics gives us an optimisation dimension we can exploit.

Bloom-Filter Keyword Matching

The first protocol we use has been proposed by Goh [Goh03a]. The idea is to break the string into words

and construct a Bloom predicate [Blo70] to signal existenceof a word in the string. The query is a single

keyword.

Let F be a pseudorandom function. LetBF be a Bloom predicate. The algorithms for Keyword

PPS from Goh [Goh03a] are:

Keygen(t): selectr as the number of hash functions in the Bloom predicateBF with the desired false

positive rate. SelectK = (k1, k2, . . .,kr) uniformly at random from{0, 1}rt.

EncryptQuery(K,S): return (Fk1
(S), . . .,Fkr

(S))

5.5. Solutions for Privacy Preserving Search 57

EncryptMetadata(K,N): extract keywordsw1, . . ., wn from N . Select a random noncernd. For

i = 1 . . . n, compute (xi,1, . . . , xi,r) = EncryptQuery(K, wi), compute the codeword (y1 =

Frnd(xi,1), y2 = Frnd(xi,2), . . ., yr = Frnd(xi,r)) and setBF [yj] = 1 for j = 1 . . . r. Return

(rnd, BF)

Match(Ne,Se): Let Se = (x1, x2, . . ., xr). Let Ne = (rnd, BF). Compute codewordsyi = Frnd(xi)

for i=1 . . . r and check if the bit corresponding toyi is set inBF . If there existsi such that

BF [yi] = 0 return 0, otherwise return 1

Cover(S1,S2): Return 1 ifS1 = S2, 0 otherwise.

We make the assumption that all strings have a predefined length and that they have the same number of

words. This prevents an attacker from distinguishing two metadata by counting the number of bits set in

theBF . When the latter assumption does not hold, we can add random bits to theBF to simulate the

proper number of words [Goh03a].

Theorem 2. Keywordis a correct implementation of PPS.

Proof Sketch. The paper by Goh [Goh03a] presents a proof of security under the IND-CKA2 model,

which focuses on document indistinguishability. Here we show that breaking PPS security forKeyword

can be used to break IND-CKA2 security forKeyword, and therefore IND-CKA2 security implies PPS

security for keyword matching.

The attacker in the IND-CKA2 game selects uniformly at randomn distinct keywords{S1, . . . , Sn}
and finds out their encrypted versions by using the IND-CKA2 challenger. The attacker further selects

two plaintext documents uniformly at random,N0 andN1, ensuring that the known keywords are con-

tained by bothN0 andN1 or by neither.N0 andN1 are passed to the challenger in the IND-CKA2 game,

which replies with an encryption ofNb whereb is uniformly random from{0, 1}.
Assume that the attacker can compute a functionalityh givenV iew1 = {Q1, . . . , Qn, Nb}, that

cannot be computed only usingV iew∗
1 . If h does not depend on the valueNb, thenh can compute

something relating to the queries, besides the coverage relation; by using an argument similar to Theorem

1, we can see that this will allow one to distinguish random bits from pseudo-randombits, and is therefore

impossible. Therefore, it must be thath depends onNb, meaning thath will present non-negligible

distinct outputs forb = 0 andb = 1. The attacker uses this output to guess the value ofb, therefore

winning the IND-CKA2 game. This completes our proof sketch.

Overhead.We analyze here at a high level the communication and matching overheads of the protocol.

We will describe these experimentally later. The communication overhead for the metadata is the size

of the Bloom filter, which is proportional to the number of keywords stored in it. We have already

mentioned that to match document content a small number of keywords suffices (e.g. 50), and for path

matching the depth of the path is lower bounded in practice (the author’s filesystem has a maximum

depth of 22).

The parameters of the Bloom Filter are the size of the filter,m, and the number of hash functionsr.

Assume we wish a false positive rate of 1 in 100,000 (which should return very few false matches, for

5.5. Solutions for Privacy Preserving Search 58

large numbers of files); the optimal value ofr is 17, we would use 25 bits for each element on average,

som = 25 · 50 = 1025b ≃ 130B.

The query simply lists ther positions of the bits in the Bloom filter, so the expected sizeis r·log m =

170b ≃ 22B.

The matching overhead is dependent on the number of hashes computed; when query does no t

match the metadata, on averager/2 hashes will be computed by the server; when the query matchesthe

metadatar hashes will be computed.

Dictionary Keyword Matching

The scheme proposed by Chang et al. [CM05b] is based on creating a dictionary that has one bit for

every possible word (as opposed to the words in that specific document). The dictionary is shuffled

using a pseudorandom permutation and blinded using pseudorandom functions and a random nonce. The

metadata includes the blinded dictionary, along with the random nonce.The query contains the shuffled

index of the word plus a “hidden” version of the index.

Let F , G be two pseudorandom functions andE be a pseudorandom permutation. TheDictionary

scheme is:

Keygen(t): selectK = {K1, K2} uniformly at random from{0, 1}t × {0, 1}t.

EncryptQuery(K,S): find indexλ of S in the dictionaryD. Return{index = EK1
(λ),FK2

(index)}

EncryptMetadata(K,N): let J andI be two bit index strings of size|D|, initialised to 0. For all

wordsw1, . . ., wn in N , findλi (the index ofwi in the dictionary) and setI[EK1
(λi)] = 1. Select

a random noncernd. For i = 1 . . . |D|, computeri = FK2
(i) and setJ [i] = I[i] ⊕ Gri

(rnd).

Return (rnd, J)

Match(Ne,Se): Let Se = (index, rindex). Let Ne = (rnd, J). If J [index]⊕ Grindex
(rnd) = 1 return

1, otherwise, return 0

Cover(S1,S2): Return 1 ifS1 = S2, 0 otherwise.

Theorem 3. Dictionary is a correct implementation of PPS.

Proof Sketch. Definition 7 provides a security model for PPS regardless of the query, by mandating

that the information the server can learn by using the messages received from the user can also be learnt

by accessing an oracle. The security model provided by Changet al. [CM05b] is an instance of our

model, where the query function is keyword matching and the oracle is replaced by access to the actual

information (i.e., which document contains which keyword). The difference between their model and

ours is the treatment for queries (keywords). They assume that all keywords are different (and therefore

no information is gained by seeing they are different), while we allow the server to distinguish whether

one query covers another query. In the case of keyword matching, two queries cover one another only if

they are equal. If we only consider the subset of distinct queries, we can directly use the security proof

in Chang et al. [CM05b] to prove security in PPS. The redundant queries do not leak any additional

5.5. Solutions for Privacy Preserving Search 59

information about documents, and do not leak more information about queries that cannot be discovered

by using the oracle. Therefore,Dictionary is secure according to PPS.

Overheads.Compared toBloom Filter Keyword, Dictionary Keyworddoes not generate false positive

matches and does not impose any restrictions on the number ofwords in the document.

This scheme assumes the dictionary is known before the metadata are created, and that it stays

constant during the metadata lifetime; if words are added tothe dictionary afterwards, all the metadata

for all documents must be recreated.

The communication and storage overhead of metadata encrypted byDictionary is equal to the size

of the dictionary. The size of the encrypted metadata is 32kBfor documents written in the English

language [CM05b]. This is very expensive for small documents. The expected size of document content

in PPS is quite small (hundreds of bytes usually) favouring the first scheme.Dictionary can be used

when the size of the string is larger or comparable to 32kB or in cases where the dictionary is smaller.

Matching withDictionary is cheaper, as a single one way function computation is required. Com-

pared to theBloom Filterapproach, it is a few times faster on average.

Beyond Single Keyword Queries

The schemes above are secure, yet they allow one to match a single keyword at a time. To match two

keywords, there are two straightforward options.

The first is to just encrypt the two keywords separately, submit them to the server, and have the

server return the results matching both keywords. This leaks more information than necessary to the

server, as the latter knows all documents that match either one of the keywords, not just those that match

both.

A second option is to have the user to submit one keyword to theserver, download all the matching

documents, and match the second keyword locally. This also leaks more information to the server (more

documents match) and also wastes bandwidth.

We propose a new solution to this problem, that works if the number of keywords allowed in a

search is small (say 2). The basic idea is to create every possible combination of keywords and list

documents as having or not having that combination. Single keywords are a special case of keyword

pair, where the second keyword is empty.

Is this scheme practical? The average number of keywords in web searches is 2.3, so we believe

allowing two keywords should suffice in the vast majority of cases. To estimate communication costs, let

us assume we useBloom Filter Keywordas a basis, and that we list only the 50 most important keywords

in each document. In the resulting encoding, we would have502 = 2500 entries in each document,

which equates to about7.5KB with a 1 in 100.000 BF encoding. Whether this is practical depends on

the size of the document, and the update frequency.

5.5.3 Numeric Matching

Matching numeric attributes is important as such searches are frequent in filesystem searches, either for

searching newer files or files of a certain size. Further, the ability to match numbers can help implement

more advanced keyword searches that would be useful in practice, such as ranked searches.

5.5. Solutions for Privacy Preserving Search 60

Let D ⊂ R be the numeric metadata space. Given a metadataN ∈ D, the query can have two

forms: a) inequality tests (N > lb, N < ub) or b) range tests (lb < N < ub), for lb, ub ∈ D. We define

two novel PPS schemes for the two cases.

Supporting Inequality Queries

Choosel points,p1, . . . , pl ∈ D as reference points. We consider the following dictionary:{“> p1”,

“> p2”, . . ., “> pl” “ < p1”, “ < p2”, . . ., “< pl”}. Queries will be approximated with one of these

constraints. Each metadataN is considered to be a document containing the words in the dictionary

that it matches. These are encrypted using either one of the two Keywordschemes we have previously

described. TheInequalityscheme is:

Keygen(r): K = Keyword.Keygen(r). Agree on a set ofl reference pointsp1, . . . , pl ∈ D.

EncryptQuery(K,S): Let S = (type, value), wheretype can be “<” or “ >”. Find i such that

|value− pi| = minl
j=1 |value− pj |. ReturnKeyword.EncryptQuery(K, type|pi)

EncryptMetadata(K,N): Let Nw = {ti|pi, whereti=“>” if N > pi andti=“<” if N < pi, for

i = 1 . . . l}. ReturnKeyword.EncryptMetadata(K, Nw)

Match(Ne,Se): returnKeyword.Match(Ne,Se)

Cover(S1,S2): we check whether the queries are the same by usingKeyword.Cover. Full query cover-

ing cannot be checked without additional information in this case. We present an efficient solution

in the Implementation section, which leaks some additionalinformation.

Theorem 4. Suppose all queries can be expressed exactly using the mechanisms above. Then,Inequality

is a correct implementation of PPS.

Proof Sketch. Inequalityis an instance ofDictionary that contains as words “> p1”, “ > p2”, . . ., “> pl”

“< p1”, “ < p2”, . . ., “< pl”. Since the approximation is assumed to be perfect andDictionary is secure

(Theorem 3), verifying inequality using the dictionary gives as much information as verifying with the

oracle. It follows thatInequalityis also secure.

Note that the assumption that queries are expressed exactlyis important. Without this, the server

can infer additional information. Here is a simple example:assume the notification space is0, . . . , 10

and the reference points are0, 5, 10. QueryS = x > 7 will be approximated withSa = x > 5. Given

encrypted notifications 4 and 6, the server cannot distinguish them in the ideal case (when testing against

S, none of them is matched), however it can tell they are different in reality (asSa will match 6 and not

match 4).

Overhead. The overhead of this scheme is due to the size of the dictionary, equal to2 · l. There is a

direct tradeoff between this overhead and the precision it allows for queries.

If we want perfect queries (0 false positive and negative matches), we setl = |D|.
This can be expensive in reality (e.g., for 4 byte integers wehave ∼109 points). We de-

scribe an exponentially spaced partitioning scheme that isuseful in many practical scenar-

ios. Approximating the 4 byte positive integers with[1 . . . 109], we select as reference points:

5.5. Solutions for Privacy Preserving Search 61

1, 2, 3, . . . , 10, 20, 30, . . . , 100, 200, 300, . . . , 1000, . . . , 108

, 2 · 108, 3 · 108, . . . , 109. Although the number of reference points is only 100 (the metadata has only

12 bytes), the precision is acceptable if we consider that query sensitivity decreases as metadata values

increase.

Supporting Range Queries

To supportlb < N < ub queries, our initial idea was to have the user create a partitioning P =

{p1, . . . , pl} of D. The user would encrypt the index of the subsetN belongs to by usingEqual. Queries

are mere encrypted versions of the indexes of the subsets in the partition they are interested in (i.e., all

pi ∈ P such thatpi ∩ (lb, ub) 6= ∅). However, sending multiple subsets leaks more information than

necessary. Therefore, we would have to approximate the query with a single subset in the partition. As

query sizes are not fixed a-priori, we can either grossly overestimate the size of the query, leaking more

information to the server and wasting bandwidth, or we can underestimate the size of the query, which

also leaks information but does not waste bandwidth.

The initial idea can be refined as follows. Create several partitions ofD, P1, . . . , Pm, with different

subset sizes and different starting offsets. Create a dictionary containing as words the index of the

partition concatenated with the subset index, for allm partitions. A metadata can be expressed as a

document with this dictionary by listing the subsets it is included in. The query is approximated with

one of the subsets in these partitions. TheRangescheme is:

Keygen(r): GenerateK usingKeyword.Keygen. Agree onm partitions ofD, P1, P2, . . . , Pm, where

Pi = pi,1 ∪ pi,2 . . . ∪ pi,li . Let pi,j = [ai,j , bi,j]

EncryptQuery(K,S): Let S = (lb, ub). Find the best approximation ofS in P1, . . . , Pm. In partic-

ular, findx andy such that|lb − ax,y| + |ub − bx,y| = minm
i=1 minli

j=1(|lb − ai,j | + |ub − bi,j |).
ReturnKeyword.EncryptQuery (“x, y”)

EncryptMetadata(K,N): Let Nw = {“x, y” | wherex ∈ {1, . . . , m} andy ∈ {1, . . . , lx} such that

N ∈ px,y. ReturnKeyword.EncryptMetadata(K, Nw)

Match(Ne,Se): returnKeyword.Match(Ne,Se)

Cover(S1,S2): we can easily check to see if two queries are the same by usingKeyword.Cover. How-

ever, we cannot properly check full covering without additional information. In [RR06] we de-

scribe an efficient coverage solution that can be used instead, but leaks more information than

necessary

Theorem 5. Suppose all queries can be expressed exactly (i.e., withoutgenerating false positives or

negatives) using the above algorithm. Then,Rangeis a correct implementation of PPS.

Proof Sketch.Same reasoning applies as for Inequality.

The scheme creates an explicit tradeoff between the size of the queries and matching time on one

hand, and the number of false positives and the security attained (i.e., information leaked due to imprecise

5.5. Solutions for Privacy Preserving Search 62

queries), on the other. A partitioning scheme with zero false matches for any range query has|D|2 points,

being quite expensive. A better scheme can be obtained if we focus on query sizes likely to be used in

practice.

In general, given a desired cost, choosing the proper partitioning is application specific and should

take into consideration the distributions of queries and metadata. An algorithm that determines the

optimal partitioning strategy for a specified cost is presented by Hore et al. [HMT04] and could be used

for this task.

5.5.4 Supporting Ranked Queries

We are now ready to describe our construction for ranked queries. In traditional information retrieval,

the document score is computed using a scalar product between the query and the document vector

representations. It is difficult to implement this exact functionality with PPS, but we can approximate it

quite well if we have few keywords in the query.

First, assume there is a single keyword in each query and we wish to match only those documents

where the keyword is of utmost importance, say in the first fivefeatures of the document. To allow such

matching, we create the following partitioning of the feature space: first, first five, first ten, and first 25.

If a keyword satisfies the query (i.e. it is first), an encryption of “first—keyword” will be added to the

document. All in all, we add 41 new keywords to each document,which increases the size from 130B to

250B.

If we allow dual keywords in each query, and we wish to maintain the same allowed ranking (first

1%, first 5%, etc.) we roughly double the size of the metadata to about 15KB.

5.5.5 Supporting Generic Queries

Supporting arbitrary functions as queries is not a goal in itself, as the maximum achievable security is

not satisfactory: OnlyO(|N |) carefully chosen queries are enough to distinguish every metadata. This,

combined with the knowledge of a plaintext-ciphertext pair, completely breaks the metadata encryption

scheme. However, it is interesting to discuss approaches for generic query functions as a possible starting

point to support other query functions of practical interest.

There is a tradeoff between the amount of information leakedto the servers and the communica-

tion overhead. Therefore, to support generic queries we cantrade confidentiality for communication

efficiency.

At one end of the solution space, the minimum amount of information is revealed and communica-

tion size is very expensive. Consider an enumeration of all functions fromD → {0, 1}. The dictionary

will contain the indexes of all these functions. We useDictionary to encode arbitrary queries by encrypt-

ing the proper index. Metadata will include as words all the indexes of functions that accept them. This

scheme is secure for all possible queries as it does not leak more information than what is needed. The

communication size is huge: Every metadata has2|D| bits.

At the other end of the solution space, we have examined and implemented a protocol based on

Yao’s garbled circuit construction to support generic queries, expressed as boolean circuits [Yao86].

The size of the communication is small (query size is directly proportional to the number of gates in

5.6. Implementation 63

Figure 5.2: Data Structures Used by PPS

the circuit, while metadata size is the same as the plaintextversion). However, this scheme allows the

server to distinguish every bit of the metadata, and therefore a single plaintext-ciphertext pair is needed

to completely break metadata (without needing|N| “good” queries as a basis).

5.6 Implementation

We implemented all the algorithms we presented in Java 1.5. We chose Java mostly for ease of devel-

opment and debugging. The only concern we had was for performance, but techniques such as HotSpot

JIT compilation make Java reasonably fast.

We used the SHA-1 cryptographic hash function [oST95] throughout our implementation as a pseu-

dorandom function. We used 128-bit AES [DR02] for the symmetric encryption scheme and as a pseu-

dorandom permutation.

5.6.1 Overview

The server stores for each user all the metadata the user has registered. Multiple users will be serviced

by the same server as multiplexing is needed to make PPS economically viable.

The user provides a random identifier for each metadata. The server code loads the metadata from

disk into memory in the increasing order of the identifier, performs the matching in memory, and returns

the results. A user’s metadata is cached as long as memory is available. When a user submits a query,

the query is served from memory if the user’s metadata is in memory. Otherwise, if memory is full a

user’s metadata will be deleted from memory. The cache policy is least recently used (LRU).

Caching improves performance when a user emits a burst of queries in a short period of time. A

server will need to service a large number of users, a small subset of which is active at any point in time,

so we expect that in the common case the user’s data is not in memory when the query arrives.

5.6. Implementation 64

Figure 5.3: Running a Query with PPS: System Architecture

5.6.2 Managing Metadata

To manage metadata, we created a data structure that allows partial loading and quick access to entries.

Partial loading is used when a single query is split across many servers, and each server only matches a

subset of their local data (i.e. when increasingpQ with ROAR). The data structure is based on an array

of user metadata sorted byid. Disk storage uses the same structure, storing metadata sequentially in one

or a few files on disk. Besides the array structure, we maintain an array of “pointers” to these basic lists,

to allow fast and partial access. The data structures are presented in Figure 5.2.

When a user sends a query the server will create an in-memory sorted metadata list (if one does

not exist already), loading the pointer entries from a smallfile on disk. Initially, there is no metadata in

memory.

The range requested by the query is used to select ranges of metadata to be loaded, and the server

begins loading data from disk (file “sm.dat” in our example) using information from the relevant pointers.

To load data from disk it uses memory mapped I/O (this is faster than traditional I/O for large files). An

I/O thread will sequentially read from disk into the in-memory list the data corresponding to each pointer

entry. In our example, data is read for pointer 0 and placed atposition 0. Then data from pointer 2 is

read and placed at position 3 in memory.

5.6.3 Running Queries

To run the query, metadata are loaded (if necessary) and thenmatched against the encrypted query. There

are several bottlenecks that could appear: loading from disk could be slow, or matching could be slow.

To decouple these two, we create two threads: one that reads the data from disk or memory and feeds it

to another thread that matches the metadata against the query.

The architecture of the system is presented in Figure 5.3. Weuse a fixed-size buffer to synchronise

the two threads, using the producer-consumer paradigm. Thebuffer hides I/O latency in the case when

CPU is the bottleneck, even in a single processor system. To avoid excessive use of synchronisation, the

5.6. Implementation 65

I/O thread produces batches of metadata at once, and the consumer only announces the sleeping producer

when enough space is available for an entire batch. When the I/O is the bottleneck, the setup adds very

little overhead compared to sequential match and load.

Dealing with multi-core servers servers is easy: the code simply creates one matching thread per

physical core, and the buffer now has a single producer and multiple consumers. The server supports

inter-user query parallelism, but serialises queries fromthe same user (thus achieving fair sharing).

5.6.4 Metadata Encoding

Each user file has three types of metadata. File size, last modification date and keywords (both filename

and, where applicable, the most important keywords in the file contents).

The straightforward way to encode this data would be to encode each attribute separately, and allow

predicates to select one of the attributes. This leaks information, as the server knows how many times

each attribute is queried, and can infer the attribute type.

The better solution is to embed all attributes into a single visible metadata. This is possible because

all practical queries use keyword filtering as a base. We use the same keyword matching algorithm for

all attributes, and create a dictionary that is a superset ofall the per-attribute dictionaries. For instance,

if the keyword dictionary is{distributed, systems} and the file size dictionary is{1, 2} we can create

a dictionary{kw = distributed, kw = systems, size = 1, size = 2} that encompasses both. To

match keywords, the user will create a query by prepending “kw=” to its desired search keyword. In this

way, we can stack up all the attributes in a single dictionarywith size equal to the sum of the individual

dictionary sizes.

There are no associated space overheads. In theDictionary scheme total metadata size will be

the same as if we had encrypted each metadata individually, and the same applies to theBloom Filter

Keyword.

5.6.5 Multi-Predicate Queries

In our implementation a query can contain multiple predicates and a binary function (and, or) to aggre-

gate the results. We have mentioned earlier that while multi-predicate queries leak more information

than needed to the server, supporting all possible multi-predicate queries securely has prohibitive costs.

Hence, we allow multi-predicate queries for practical purposes. It is the user’s choice whether they wish

to use multiple predicate queries or single predicate, perfectly secure queries.

The matching algorithm initially runs all the predicates inthe query regardless of the binary func-

tion, counting the number of matches for each predicate (we call this predicate “selectivity”). After a

small number of samples, it sorts the predicates according to their selectivity, and starts to match pred-

icates selectively. If the binary function is “and”, it will apply the most selective predicates first; if the

binary function is “or”, it will apply the least selective predicates first.

As the matches are randomly scattered through the metadata,matching a few metadata is provably

enough to get a very good estimate of each predicate’s selectivity.

Here is a succinct explanation. Let the predicate’s real selectivity be s′; we matchn metadata

chosen randomly to find an estimates of the selectivity. The number of matching metadata inn samples

5.7. Evaluation 66

is a random variable that has a binomial distribution with mean ns and variancens(1 − s). Using

Chebyshev’s inequality and∼ 89% confidence we have:

Pr(|ns′ − ns| > 3
√

ns(1− s)) < 1/9 (5.1)

Dividing by n and upper-boundings(1 − s) by 1/4, we get|s′ − s| ≤ q
√

s(1−s)
n
≤ 3

2
√

n
. To get an

accuracy of 0.1, it suffices to setn = 225. This is the number of samples we use in our implementation.

5.7 Evaluation

Privacy Preserving Search must be fast to provide a good userexperience. In this section we explore the

performance properties of PPS for typical numbers of files likely to appear in practice. Our experimental

setup uses file information from the author’s home directoryto generate metadata as described before.

The metadata is stored and experiments are run on a Dell PowerEdge 1950 server with 2GB of main

memory and two dual core Intel Xeon 5150 processors running at 2.66GHZ. We used the Linux operating

system, with kernel version 2.6.28. We experimented with queries matching as little as 10000 files up to

a few million, covering a wide enough range to gain a good understanding of the performance limitations

of PPS.

Our basic experiments use a set of 1 million metadata which are repeatedly queried by a server in

the same LAN using two random keywords, such that the number of matched metadata is always 0 (this

is to avoid measuring the network cost of transmitting the data back to the client).

We have two versions of PPS that exhibit different fixed costs. PPS is written in Java, and the cost

of running the Java garbage collector is not negligible2. PPSLM (low memory) forces a run of the

garbage collector immediately after finishing a query. Thishas the advantages of minimizing memory

usage and preventing the garbage collector running during aquery, which would increase query delay,

but the disadvantage of adding to the fixed costs of a query. PPS LC (low CPU) does not force a garbage

collection run after a query; it has lower fixed costs, but uses more memory and may exhibit more

variable query delays. Unless stated explicitly, we run PPSLM by default in our experiments.

Basic Performance.We wish to understand the scaling bottlenecks of PPS. We firstran the query with

cold disk caches and a single matching thread, and found thatmean end-to-end query delay is 3.9s, with

all values within 0.5s of the mean. To understand the bottleneck, we instrumented the producer-consumer

buffer to output a line whenever a multiple of 1000 metadata are produced or consumed. We plot the

results in Figure 5.4(a) for one of the queries.

In the plot the I/O and matcher thread lines perfectly overlay, indicating that the producer—the

I/O thread—is the bottleneck. To verify this assumption, weran a simple tool that just reads the whole

230MB metadata file3 and found it took around 3.5s to complete. The remaining 0.3sare accounted for

by the list append operations the I/O thread performs.

The metadata file was written sequentially on disk, and was also read sequentially. We wondered

2Memory allocation is however faster in Java than C++, because the free space is contiguous, as the heap is compacted on each

collection
3The command printed the number of characters in the file:cat file | wc -c

5.7. Evaluation 67

 0

 200000

 400000

 600000

 800000

 1e+06

 0 1 2 3 4

M
et

ad
at

a

Time(s)

I/O Thread
Matching Thread

(a) Query reading data from HDD

 0

 200000

 400000

 600000

 800000

 1e+06

 0 0.5 1 1.5

M
et

ad
at

a

Time(s)

I/O Thread
Matching Thread

(b) Query reading data from OS buffer cache

Figure 5.4: Execution traces for queries searching 1 million metadata

whether the ext2 filesystem was causing the performance problems. Further experiments show this is not

the case: the maximum achievable transfer speed is given by the sequential raw hard disk transfer speed

of 85MB/s, which we measured with “hdparm”. The transfer speed in the experiment above is around

66MB/s, 75% of the optimal. Even if we achieved the maximum speed, and with no other overheads the

query would still take 3s to complete. 3s per query is too slowto be acceptable for regular users.

Warm OS Buffer Caches.We expect many users to be multiplexed on the same server, so it is very

likely that user queries will be interleaved and caches nearly always cold. Such queries will be disk-

bound and performance will suffer. However, it is equally interesting to explore what happens when

there is query locality, and caches are warm. Modern operating systems maintain a “buffer cache” where

recently read data is cached. Linux in particular is quite aggressive, using all available memory for the

buffer cache.

If the same user runs a burst of queries, only the first query data will read data from disk. With high

probability subsequent queries will access data in the OS’sbuffer cache. We repeated the experiments

above, but with warm OS buffer caches.

With a single matching thread query delays are around 1.4s, much faster than 3.9s with cold caches.

A look at the output of the producer-consumer buffer shows that in this case the bottleneck is the match-

ing thread, which lags behind the I/O thread (see figure 5.4(b).

CPU-Bound Queries.We profiled the execution to understand the CPU overheads. A query running all

the operations with in-memory metadata and without performing the matches takes 0.3s: this overhead

is mostly due to adding/removing items from lists in Java. The remaining 1.1s are due to matching the

metadata. Most of the time is spent in calling the SHA-1 function which was called approximately 2.5

times per metadata in our experiments. Typical SHA-1 implementations take 8 processor cycles per

byte to execute [KKG+10]. Our processor’s speed is 2.6Ghz and the keyword metadata is 140B, so the

processor can run at most 2.32 million SHA-1 function applications per second. For a query against 1

million metadata roughly 2.5 million SHA-1 function applications are needed, taking around 1.1s. This

matches our profiled execution time.

The number of SHA-1 applications per metadata (on average 2.5) is upper bounded by the number

5.7. Evaluation 68

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 3 4 5 6 7 8

Q
ue

ry
 D

el
ay

 (
s)

Matching Threads

Figure 5.5: Query delays with in-memory data and different number of matching threads

of hash functions used by the keyword bloom filter (17), whichinstead depends on the total number of

keywords in the bloom filter and on the probability of gettingfalse positives. We used 17 hash functions

to get a false positive match probability of 1 in 100.000.

The CPU overheads grow linearly with the number of hash functions applied. When a query

matches some metadata all hash functions are applied to verify the match and CPU costs are highest.

If a query matches all metadata, query delays increase sevenfold, as all 17 hash functions are applied for

every metadata being searched.

However, these high costs do not appear in practice for two reasons. First, if a query does match

everything, the query will be stopped early and the first few hundred matching results will be returned.

The second case is when a multi-keyword query matches few entries, but some of its keywords match

all (or most) entries (e.g. when searching for “the doors” “the” will match nearly all documents). In this

case the server will order predicates in increasing order ofselectivity, and query delays will be reduced.

This is why we ran our tests using queries that did not match any metadata.

To speed up execution of CPU-bound queries, we can increase the number of matching threads;

each of these will be scheduled onto different cores, so we expect significant speedup. Surprisingly we

found that query delays quickly reach a plateau at 1.1s when increasing the number of threads to two;

further increasing the thread count yields no improvements. On closer examination, we see that with

two or more threads, the I/O thread is the bottleneck again. In this case the overheads come from system

calls, parsing the data, allocating memory, etc. These were“masked” by the I/O delays when the system

was disk-bound.

In-memory cache.We can bypass all these overheads with an in-memory metadatacache. The memory

usage is similar to the buffer-cache and there are no costs when running new queries. The cache has an

upper bound of metadata items to be stored and uses the LRU replacement strategy.

We enable the cache and plot the query delays in Figure 5.5 as afunction of the number of matching

threads. Up to four threads, each thread is scheduled onto a different core and the speedup is almost lin-

ear. With four threads, one query only takes 400ms on average. Increasing past 4 threads only decreases

performance due to increased locking and scheduling costs.

5.7. Evaluation 69

 0.01

 0.1

 1

 10

 8 16 32 64 128 256 512 1024 2048

Q
ue

ry
 D

el
ay

 (
s)

Collection size (thousands)

Disk bound
In memory

(a) Query delays scaling

 10000

 100000

 1e+06

 1e+07

 0 500 1000 1500 2000

P
ro

ce
ss

in
g

S
pe

ed
 (

m
et

ad
at

a/
s)

Collection size (thousands)

Disk bound
In memory

(b) Processing speed scaling

Figure 5.6: PPS performance scaling with file collection size on a Dell 1950

5.7.1 Dynamic predicate ordering

To evaluate the effectiveness of dynamic predicate ordering, we ran a simple experiment searching for

“the xyz” that returns zero matches. With in-memory data, one matching thread and predicate ordering

enabled the first few hundred objects are matched against both keywords and after that predicates are

sorted such that the more selective “xyz” is matched first. Beyond this point, all metadata are only

matched against “xyz”, and queries take on average 1.25s.

Next we turned dynamic ordering off and ran the query “xyz the”: the server applies the predicates

in the user-provided order, and the mean query delay is also 1.25s. This shows that the overhead of

matching the first 225 metadata against both keywords is negligible. Finally, we ran the original “the

xyz” query. Query delay in this case grows to a surprising 10s. Of these, 8.75s are due to matching “the”

and 1.25 to “xyz”. The increased costs of matching “the” are due to the many more SHA-1 applications

(17 vs 2-3 per object).

Dynamic predicate ordering is very simple and cheap. Its most important benefit is that it allows

query delays to be independent of the query terms and count for queries that have “wildcard” keywords.

Predictable performance makes it easier to provide good andpredictable search response times to users.

5.7.2 Query delays with varying numbers of metadata

The results we have presented provide an accurate image of overheads when running queries against 1

million metadata. How do these results scale up and down withlarger or smaller collections of files? We

ran experiments with collections of files containing as few as ten thousand files (20MB on disk) up to

two million files (500MB on disk).

We present the query delays in Figure 5.6(a) using a log-log scale. As we increase the number of

items of metadata that must be searched, query delay increases. Query delay scales linearly with the

number of metadata objects when there are large numbers of objects to be matched for both disk-bound

and CPU-bound processing. The in-memory experiments were run with 4 matching threads, to get the

best performance.

In Figure 5.6(b) we plot the server processing speed for the same experiments. When the number

5.7. Evaluation 70

 0

 50000

 100000

 150000

 200000

 250000

 0 200 400 600 800 1000

P
ro

ce
ss

in
g

S
pe

ed
 (

M
et

ad
at

a/
s)

Collection Size(thousands)

Throughput Variation with Dataset Sizes

PPS_LM
PPS_LC

 0

 1

 2

 3

 4

 5

 0 200 400 600 800 1000

D
el

ay
 (

s)

Collection size (thousands)

Query Delay Variation with Dataset Sizes

PPS_LM
PPS_LC

Figure 5.7: PPS performance scaling with file collection size on a Sun X4100

of objects is smaller, the server processing speed is lower.This is because the fixed costs associated

with a query cease to be negligible. These include network related delays due to connection setup,

data transmission, parsing and serialisation of the query and results, and so on. Other host related fixed

costs include starting new search thread(s), providing end-of-query thread synchronization, allocating

and releasing memory, etc. For disk-bound processing the fixed costs also include the disk seek times

(on the order of 10ms per seek); for small files these are not amortised over long sequential reads. These

fixed costs start to be amortised by the time the server is searching about 100,000 files, and at 250,000

files the throughput of the server levels off for both curves.

As a high level point, disk-bound query delays exceed 1s at 250,000 metadata, and increase linearly

past that. We need to parallelise such searches to provide a good user experience; we will use ROAR for

that purpose. Even in-memory processing quickly reaches single-server scaling limits. On a four core

server delay is 700ms for 2 million metadata. As collectionsof files become bigger, running searches on

a single server will quickly result in bad performance. Either it will take too long to match the data or

the metadata will grow bigger than the server’s memory4 and the query will become disk-bound.

Distributing computation across many machines is requiredto make PPS scale. Interestingly, both

delay curves have similar shapes, albeit at different performance levels. This implies it should be possible

to apply the same parallelisation techniques regardless ofthe bottleneck.

Different Hardware. So far we have examined how PPSLM performs on a single Dell 1950 machine,

finding that the disk is the performance bottleneck. We re-ran the same experiments on different hard-

ware too, and found that the behaviour is similar for the morepowerful Dell 2950 machines. However,

for the slower Dell 1850 and Sun X4100 machines the CPU is always the bottleneck, even when the meta-

data is loaded from disk. These experiments analyzed both versions of PPS (PPSLM and PPSLC). The

main issue is query delay as shown in Fig. 5.7. As before, oncethe fixed costs are satisfied, query delay

increases with the number of metadata objects to be searched.

4This limitation is true for Google’s web search [Dea]

5.8. Related Work 71

When the number of objects is smaller, the fixed costs associated with running a query cease to be

negligible, which shows up as a performance drop off in the right-hand graph in Fig. 5.7. The drop is

steeper for the low memory version.

5.8 Related Work

The security work in this chapter has been undertaken by the authors in 2005-2006 and was published

as [RR06] in the context of achieving privacy in content-based publish/subscribe systems. At that time,

to the best of our knowledge, ours was the first complete and secure solution for content-based pub-

lish/subscribe that had been presented in the literature; further it was the only secure construction for

numeric queries.

The biggest assumption of the initial work paper was that a key was shared by publishers and

subscribers. In PPS publishers and subscribers are replaced by the user, and this assumption is no longer

needed. From the security point of view applying the same techniques to Privacy Preserving Search is

not only possible but straightforward.

Secure Function Evaluation.Research in cryptography has produced many important results in the

broad area of secure function evaluation [FKN94, IK97, CGKS95]. Although several protocols in this

space resemble and appear applicable to the PPS problem, none is of practical importance for PPS. First,

the protocols have been designed for single invocations andare vulnerable when the same key is used

to send multiple queries. For instance, the information-theoretically secure protocol described by Ishai

[IK97] can be broken easily when used for multiple queries, while the semantically secure protocol

described by Feige [FKN94] becomes as secure as the one time pad in the same context. In theory, we

can use such single message protocols in the context of PPS, but with tremendous overhead: For every

query, the user would re-encrypt all their data and store it online. Further, even the cheapest instances of

these protocols have high costs for single invocations.

Privacy Preserving Keyword Searches.Motivated by public file servers and email servers, a more

practical approach was taken by the security community to solve the problem of searching encrypted

files using keywords.

The pioneering work in this direction is due to Song et al. [SWP00], who propose a scheme that

encrypts each word in the document in a way that allows a user to search using an encrypted keyword. To

test whether a given keyword is in an encrypted file, a sequential scan of the file is needed; this approach

does not scale well for large documents.

Schemes were proposed by Goh [Goh03b] and Chang et al. [CM05a] that use indexes to address

this issue and propose stronger security models. For practical reasons, we used the first scheme for

keyword search and the second as a basis for supporting rangematches. Our work employs a security

model that is similar to the one from Chang et al. [CM05a], extended to deal with arbitrary subscriptions

and to allow subscription covering (that was implicit in theinitial model). Our mechanisms can be used

to provide privacy preserving range matches for numeric values.

Curtmola et al. proposed an improved security model and moreefficient constructions for privacy

5.9. Conclusions 72

preserving keyword search concurrently to our work [CGKO06]. The authors observe that previous

definitions of security in the area such as [SWP00, Goh03b, CM05a] do not cover the case of multiple

queries, and create a security model that includes search history to address this shortcoming. Our secu-

rity model, initially proposed in the context of content-based publish/subscribe also incorporates query

history.

The main idea in [CGKO06] is to create an inverted index-likestructure which is encrypted and

stored on the server. This data structure consists of a lookup table of terms, and each term has associated

a linked list containing the matching document identifiers;these are then blinded and scrambled to stop

the server from gaining information about documents. This index can be searched efficiently, in constant

time, regardless of the number of documents. This differs from the schemes of Goh and Chang where

CPU search time is linear in the size of the document collection. We have seen, however, that search for

PPS is likely to be disk-bound, thus CPU speed does not matterthat much.

Compared to the naive solution of just using the encrypted inverted index and downloading it before

queries, Curtmola’s scheme has the advantage that it does not need to download the index. However,

the index must be kept updated, and potentially the whole index needs to be changed when documents

are changed, added to or removed from the collection; the resulting bandwidth overheads would be pro-

hibitively high. This overhead could be reduced by trading-off index accuracy against update bandwidth,

though. Further study is needed to decide which PPS constructions are better in practice.

5.9 Conclusions
We have shown that it is possible to perform encrypted searches against encrypted data on untrusted

servers. We have used existing keyword matching constructions as a basis to support numeric and more

general matching.

PPS is less costly for mobile users than the straightforwardapproach of downloading and decrypting

an encrypted index for searching, and will be preferable in the near future where more users access their

data on the move.

However, Privacy Preserving Search takes too long even whenmodest numbers of files are searched:

with 250,000 files it takes in excess of 1s to get the results, mainly because disk access is the bottleneck.

To make Privacy Preserving Search practical we need to parallelise it across many servers. In Chapter 7,

we will show how to do just that with ROAR.

Chapter 6

Analytical Evaluation

We wish to understand the fundamental properties of PTN, SW and ROAR, including query delays,

bandwidth consumption, load balancing, fault-tolerance and the ability to changep dynamically. A first

step in our exploration is this chapter, where we use a mix of analytical modelling and simulation to

distill the properties that determine algorithm behaviour.

We restrict our analysis to the basic Distributed Rendezvous operations (storing objects, running

queries, and changingp), and ignore other costs related to practical implementations. The practical costs

include bandwidth consumed for control traffic, imperfect load balancing, and so forth. We include these

in our experimental analysis (see Chapter 7).

A central point of the analysis is the comparison between query delays obtained by the algorithms

when running on a heterogeneous server pool. To guide the analysis, we begin by characterising lower

bounds for query delay. Our most important finding is that PTNand ROAR have relatively similar delay

values for configurations likely to arise in practice. They also have similar availability for data center-

like deployments. ROAR provides more flexibility in adapting the ratio ofp andr, and in controlling

query delay.

6.1 Query Delay
We want to evaluate query delays givenn servers, their partitioning levelp, their processing power, and

some query arrival rate. To do so, we first provide a model of query delay at a single server.

Definition 8 (Computation Model). Each server has a fixed processing speedcpu, expressed as the

number of data objects per second it can match against a query. This assumes that the server takes the

same amount of time to matchanyquery against a constant size dataset. That is, the server has constant

service time.

The query is initiated by the front-end server which splits the query to enough other servers that

together can complete the query. The time to initiate a queryon another machine and to receive the

results is entirely dominated by the round trip timertt between the two servers plus the local query

processing time. If the front-end (server 0) needs to run a query againstd data objects on serveri, the

time required is:t = rtt0,i + d/cpui.

For simplicity, we assume there are zero or very few returnedresults, so that bandwidth for returning

6.1. Query Delay 74

results does not impact query execution time. This is true when queries are executed, as few results are

returned regardless of the total number of matches (for instance, Google returns 10 results at a time), and

is also true in data centers where bandwidth abounds.

Objects are randomly load balanced across servers, which means the number of matches on each

server is roughly the same. Therefore, when all servers havehomogeneous bandwidth it does not really

matter how long it takes to return results from the point of view of the scheduling algorithm.

The definition assumes there is no setup overhead associatedwith starting a query, and that there

are no OS overheads for parsing query requests and sending query replies. We show experimentally that

this model is accurate if the query is large enough, and that it breaks down when queries are very small;

in the latter case, the setup overheads begin to dominate.

In reality, processing speed varies even for the same machine over time due to OS background

activities and concurrent applications. We ignore such effects for now. We make no distinction between

CPU and I/O bound query processing, as the linearity factor still holds. Memory-bound query processing

is trickier to model, so we assume for simplicity that all thedata is either entirely in memory or on disk.

We experimentally show that this model is accurate for our target application.

Simulator. We implemented the algorithms and estimates of the optimal delays in a simple numerical

simulation. The front-end server has estimates of server processing speeds and maintains for each server

a list of tasks assigned and still running.

Queries arrive at discrete times according to a Poisson process with a configurable mean. The

scheduler splits each query into exactlyp parts and chooses thep servers that would finish first, according

to the algorithms described in Section 4.8.1. To estimate query finish time at serveri, the front-end

assumes the new task will start as soon as serveri finishes its last assigned task.1 The front-end assumes

network delays are negligible.

For every query, we log its arrival time and its completion time. We run many queries (a few

thousand) to ensure we capture long-term averages. As queryarrivals are open-loop, there is a danger

that we overload the system with the query load. We test for exploding server task queues by fitting a

straight line to thedelay(time) function (which gives the delay of a query as a function of itsarrival

time). If the slope of the fitted line is greater than 0.1 (i.e.query delays are constantly increasing with

time), we consider the queue to be exploding and set the measured delay to be infinite; otherwise, we set

the delay to the mean of the query delays.

6.1.1 Bounding Optimal Query Delay

We want to find optimal query delay, defined as the average delay of queries run by the system. We

mainly wish to understand how the algorithms use servers with heterogeneous computing capacity to

improve query delay and increase throughput. We do not examine the impact of network delays on query

delays as these are second order effects (only one to a few milliseconds) in data center deployments, our

main focus.

1This simple model assumes serial execution. It is appropriate for a single-core machine as the scheduler is perfect and can keep

it fully occupied; in practice a scheduler will assign a few overlapping tasks to any single core server to ensure good utilisation.

6.1. Query Delay 75

From the computation model it follows that, to optimize query delay, it may be sensible to send the

query to more thanp servers. For instance, if servers are idle, splitting a CPU-bound query ton servers

is faster that splitting it top servers (although this would increase overheads).

If each query is sent to all servers (i.e.pq = n) a collection of servers will achieve minimum

delay if they act as a single server with processing power equal to the sum of each server’s processing

power. If we assume Poisson query arrivals, the system acts as anM/D/1 queue where the service time

D = 1
P

n
i=1

cpui
.

The optimal operating point for distributed algorithms ispq = p, as costs are minimal at this point.

If pq = p < n, it is trickier to grasp what the optimal query delay is. If there is very little load, the

system is optimal if it can run the query on the most powerfulp servers.

As load increases, it is not sufficient to consider only the most powerful servers, as these may

become overloaded. When load nears 100%, the system is optimal if it approximates anM/D/r system,

with service timeD = r
P

n
i=1

cpui
.

A heuristic approximation of the optimal in the general caseis the following algorithm: sort servers

according to their descending CPU power, and assign the firstp servers to the first cluster, nextp servers

to the next cluster, and so on; we will createn/p + 1 clusters. When a query arrives, run it on all servers

in a chosen cluster, assigning more work to servers proportionally to their CPU speed. The chosen cluster

is the one that is estimated to finish the query first.

6.1.2 Query Delay Comparison whenpq = p

We ran queries with SW, PTN, ROAR and the theoretical lower bound in a1000-node network, with

30% query load and server speeds uniformly chosen in the range0.25Ghz, 2Ghz.

We run each experiment in two phases, corresponding to different control loops in the algorithms.

The first phase is network-setup where the system uses estimates of server processing speeds to setup

the data on the servers; in ROAR the speeds are used to computeserver range, while PTN uses server

speeds to balance compute power across clusters. In the second phase, queries are run. The front-end

updates and uses server speed estimates to do query placement.

In practice, the network setup phase runs infrequently, possibly with periodic input from the query

execution phase. Thus, the estimates of the phase are in practice much less accurate than those of the

query execution phase. However, the network allocation that results in the network setup phase influences

the choices available to the front-end in the second phase.

Our simulations model this imperfect knowledge using threedifferent scenarios. First, we assume

server speeds never change, such that network allocation inthe first phase remains “perfect” throughout

the experiment. This gives an upper bound for performance, but is very difficult to achieve in practice

due to load the system cannot control (e.g, other virtual machines running on the same box, periodic

background OS tasks, or even memory cache self-interference from the query application).

The other extreme scenario is where estimates are useless because the background load changes

very frequently. In this case the network is setup assuming all servers have equal performance. This

scenario gives a lower bound for query performance.

6.1. Query Delay 76

 4

 16

 64

 256

 1024

 4096

 0 100 200 300 400 500

Q
ue

ry
 D

el
ay

s
(m

s)

p

Unknown Server Speeds

PTN

PTN

PTN

PTN

PTN

PTN

ROAR

ROAR

ROAR

ROAR

ROAR

ROAR

SW

SW

SW

SW

SW

SW

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 100 200 300 400 500

D
el

ay
s/

O
pt

im
al

p

Unknown Server Speeds

PTN

PTN

PTN

PTN

PTN

PTN

ROAR

ROAR

ROAR

ROAR

ROAR

ROAR

SW

SW

SW

SW

SW

SW

 4

 16

 64

 256

 1024

 4096

 0 100 200 300 400 500

Q
ue

ry
 D

el
ay

s
(m

s)

p

Unknown Server Speeds

PTN

PTN

PTN

PTN

PTN

PTN

ROAR

ROAR

ROAR

ROAR

ROAR

ROAR

SW

SW

SW

SW

SW

SW

Estimated Server Speeds, 50% accuracy

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500

D
el

ay
s/

O
pt

im
al

p

Unknown Server Speeds

PTN

PTN

PTN

PTN

PTN

PTN

ROAR

ROAR

ROAR

ROAR

ROAR

ROAR

SW

SW

SW

SW

SW

SW

Estimated Server Speeds, 50% accuracy

 4

 16

 64

 256

 1024

 4096

 0 100 200 300 400 500

Q
ue

ry
 D

el
ay

s(
m

s)

p

Unknown Server Speeds

PTN

PTN

PTN

PTN

PTN

PTN

ROAR

ROAR

ROAR

ROAR

ROAR

ROAR

SW

SW

SW

SW

SW

SW

Estimated Server Speeds, 50% accuracy

Known Server Speeds

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500

D
el

ay
s/

O
pt

im
al

p

Unknown Server Speeds

PTN

PTN

PTN

PTN

PTN

PTN

ROAR

ROAR

ROAR

ROAR

ROAR

ROAR

SW

SW

SW

SW

SW

SW

Estimated Server Speeds, 50% accuracy

Known Server Speeds

Figure 6.1: Basic Delay Comparison for SW, PTN and ROAR

To understand how things evolve between perfect and zero knowledge, in our third scenario we

introduce error into the first phase server speed estimates.In these experiments, if real server speed isx

objects/s the system will use an estimate chosen uniformly and randomly inx
2 , 3x

2 .

For the three scenarios we first plot the absolute query delays as a function ofp in the top part of

Figure 6.1. In the bottom part we plot these relative to the optimal described in the previous section.

In the “perfect” case, PTN and ROAR have qualitatively similar performance and are close to the

optimal. PTN is on average 15% slower than the optimal. As we have pointed out in Chapter 3, the

optimal solution is impractical and requires substantial server movement to maintain the optimal delays.

PTN provides good performance with a much simpler structure.

ROAR is 53% slower than the optimal on average, and 33% worse than PTN on average; this a

fundamental limitation inherited from SW, where freedom inquery placement is limited. Adding more

6.1. Query Delay 77

parameter Range Default Value

n 50 to 1000 100

p 1 ton/2 -

Speed estimation error 0 to 100 0, 50, Infinity

cpu uniform, 1x to 128x variation 8x variation

load 10% to 99% 30%

Table 6.1: Simulation Parameters

rings does improve latency, but also reduces the flexibilitybenefits of ROAR.

SW has significantly worse delays, up to ten times the optimallower bound for small values ofp.

Further, for large values ofp SW does not cope with the load. Whenp grows the number of sub-queries

per node increases, and less powerful nodes will be forced torun more sub-queries. Some of these nodes

will become overloaded, and build an infinite queue of queries to service. As SW does not take server

speeds into account when creating the network, its performance is identical for all three scenarios.

Moving to the worst case where server speed estimates are unknown, we get an entirely different

outcome for PTN. PTN does better than ROAR for small values ofp, but becomes increasingly over-

loaded whenp nears 250. At this point, some clusters will contain one lessserver than the other ones,

asp does not dividen. Whenp is in the 250-333 range, some clusters will have 3 servers, and some 4

servers. The servers in the smaller clusters service 33% more load. Whenp > 333, the imbalance be-

comes 50%. This effect is compounded with random allocations of servers in clusters: when, by chance

a small cluster has only slow servers, they just can’t cope with the load.

In comparison, ROAR delays increase to four times the optimal, but is more robust than PTN:

increasingp always decreases delay with ROAR. Like SW, ROAR evenly balances query load across all

servers, regardless ofp, so it avoids the first problem PTN faces. Like PTN, ROAR offers better choice

between existing servers, so it always performs strictly better than SW. At this load level, ROAR sees no

performance degradation asp increases.

The middle plots in Figure 6.1 show algorithm performance when server speed estimates are in-

acurrate. Both PTN and ROAR performance are within a factor of two of optimal. PTN still outperforms

ROAR, but the gap is smaller (only 15%).

We have examined the impact of server estimates on query delay in greater detail, with results

presented in the next sections. Overall, ROAR does better with inaccurate information, for reasons

explained above. We expect ROAR and PTN performance to be comparable in practice, where server

speeds cannot be accurately predicted.

Parameter Exploration.To gain a deeper understanding of the performance differences between the

algorithms we varyn, p, load, server speed estimation accuracy, and CPU (the distribution of processing

capacity of the servers). We run the same experiments as above. The parameter space is quite large, so a

complete exploration is very difficult. To make the analysistractable, we choose default values for each

parameter (see Table 6.1), and vary a small number of free parameters.

6.1. Query Delay 78

 0

 5

 10

 15

 20

 25

 30

 35

 40

 64 128 256 512 1024

Q
ue

ry
 D

el
ay

s/
O

pt
im

al

Number of servers

Unknown Server Speeds

PTN
ROAR

SW

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 64 128 256 512 1024

Number of servers

Estimated Server Speeds, 50% accuracy

PTN
ROAR

 1.1
 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 1.45
 1.5

 1.55

 64 128 256 512 1024

Number of servers

Known Server Speeds

PTN
ROAR

Figure 6.2: Variation of Query Delay with N

Vary n. We vary the number of servers from 50 to 1000. We report the average delay increase compared

to the optimal as a function ofn in Figure 6.2.

A first observation is that the shape of the delay curve as a function of p is similar across different

network sizes; hence we can only report average delays, as opposed to exact query delays as a function

of p. Further, this allows us to use smaller networks when running experiments to get similar results,

while significantly reducing simulation time.

PTN with perfect knowledge does 15% worse than optimal, regardless of network size. ROAR does

progressively worse as the network grows, but the slope is logarithmic and quite gentle.

With innacurate information, both ROAR and PTN struggle a bit more; the increase in query delay

is still logarithmic with the network size, but is a bit gentler for PTN.

When the speeds are unknown, ROAR performs the best for any network size. PTN performs much

worse in general, being 20 times slower than optimal. As before, SW is worst of all.

Varying Load. In our next experiment we vary the utilisation from 10% to 99%, running experiments

for a network with 100 servers. We plot query delays relativeto the optimal, as well as the number of

times the algorithm was overloaded, out of the 50 runs (thereis one run for each each value ofp from 1

to n/2).

SW quickly becomes overloaded; at 30% load it cannot cope with the load for a quarter of the

values ofp. Again, we only show the SW curve on the first graph to help readability. SW has the same

performance across all test scenarios.

6.1. Query Delay 79

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
el

ay

Load

Unknown Server Speeds

PTN
ROAR

SW

 0

 10

 20

 30

 40

 50

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ai

lu
re

 C
ou

nt

Load

Unknown Server Speeds

PTN
ROAR

SW

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
el

ay

Load

PTN
ROAR

 0

 10

 20

 30

 40

 50

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ai

lu
re

 C
ou

nt

Load

Estimated Server Speeds

PTN
ROAR

 1

 1.5

 2

 2.5

 3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
el

ay

Load

PTN
ROAR

 0

 10

 20

 30

 40

 50

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ai

lu
re

 C
ou

nt

Load

Known Server Speeds

PTN
ROAR

Figure 6.3: Variation of Query Delay with Load

In the case where server speeds are unknown, PTN is overloaded at 30% load. ROAR can cope with

load up to 60%, being much more robust. As server speeds estimates increase in accuracy, PTN does

a lot better, coping with loads of up to 60% for imperfect estimates, and 90% for perfect estimates. In

contrast, ROAR has better performance for imperfect estimates, and similar performance when estimates

are perfect.

6.1. Query Delay 80

Across all scenarios and nearly all load levels, ROAR eithercopes with the load or is overloaded

for a small subset of the possible partitioning levels. WhenPTN is overloaded for a given configuration,

it tends to be overloaded for many of the possible partitioning levels. Overall, ROAR can be used for a

wider range of operating regimes.

Varying CPU capacity.We model server speeds by setting a lower and upper bound, andchoosing

values for individual nodes from a uniform distribution. The ratio between the lower and the upper

bound is meant to capture the age difference of the servers, as newer servers are always faster, and

servers have a finite lifetime of a few years (three years according to Greenberg et al. in [GHMP09]).

Let us take an example: assuming Moore’s Law holds and assuming a server lifetime of three years, the

ratio between the speeds of the newest and the oldest serversis at most eight.

We vary the difference between the minimum and maximum speeds, starting frommininimum =

maximum and increase maximum until64 ·mininimum (which corresponds to a six year period of

adding servers). Query delays are presented in Fig. 6.4.

When the network is unoptimized, query delays increase linearly with the age difference between

servers. This is to be expected, as weaker servers will take progressively more time to finish their tasks.

Using speed estimates to setup the network completely changes the shape of the curve. Surprisingly,

the difference between PTN, ROAR and optimal quickly reaches a maximum. The default value we use

for all other experiments (max/min = 8) is already on the flat part of the curve.

The reason for this flatness is simple: as enough servers become powerful enough, they will be able

to service most of the queries. Both ROAR and PTN are able to use these servers; having an overall

perfect allocation is less important, as the other servers will be mostly idle. As load increases, the flat

part of the delay curve moves to the right.

Varying the setup phase’s server speed estimation error.It is very important to understand how the

algorithms behave with different quality server speed estimates. The extremes of perfect knowledge or

no knowledge are unlikely to be of relevance in reality; somewhere in between these two will be the real

operating point of the algorithms.

We vary the estimation error from 0 to 99%: if estimation error is e, the network setup phase will

use an estimate of server speedx randomly chosen in the interval[(1 − e)x, (1 + e)x]. The delays of

PTN and ROAR are plotted in Fig. 6.5.

The shape of the curve is not surprising, given the data points we have already observed in our other

experiments: ROAR deals better with uncertainty than PTN since its query delays degrade more slowly

as uncertainty grows.

To have a ground truth comparison between ROAR and PTN we needto know what the estimation

errors will be in practice. However, these numbers will likely be different for different deployed systems,

due to a different mix of background load competing with the algorithm, and may depend even on the

exact type of search application being executed. In the end,all this graph tells us is that ROAR might be

able to cope better with unpredictable server performance,which will make it preferable for deployment

scenarios where background load cannot be controlled.

6.1. Query Delay 81

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

 1 2 4 8 16 32 64

D
el

ay

CPU Difference

Unknown Server Speeds

PTN
ROAR

SW
 0

 10

 20

 30

 40

 50

 1 2 4 8 16 32 64

F
ai

lu
re

 C
ou

nt

CPU Difference

Unknown Server Speeds

PTN
ROAR

SW

 1

 1.5

 2

 2.5

 3

 1 2 4 8 16 32 64

D
el

ay

CPU Difference

Estimated Server Speeds

PTN
ROAR

 0

 10

 20

 30

 40

 50

 1 2 4 8 16 32 64

F
ai

lu
re

 C
ou

nt

CPU Difference

Estimated Server Speeds

PTN
ROAR

 1

 1.5

 2

 2.5

 3

 1 2 4 8 16 32 64

D
el

ay

CPU Difference

Known Server Speeds

PTN
ROAR

 0

 10

 20

 30

 40

 50

 1 2 4 8 16 32 64

F
ai

lu
re

 C
ou

nt

CPU Difference

Known Server Speeds

PTN
ROAR

Figure 6.4: Variation of Query Delay with Server Heterogeneity

6.1.3 Query Delay Comparison whenpQ > p

Our previous experiments all assumed that each query is split into the smallest possible number of sub-

queries, given the current replication level (i.e.pq = p). For efficiency reasons, it may be possible

to run the system at smaller values ofp while providing query delay below the maximum threshold.

However, absolute query delay directly depends on load, so short-lived load fluctuations around the

mean might cause the algorithms to miss the delay targets occasionally. In such cases, a good approach

is to temporarily increasepq to reduce query delay.

To examine this effect, we setup a 100 server network with constantp = 10, and varypq from 10

to 50. We plot the absolute query delays in Fig. 6.6(a). The shapes of the delay curves for ROAR and

SW are similar to the ones in the previous section, where we variedp.

A surprising finding is PTN’s performance: the query delay curve has steps of length 10 (the value

6.1. Query Delay 82

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 1 2 4 8 16 32 64 128

D
el

ay
Estimation Uncertainty

PTN
ROAR

Figure 6.5: Algorithm Performance with Different Server Speed Estimation Errors

 32

 64

 128

 256

 512

 1024

 2048

 10 20 30 40 50

A
ve

ra
ge

 Q
ue

ry
 D

el
ay

s

pQ

SW
ROAR

PTN

(a) VaryingpQ from 10 to 50 (p=10)

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 1 2 3 4

D
el

ay
 R

el
at

iv
e

to
 O

pt
im

al

Sub-queries Split

PTN
ROAR

(b) Small increase inpQ for ROAR only

Figure 6.6: IncreasingpQ and its effects on the algorithms

of p). Because of these, PTN’s delay is worse than ROAR’s for mostof the time. The explanation is

straightforward: PTN sets up 10 clusters, and it only benefits from increasingpq when it can split the

sub-query destined for each of these clusters. Hence, the performance is best whenp dividespq, and

gets progressively worse when it does not. In contrast, ROARand SW are much more flexible in query

partitioning, and can effectively split using any values ofpq.

As ROAR is so good at dealing with arbitrarypq, a natural question arises: can we effectively use

this ability to reduce query delays? Rather than splitting aquery intopq > p sub-queries, we take a

different approach: we split intop sub-queries, and then split again the sub-query that would finish last.

We repeat this step a small number of times.

The delays of ROAR and PTN (used as a baseline) are presented in Fig. 6.6(b). By increasing

pq by 2, query delays for ROAR decrease to 20% of optimal, being very close to PTN’s performance.

Further increasingpq bring more benefits, but also increases costs due to more sub-queries, and may be

undesirable. This result is very useful in practice: selectively splitting the sub-query that would finish

last basically aligns ROAR’s query delays to those of PTN.

Note that all the experiments in this section were run assuming perfect knowledge of server speeds;

the results are qualitatively similar for imperfect knowledge. We omit these results for conciseness of

6.1. Query Delay 83

Figure 6.7: Effects of ROAR Mechanisms on Performance

presentation.

6.1.4 Analysis of ROAR Mechanisms

ROAR includes a few mechanisms that differentiate it from SW:

• Assigning server ranges proportional to processing speedis mainly intended for better load

balancing, but also reduces query delays as more powerful servers can run more queries. This

mechanism uses estimates of server speeds, and its effectiveness is directly related to the estima-

tion accuracy.

• Using multiple rings gives ROAR the power of two choices for scheduling queries. Each query

can choose a configuration of servers out of2p−1r possible, whereas SW only hasr possible

configurations to choose from.

• Adjustment of sub-query rangesruns after the scheduler has assigned each sub-query, attempt-

ing to move work away from the most loaded node.

Together, these mechanisms make ROAR delay performance comparable to PTN, and orders of

magnitude better than SW. It is equally interesting to teaseapart these end-to-end numbers, to understand

how each mechanism contributes to overall performance.

We use our default setup to run experiments using all possible combinations of mechanisms. We

run basic SW, each mechanism enabled on its own, then all combinations of two mechanisms, and finally

all three mechanisms.

The results are presented in Figure 6.7, with query delays relative to ROAR. The delay for SW

cannot be rigorously calculated, as SW is overloaded for some values ofp. The bar is there to provide a

baseline, albeit a hypothetical one.

Each of the mechanisms individually solves the overload problem, and reduces average query delay.

The biggest impact is due to Proportional Ranges. Multiple Rings provide similar benefits, while Range

6.2. Fault Tolerance 84

Adjustment is not as effective. The results for Range Adjustment are surprisingly good, considering it is

just a local O(1) heuristic that softens the peak of sub-query delays.

The performance of Proportional Ranges is also surprisingly good; however it will not be as good

in practice. The experiments we ran assume perfect information on server speeds; our earlier experi-

ments have shown how imperfect information affects the performance of ROAR, and indirectly, of the

Proportional Ranges mechanism.

Taken pairwise, the mechanisms incur progressively lower delays. The best combination, as ex-

pected, is Proportional Ranges and Multiple Rings. Finally, all three mechanisms work together harmo-

niously in ROAR, giving the overall best performance.

These results are not necessarily surprising: Range Adjustment runs last and never makes things

worse. It strictly increases performance in any configuration, so it should function well with any other

optimisations. Multiple Rings literally takes a single ROAR ring and splits it in two, bringing very little

overhead yet providing two possibilities for placing each sub-query. Proportional ranges complements

multiple rings, as it applies to each individual ring. The synergy and increased benefits come from their

combination. If any of the mechanisms mis-functions (as Proportional Ranges does with incomplete

information), the other mechanisms keep performance at good levels.

6.2 Fault Tolerance
Data center algorithms rely on stable populations of servers to perform their tasks. This is in stark con-

trast with larger scale peer-to-peer search algorithms (like BubbleStorm [TKLB07]) where high server

churn is the norm, and needs to be taken into account in algorithm design. In ROAR stable server popu-

lations allow optimisations like proportional ranges to work, and the single administration allows using

a centralised membership server.

Nevertheless, servers fail even in data centers. The higherthe number of servers used, the higher the

overall probability that at least one or a few servers have failed at any point in time. We want to compare

PTN and ROAR fault tolerance, and a useful starting point is the study of Yu et al. on availability of

multi-object operations [YGN06].

Yu et al. study three classes of algorithms - SW, RAND and PTN -and two classes of applications

requiring either all objects (strict operations) or a fraction of objects (loose operations) to be read. They

find that for strict operations PTN gives best availability,with SW second and RAND third. For loose

operations, the order is reversed, with RAND best, SW secondand PTN third. The main insight is that

PTN attempts to maximise inter-object correlation, by storing the same groups of objects onto different

machines, and that is why it gives best availability when allobjects are required. RAND does the

opposite, randomly placing replicas on machines, thus minimising inter-object correlation; RAND does

better when operations are loose.

RAND is not feasible to use for distributed rendezvous operations because of increased costs in

storage and/or queries. We focus the analysis on SW, PTN and ROAR, and restrict our analysis to the

more demanding strict operations.

We fix r = 3 (p = 34) and use our default setup with 100 servers and 8x CPU difference between

6.2. Fault Tolerance 85

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

U
na

va
ila

bi
lit

y
(%

)

Failure Probability (%)

PTN
ROAR

SW

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

U
na

va
ila

bi
lit

y
(%

)

Failure Probability (%)

PTN
ROAR

Figure 6.8: Algorithm Unavailability Comparison for Strict Operations

servers. Each experiment selects a server failure probability and runs many iterations, in each iteration

randomly failing servers across the network. It then schedules one query withpq = 100 and checks

to see if all sub-queries were successfully scheduled; if so, unavailability is 0%. Otherwise, if there are

sub-queries that can not be executed, unavailability is 100% for that configuration. We report the average

unavailability across the 1000 experiments.

ROAR stores a few more replicas than PTN and SW, because of the“rounding up” effect of object

range intersection with server ranges. The net increase is on average 0.5 replicas per object, and it does

not really matter unlessr is small. For these experiments, however, this difference does matter. To make

the unavailability analysis fair we run ROAR withp = 40 instead ofp = 34. This makes the average

replication rate the same for all algorithms.

Unavailability as a function of failure rate is presented inFigure 6.8. In the left-hand side plot failure

rates grow up to 30%, and consequently unavailability increases significantly for all the algorithms. The

results confirm Yu et al.’s study, showing that PTN gives muchbetter availability for strict operations.

From a fault tolerance perspective, ROAR’s multiple rings make it behave like a hybrid between SW and

PTN. ROAR has worse availability than PTN, and much better availability than SW.

The data points for more than 10% loss rate are useful to give insights into the fundamental algo-

rithm behaviour, but are not realistic failure rates for data centers. In particular, annual disk failure rates

are around 3% ([SG07]), so the weekly average number of failures is very small (a week seems to be

the upper bound to getting servers/disks replaced in current data centers). From this perspective, all the

algorithms have perfect availability, so the comparison isirrelevant in practice.

In the right hand side plot of Figure 6.8 we zoom in on the results in the 0%-10% failure rate, and

only compare PTN and ROAR. ROAR has 1% unavailability for 5% failures and 5% for 10% failures. In

comparison PTN unavailability is 0% and 2% respectively. However, the random server failures model

assumes there are no correlated failures.

Another noteworthy point to consider are switch failures. Data centers typically have three tiers

of switches, and switches at aggregation and core levels aretypically redundant, as multiple paths exist

between any source-destination pair in the network [AFLV08, GLL+09, Gre09]. Hence, failures of these

switches will typically mean no servers are disconnected; however less overall throughput is available.

6.3. Changing thep/r tradeoff 86

PTN SW ROAR

Store Object r r r ≥ 2

Execute Query p p p

Increasep N·D

(p+1)2
0 0

Decreasep 2·N·D
p(p−1)

N·D
p(p−1)

N·D
p(p−1)

Increaser ∼ 2D D D

Decreaser ≃ D 0 0

Table 6.2: Bandwidth consumption comparison (messages peroperation)

Top-of-rack (ToR) switch failures are a different story. Intypical scenarios there is no redundancy, so

a single switch failure can take-out 20 to 40 servers. In a 1000-server network, these correspond to

2%-4% of servers failing. ToR switch failures are a valid concern and will cause large-scale failures

and disruption for all algorithms. Possible solutions include replicating the data more, or doubling the

number of ToR switches and multihoming each server to two ToRswitches.

6.3 Changing thep/r tradeoff

To get a full comparison of the algorithms, we must understand how good they are at changingp at

runtime. We first focus on the issue of how much bandwidth eachof the algorithms consumes when

performing their various operations; Table 6.2 lists the number of messages sent per operation. The costs

shown in the first two rows of the table, concerning storing objects and executing queries, are obvious

from the algorithms. It is worth noting that the cost for executing queries is a lower bound corresponding

to the case when queries are sent to exactlyp servers.

Let D be the total aggregate size of the unique objects. When changing p PTN incurs the highest

overhead. The calculations are simple and fall through fromthe way PTN operates. PTN increasesp by

removing D
p+1 objects from existing clusters and replicating them on a newcluster containing roughly

n/(p+1) servers (which preserves load balancing). Whenp is decremented the same reasoning applies:

first objects from the cluster to be destroyed are stored ontoexisting clusters, and then the servers join

the remaining clusters, storing all the objects in those clusters.

We also list the amortised bandwidth cost to increment/decrementr, computed as the cost to incre-

ment/decrementp divided by the change inr this brings. Note that in reality it is not always possible to

increment or decrementr: step changes inp may changer by much more than 1. However, this exercise

helps us understand better how close to the optimal these algorithms come. Both SW and ROAR copy

less data when changingp (and thusr), and are optimal from this point of view. PTN is suboptimal:it

copiesD more data when both incrementing and decrementingr.

Convergence Time.We now turn to convergence time, which we define as the time from when the

algorithm decides to changep to when the algorithm finishes copying the necessary replicas in order to

ensure routing correctness.

SW and ROAR equally spread the copying of new objects across all servers (assuming roughly

equal ranges). PTN, however, places more load on some servers. Whenp is decreased (and thus a cluster

is destroyed), the servers from this cluster join a new cluster. Here, each server needs to copyall the data

6.4. Comparison Conclusions 87

in the new cluster, roughlyD/p− 1. In comparison, in SW each server only needs to copyD/p(p− 1).

This means that the time required to copy the data needed to decreasep for PTN isp times larger than in

SW.

To understand if this matters, we analyse two simple scenarios. Assume Google wishes to decrease

p; reports placep ≃ 1000 [Dea], and each machine stores 2GB of data (so the whole dataset is D =

2TB). It follows that each node will have to copy roughly 2GB when it joins the new cluster. This

takes roughly 20 seconds on gigabit links. In contrast, the time needed by SW and ROAR is 1000 times

smaller, namely 20 milliseconds.

A high-volume storage application would store on each server enough data to fill a sizeable portion

of its hard drive, say 100GB at least. Let us assume the dataset is still 2TB in size, and thusp = 20.

To decreasep, PTN needs to copy roughly 100GB, which would take 20 minuteson a gigabit link; the

same would take a single minute for SW or ROAR.

Distributed State.The fact that servers have equal roles in changingp in SW and ROAR also reduces

the complexity needed to implement the change. Essentially, during the change all servers are in either

statep or p− 1, and can be used as soon as they switch. The scheduling algorithm seamlessly operates

in this transient state, and the costs are almost negligible. There is no need to distributedly agree on

what the state of the system is. This has implications for themembership and front-end servers for PTN,

which must be tightly synchronised. First, the servers mustagree on which cluster should be destroyed,

which requires running a distributed coordination algorithm like Paxos [Lam01].

Secondly, let us consider how servers actually switch between clusters. They will first copy all the

data needed in their new cluster, switch to the new cluster byinforming the scheduling servers, and drop

the data in the old cluster.Whendoes this switch happen? One strategy is to switch as soon as possible,

i.e. when the data has been copied; this would create a bottleneck on the cluster to be destroyed, as the

same number of queries would be handled by fewer servers. In the worst case, a single server is left

to handle all the load of the cluster. To avoid this situation, some queries for the old cluster could be

redirected to remaining clusters, as these also store that data. This temporarily increases the load of the

old clusters, which now serve the whole datasetD instead ofD(p− 1)/p.

Thus, to reduce capacity loss during the change, the best option seems to be to switch all the servers

from the old cluster to their new clusters at once. This againrequires distributed coordination and appears

difficult to get right at large scales.

6.4 Comparison Conclusions

PTN has better availability at high failure rates and betterquery delays when server speed can be perfectly

estimated. In data centers, however, failure rates are really low. Additionally, server speed is very

difficult to estimate perfectly—as we will also show in our experiments.

In realistic scenarios PTN and ROAR offer comparable delay and high availability. The key benefit

of ROAR is that it allows more flexibility. ROAR systems can use small increases topq to gain immediate

benefits in query delay; PTN is more sluggish to respond to such increases, aspq needs to be a multiple

6.4. Comparison Conclusions 88

of p to get benefits. ROAR changes the ratio betweenp andr seamlessly and with optimal bandwidth

consumption, while PTN unequally loads servers during the change and transfers significantly more

bytes. SW’s performance is far inferior in all respects.

Can we use this flexibility for end-to-end performance increases, and cost decreases? We answer

this question positively in our experimental evaluation inChapter 7.

Chapter 7

Experimental Evaluation

To evaluate ROAR we built PPS on top of ROAR and deployed the system on 50 servers on the Hen

testbed at UCL and on the Amazon Elastic Compute Cloud. This evaluation has three major goals. First,

we wish to see howp impacts the properties of the system, including the averagequery delay, throughput,

and utilization. This gives insight into the types of valuesthat are appropriate forp in practice, and will

tell us whether changingp has any sizable impact.

Second, we wish to evaluate ROAR. How does throughput and query delay scale with the number

of nodes involved in the search? How easy is it to changep at runtime? How does ROAR cope with

failures? Is the frontend a scaling bottleneck? How well do the load balancing mechanisms work?

Third, we complete the evaluation with a head-to-head delaycomparison of ROAR and PTN. We

want to know how the two algorithms compare in realistic conditions, with inherent delay variability

due to OS runtimes and changing network conditions. In the process we will also cross-validate the

simulation results and gain insights into the predictability of runtimes in real systems.

7.1 Experimental Setup

We implemented ROAR in Java. The implementation has approximately 8 thousand lines of code (LOC),

including code for the ROAR servers (5,000 LOC), the membership server (600 LOC) and the frontend

query manager (1,500 LOC).

We mainly used the Hen testbed at UCL to test ROAR. The testbedcontains approximately 100

net-booted servers from various vendors and purchased at different times. This heterogeneity helps our

evaluation, providing a realistic distribution of server performance. Table 7.1 provides a summary of the

models used in the experiments.

The Hen testbed is used by many researchers concurrently, with each machine being exclusively

used by one user at a time, hence we were not able to use all the machines simulatenously. Our exper-

iments were run on approxiamtely half of the machines which we acquired for relatively short periods

of time (one to a few days). The set of machines we used changedconstantly with each different exper-

iment, providing confidence that the obtained results are not an artefact of the experimental setup. To

evaluate ROAR at scale we briefly rented out 1000 servers fromAmazon’s Elastic Compute Cloud and

ran experiments. Our findings are presented in Section 7.7.

7.2. The Application 90

Vendor Model Processor(s) Memory Disk

Sun X4100 AMD Opteron 248

@2GHz

2GB SEAGATE

ST973401LSUN72G

Dell PowerEdge 1850 Intel Xeon @3.00GHz 2GB SEAGATE ST373207LC

Dell PowerEdge 1950 2 dual-core Intel Xeon

5150 @2.66GHz

2GB MAXTOR ATLAS10K5

Dell PowerEdge 2950 2 quad-core Intel Xeon

X5355 @2.66GHz

8GB DELL PERC 5/i

Table 7.1: Server Models Used in Experimental Evaluation

7.2 The Application

Ideally we would have liked to evaluate ROAR using a full-blown web search application distributed

across thousands of servers, as this is the most widely used distributed rendezvous application.

Unsurprisingly though, such large-scale search engines are not freely available for experimentation.

We considered implementing a miniature search engine, but at small scale the query setup costs tend to

dominate the query times, so the results would not be so meaningful. In the end we decided that to run a

small scale experiment but still see meaningful results, weneeded a more difficult matching application,

where the matching costs would be comparatively large. Suchan application still benefits significantly

from being parallelized on the scales we can achieve on our testbed.

The application we chose to stress ROAR is Privacy Preserving Search and was extensively dis-

cussed in chapter 5. In PPS, users each have many files (perhaps on the order of millions) for which they

provide searchable metadata, and PPS’s job is to answer queries for that data. To create metadata for our

tests we used the files from a Linux filesystem. The test queries used randomly chosen keywords. From

a usability point of view, we impose a delay bound of one second that the PPS system must meet.

We do not claim that PPS is an “optimal” application in any way, but merely note that real-world

search applications also vary considerably in their ratio of fixed to variable costs, as do the two versions

of PPS we used: low memory (PPSLM) and low cpu (PPSLC). For example, Google’s web search

runs from memory, and has relatively low fixed costs because all users search the same web index. In

contrast, with Google’s Gmail, queries from different users obviously have to search different indexes.

It does not make sense to store all such indexes in memory for all users. Loading a file from disk has

a large seek/rotate latency followed by a fast consecutive read phase, so has a comparatively high fixed

cost.

As a test application PPS shares the main properties with websearch. The mechanisms are different,

but the average cost of matching in both cases has a large component that grows linearly with the number

of documents searched, although PPS search costs are less dependent on the contents of the query. Both

applications are bottlenecked on CPU cycles or disk bandwidth. The different versions of PPS have quite

different fixed costs, as we would also expect when comparingregular web search with webmail search.

7.3. Basic Tradeoff 91

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45 50

Q
ue

ry
 D

el
ay

 (
s)

p

Query Delay Variation with p

PPS_LM 2 q/s
PPS_LM 6 q/s

PPS_LM 10 q/s
Target Delay

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

C
P

U
 L

oa
d

(%
)

p

CPU Load Variation with p

PPS_LM 2 q/s
PPS_LM 6 q/s

PPS_LM 10 q/s

Figure 7.1: Effect ofp on system performance with PPSLM

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45 50

Q
ue

ry
 D

el
ay

 (
s)

p

Query Delay Variation with p

PPS_LC 2 q/s
PPS_LC 6 q/s

PPS_LC 10 q/s
Target Delay

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

C
P

U
 L

oa
d

(%
)

p

CPU Load Variation with p

PPS_LC 2 q/s
PPS_LC 6 q/s

PPS_LC 10 q/s

Figure 7.2: Effect ofp on system performance with PPSLC

7.3 Basic Tradeoff

To examine howp impacts query delay and throughput we used a dataset of one million files. From these

we created an encrypted metadata index consisting of 30 keywords per file, plus some other metadata, We

distributed this index to our 50 testbed servers, and searched it with queries consisting of two randomly

chosen keywords that must both match for the file to match. While this is a slightly artificial workload,

the precise contents being searched are not terribly relevant as distributed rendezvous is content-agnostic.

Our initial setup used mostly the slow servers (X4100 and Dell 1850), and ran from the buffer

cache. For PPS, it is unlikely that user data will be in memorywhen a query arrives, so loading from

disk is very likely. However, hard disk drives are being replaced with solid state drives in enterprise

deployments, as these offer significantly more performancethan state of the art hard drives. Any PPS

deployment will likely use solid state drives, thus performance numbers from disk-bound systems will

not be representative. To “simulate” faster disks we reliedon the OS buffer cache.

To allow a single server to search its part of the index in one second, we started with a value ofp = 5,

7.3. Basic Tradeoff 92

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50 60 70 80

C
P

U
 L

oa
d

(%
)

Time (s)

p=10

 0 10 20 30 40 50 60 70 80

Time (s)

p=47

Figure 7.3: Average CPU load for each node

the smallest value that has any hope of meeting our target search latency. From here, we progressively

increasedp all the way up to the largest possible value of 47, at which point every server is processing

1/47 of every request. For each value ofp, we tried workloads from two queries per second up to ten

queries per second; these corresponded to light, moderate,and heavy workloads.

7.3.1 Query Latencies Decrease with p

The results are shown in Figures 7.1 and 7.2 for PPSLM and PPSLC respectively. At low and moderate

load, query latency scales inversely proportional top, as we would hope, and is similar for both versions

of PPS. It is clear that to achieve a target latency we need to havep greater than a particular threshold.

However, this threshold is not fixed, but depends on the offered load. This should not be a surprise: a

query cannot complete until all its sub-queries complete. There is inevitably some short-term variation

in the loads on the different machines, so some sub-queries are delayed.

The heavy workload is sustainable at anyp by the LC version, and shows a similar slope to the

other workloads. However, average delay for LM decreases initially, then increases asp = 20. This

is because nodes are close to saturation at this point, and any small variation in query arrivals induces

longer delays. If we increasep further, LM saturates some nodes and cannot cope with the load. This

example serves to show that fixed overheads decrease the maximum throughput whenp increases.

7.3.2 Query Overheads Increase with p

The same figures (right hand plots) show mean CPU load (as measured by the “top” utility) for varying

values ofp and for each of the workloads. The error-bars show the standard deviation. The trend is

clear: CPU utilization increases withp. For the low memory version, the curves show relative increases

of 80% (from 22% to 40%), 54%(from 53% to 85%), for the workloads of two and six queries per

second respectively. For the LC version, the relative increases are of approximately 10% in both cases.

The differences between the two versions show the overhead of more frequent garbage collection.

At the highest load, the increase is more modest for LM, because the nodes are saturated. For LC,

the relative increase is 22% (from 67% to 82%).

To see this in more detail, Figure 7.3 shows a 20-second average of CPU load for all our PPSLM

servers whenp = 10 andp = 47 with 6 queries per second. Whenp = 10, individual load fluctuates

7.3. Basic Tradeoff 93

Model PE 2950 PE 1950 PE 1850 Sun X4100

PPSLM 51W 50W 10W 7W

PPSLC 18.9W 17W 3W 2W

Table 7.2: Energy Savings running atp = 5 instead ofp = 47

much more as queries come and go. Whenp = 47 there are few idle times and load is heavily and

constant.

7.3.3 Higher Overheads=Wasted Resources

Our cluster can handle two of these workloads with any value of p, but using largep values uses enough

extra CPU power to waste considerable energy (Table 7.2). Comparingp = 5 with p = 47, our newer

servers1 were measured to consume 18W more with PPSLC and 50W more with PPSLM. Our older

servers2 have less good CPU power management, so less savings. We expect that the latest Intel Nehalem

CPUs will show even greater savings than those shown.

Scaling up these numbers, if we had a testbed of 47 latest-generation servers, the energy gain for

running with a small value ofp would range from 0.9KW to 3KW; at current electricity pricesthis would

represent increased operating costs of $600 to $2000 per year. In a moderately sized data-center with

30000 last-generation servers, the cost increase due to thevalue ofp would be between 0.4 and 1.2

million dollars.

Each query requires a disk seek then a read of 250MB of contiguous data. When disk-bound,

increasingp not only increases CPU overheads but also increases the ratio of seeks to reads, wasting I/O

bandwidth. The Maxtor 10K V disks in our servers take 7.5ms onaverage to seek and transfer data at

73MB/s. Whenp = 5 it takes each server 680ms to sequentially read its part of the data; whenp = 47 it

takes 80ms. At this point seeks accounts for 10% of the transfer times. In a disk-bound system using a

higherp could reduce maximum throughput by 10%.

Whenp increases, the workload on each server becomes more fragmented; smaller values ofp

create longer tasks and, on average, longer idle periods. These idle periods, if long enough (> 1s) could

be exploited to save energy by spinning down hard drives. Although this is not feasible for server-class

drives (spin-up/down time is on the order of tens of seconds), it is feasible for laptop-class drives (with

spin-up/down times of well under a second). Concretely, forthe workload of 2 queries per second, it

should be possible to spin down the drives for 60% of the time,saving between 6 and 10W per server.

This technique is similar in concept to “write offloading”, atechnique that increases inter request gaps

allowing disks to be spun down for longer periods [NDR08].

Finally, the bandwidth required to run a single query increases proportionally3 with p. This does

not create a sizeable impact on energy consumption, but willincrease usage of the scarce cross-section

bandwidth.

In summary, increasingp above the minimum needed to satisfy the required delay bounds increases

1Dell PowerEdge 1950 and 2950
2Sun X4100 and Dell 1850
3In our PPS deployment the increase is modest: from 2.5KB to 24KB per query

7.4. Changingp Dynamically 94

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 2 4 6 8 10 12

T
hr

ou
gh

pu
t (

F
ile

s/
s)

Time (s)

Zero Updates
Low Update Rate
High Update Rate

Figure 7.4: Effect of updates on server throughput

system load. Depending on the workload, very large values ofp may reduce the peak throughput that

can be handled, or at the very least waste resources and energy.

7.3.4 Update Overhead Increases withr

To see how server throughput (matches/second) is affected by background updates of the dataset we

created medium (5K updates/sec) and high (20K updates/sec)update rates. Figure 7.4 shows a single

server’s throughput in these conditions in comparison withno update load. Unsurprisingly, the higher

the load the bigger the reduction in throughput. For the moderate load, the average drop in throughput is

20%; for the higher load, the drop is even sharper. In applications like PPS, where the data are stored to

disk, this effect needs to be considered when determining and changingr.

It is worth noting that this effect is not unique to ROAR: withany distributed rendezvous scheme

the operator needs to consider using a largerp than might otherwise be required if the data replication

costs start to become non-negligible.

7.3.5 Does the trade-off matter?

We have seen that larger values ofp give lower delays but higher system load, so there is a natural push

of p to the minimum value that achieves the desired query latency. We have also seen that higher update

rates, which can result from larger values ofr, reduce server processing speed; thus there is a push to

minimize r. Taking these two together, it follows that a distributed rendezvous system should be run

close to the minimum combination ofp andr, that isp · r = n, wheren is the server count. When the

load changes, we will need to reconfigurep andr to match it.

To summarize, minimizingp subject to latency constraints seems a sensible goal. However, small

p implies larger, which, in turn, increases the bandwidth used to replicate the changing dataset and the

update processing load of the servers. Thus the ability to dynamically change the tradeoff betweenr and

p is very useful to ensure that the system runs at a good near-optimal operating point.

7.4 Changingp Dynamically

One of the benefits of ROAR is its ability to repartition on-the-fly while still serving queries. To inves-

tigate how this works in practice we implemented a simple adaptive strategy to changep based on the

7.4. Changingp Dynamically 95

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250

S
ys

te
m

 L
oa

d
(%

)

Time(s)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250

D
el

ay
 (

s)

Time(s)

Query Delay
Target Delay

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

P
Time(s)

Values of P

Figure 7.5: ROAR Changingp Dynamically

average query latency seen by the front-end servers. Given an average target delay of one second, the

front-end servers instructed the ROAR servers to adaptp to the minimum value that still yielded the tar-

get latency (allowing for an error of 10%). Increasingp had no cost, of course, but to decrease it servers

needed to copy data; this increased their load, so is more interesting.

We ran an experiment with this adaptive strategy starting with no replication andp = 40, as if the

system had just booted. We loaded the system with a moderate search rate of six queries per second, and

plotted the behavior of the system as time goes by in Figure 7.5.

To start with, CPU load is very high and the query delay is lessthan it needs to be. We see that

ROAR can quickly changep with minimal disruption to queries: within minutes averageCPU load

decreases while query delay stays within acceptable bounds.

This same experiment can serve as an example of adaptation for flash crowds: when load becomes

too high (above some predefined threshold) the system sacrifices query latency for lower CPU load.

The strategy of minimizingp while maintaining the desired query delay seems sensible, yet in

reality many other factors need to be taken into account. Thecost of pushing dataset changes out to

nodes gets higher asp decreases, so using larger values ofp might be desirable. In addition,p might need

7.5. Node Failures 96

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200

Q
ue

ry
 D

el
ay

 (
s)

Time (s)

Query Delay

First node failed
20 nodes failed

 0

 20

 40

 60

 80

 100

 0 50 100 150 200
C

P
U

 L
oa

d
(%

)
Time (s)

CPU Load

First node failed
20 nodes failed

Figure 7.6: Effects of 20 Node Failures on ROAR

to be increased to reduce the memory strain on each server (this seems to be a constraint in Google’s

case). Bandwidth utilization depends onp too. In some cases rather complex optimization functions

might be required; in any event, a ROAR system can implement the required changes inp so long as an

optimization function can be defined that captures the relevant constraints.

7.5 Node Failures

What is the impact of server failures on ROAR? We are more interested in short term effects, as in the

long run the load balancing mechanism evens out load across all the servers (see next section).

To test the impact, we setp = 20, so thatr was very small (approximately 2). This reduces ROAR’s

options for alternative servers to the bare minimum, and hence represents a worst case for the increase

in load on the remaining nodes caused by a node failure. With this setup, we ran queries at a rate of six

per second, then killed a single server. Query delays remained roughly the same. We noticed a small

increase in CPU load of roughly 10% for the two neighbors of the failed node. This agrees with our

analytic predictions in Section 4.4.

In the second experiment we generated queries at a lower rate(3 per second) and progressively

killed 20 out of the 47 servers. To maintain correctness, we did not kill consecutive servers because

with such an artificially small value ofr there was not much redundancy. The effect on query delay and

server CPU load is plotted in Figure 7.6. The average CPU loaddoubles for most servers, as expected,

though query delays only increase marginally for this workload. Clearly if the initial workload had been

higher than 50%, this failure would have pushed load above 100% and so query delays would have been

affected. In such a scenario the correct course of action would then be to decreasep, as shown in Section

7.6. Load Balancing 97

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

C
P

U
 L

oa
d

(%
)

Time (s)

p=5

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

Time (s)

p=5,6

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

Time (s)

p=5,6,7,8,9,10

Figure 7.7: Fast Load Balancing withpq > p

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 500 1000 1500 2000 2500 3000 3500

P
ro

ba
bi

lit
y

Delay (ms)

Fast Load Balancing: Query Delay Histogram

p=5
p=5...6

p=5...10

Figure 7.8: Delay Distribution with Fast Load Balancing when usingpq > p

7.4.

To summarize, the results show that ROAR handles node failures gracefully, and so long as the load

does not exceed 100%, query execution is not disrupted.

7.6 Load Balancing

The previous experiments were conducted with mostly homogeneous servers. In a data center it is

unlikely that all servers will be equally fast, as machines are bought in batches and computing power

increases from one batch to another. To test this effect, we included 15 powerful machines in our testbed

(each server with two quad-core processors). These run the same million metadata query four times

faster than our slower servers.

To cope with heterogeneous servers, ROAR implements two load balancing mechanisms (Section

4.6):

• The background process by which ranges migrate.

• A request scheduling mechanism implemented in the front-end load balancer.

These run simultaneously, though on different timescales.

The front-end load balancer was not enabled in any of the experiments up to this point, but with

heterogeneous servers it helps significantly. We started all the servers, assigned them equal ranges, set

p = 5 (r ≃ 9), and generated six queries per second. Figure 7.8 shows thedistribution of delays when

the front-end load balancer is turned off (p = 5), when it is allowed one extra subquery (p = 5...6), and

when it is allowed to increasepq as high as 10 if needed. It is clear that this mechanism is effective at

moving load onto the faster servers.

7.7. Large Scale Deployment 98

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30 35 40 45

Lo
ad

 (
R

an
ge

/C
P

U
)

Computer Number

After Load Balance
Before Load Balance

Figure 7.9: Range Load Balancing

Figure 7.7 shows the load on the machines as the load balancerlearns which machines are fastest.

In thep = 5 graph, we can see a band in CPU load at around 12.5%; this corresponds to the fast servers

which are given similar workload to the slower servers. Aspq is allowed to increase, this band moves

up, and the upper band (the slow servers) moves down. Whenpq is allowed to grow up to 10, sometimes

slow servers are not given any work, simply because all the load can be processed quicker on the fast

servers. When the load is increased, the slow servers start to be used again.

To test the long-term range load balancing, we started the servers with equal ranges and ran one

query per second. The load balancing procedure iterates many times, evening out ranges between neigh-

bors where the load difference is greater then 1.5.

The results are encouraging: the big range differences between neighbors are amortized (Fig. 7.9).

The zig-zag shape of the resulting load allocation is the effect of the distributed, neighbor-only load bal-

ancing mechanism. The effects of load balancing are clear inFig. 7.10. This range expansion increases

the effectiveness of the front-end balancer: for light loads most servers are not used at all, as the powerful

servers can run all the queries in less time.

Many of these unused servers can actually be put to sleep to save electricity. They do however need

to be updated when they are woken again. One strategy is to wake some of them periodically for updates

to reduce the wake up time when they are actually needed.

7.7 Large Scale Deployment

Small-scale tests on our testbed show that ROAR works, but wealso wish to see how it scales. ROAR

storesr replicas of each data item, and splits each queryp ways while ensuringp · r = n. This is the

lower bound forall distributed rendezvous algorithms, so we are confident thatROAR’s basic costs scale

well. Simulation indicates that the algorithms should scale, but there are always practical surprises when

scaling a system up significantly. Our immediate concern is the frontend scheduler, which is centralized.

We briefly acquired a thousand servers from Amazon EC2 [Ama].These are virtualized servers,

each with a 1.7Ghz CPU and 1.7GB of memory, plus a large local hard drive. Our front-end server is

instantiated on a more powerful machine with eight virtual processors and 17GB of memory.

Basic performance of PPS on a single EC2 instance is roughly half that of our slower HEN servers

because the CPU is slower: a query of one million metadata items takes eight seconds.

7.7. Large Scale Deployment 99

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350
C

P
U

 L
oa

d
(%

)
Time(s)

CPU Load

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300 350

D
el

ay
 (

s)

Time(s)

Query Delay

Figure 7.10: Effects of Range Load Balancing

We created a larger dataset of 5 million entries, and replicated it atr = 10 on 1000 servers. We then

ran one query per second at differentp values (minp for correctness is 100). Table 7.3 summarizes the

results. Query delay initially decreases asp goes from100 to 250, but then increases after that. Average

CPU utilization increases withp as we expect: it roughly doubles whenp goes from 100 to 1000. As the

CPUs are not overloaded, the u-shaped delay curve is intriguing.

We profiled the frontend server to see how local computation affects latency. Scheduling delay

increases roughly withn log p and reaches 25ms on average whenn = 1000. The time to compose and

send the 500 byte query from the frontend application also increases withn: it takes 125ms on average

to send a message to all the 1000 servers. Although not negligible these delays can be easily reduced

in an optimized implementation and are not a scaling concern. They are not large enough to explain the

u-shaped curve.

We then examined the query matching times on the ROAR nodes. The mean performance is as

expected: delays decrease with1/p. However, larger values ofp exhibit higher variability in run-times:

variability4 increases from 1.2 to 4 whenp goes from 100 to 1000.

To nail the cause of high delays observed, Figure 7.11 shows areal-time breakdown of frontend

delays and query delays for various values ofp. Many queries finish very quickly whenp = 1000, just

after all the data has been sent. Variable round-trip delaysmade us wonder if we were bottlenecked on

bandwidth, despite the low transmit rate of 4Mb/s. Brief tests with iperf showed this was not the case.

The answer is the synchronization of the query replies, coupled with small buffers at output-buffered

switches, a problem that is known as TCP incast [VPS+09]. Whenp is large many servers will reply

4defined as the ratio between the finish time of the slowest nodeand the average finish time of all nodes running a query.

7.7. Large Scale Deployment 100

p 100 250 500 1000

Delay (ms) 997 341 1132 2183

CPU Usage 10% 12% 15% 19%

Match Delay (ms) 430 160 80 20

Match Variability 1.2 1.5 2.5 4

Schedule Delay (ms) 1.17 3.4 9.2 23

Serialize Delay (ms) 8.3 24 50 155

Table 7.3: ROAR performance running on 1000 servers in EC2

 0.001

 0.01

 0.1

 1

 10

 100

 0 50 100

D
el

ay
 (

s)

Time (s)

p=100

 50 100

p=250

 50 100

p=500

 50 100

p=1000

Query Delay
Frontend DelayFrontend Delay

Query Delay

Figure 7.11: Delay Breakdown as seen at Frontend Server

at roughly the same time, and all these replies will arrive simultaneously at the switch, overflowing the

output port of the link going to the frontend server. As we useTCP between the frontend and each ROAR

server, a drop on any flow delays the whole query. The query rate to each server is low, so TCP’s fast

retransmit cannot kick in and a lost packet has to wait for a TCP retransmit timeout. The large delays

spikes in Figure 7.11 show losses are bursty and tend to synchronize over many timeouts, escalating the

problem,

A simple fix for TCP incast is to eliminate the RTO lower bound and compute nanosecond accurate

TCP timers [VPS+09]. Its unclear that this will solve the synchronization ofretransmissions. A simple

application-level alternative might mitigate these losses: the frontend should resend unfinished query

parts as soon as most of the query has completed. At least for our application, this implies that UDP

might be a more appropriate transport for ROAR. Even withoutany of these fixes, controllingp gives a

simple way to mitigate the effects of incast, and to re-adaptthe system when the network configuration

changes.

We were not able to notice incast issues in our Hen deploymentbecause the Force10 switch Hen

uses is massively overbuffered, having 2.4MB of buffering per port. Looking at the future, the industry

7.8. Frontend Scheduling Performance 101

 160
 180

1,000 5,000 10,000

S
ch

ed
ul

in
g

D
el

ay
(m

s)

Number of Servers

PTN P=10%
PTN P=25%
PTN P=50%
ROAR P=10%
ROAR P=25%
ROAR P=50%

 0
 20
 40
 60
 80

 100
 120
 140

Figure 7.12: Frontend Scheduling Delay for PTN and ROAR

has already moved to solve the TCP incast issue by sharing thebuffers across ports. This does solve

incast, but creates interference between cross traffic. Thus, the use of RED [FJ93] has been recently

proposed to manage queue sizes [AGM+10].

Our large-scale deployment gives us confidence that ROAR itself scales well. It also provided

insight in the effects ofp, beyond the ones we observed in our small scale testbed. In particular, larger

p values greatly exacerbates any inherent variability in runtimes, increasing overall query delays. This

strengthens our belief that dynamically adaptingp is advantageous.

7.8 Frontend Scheduling Performance

Our large scale deployment gives one data point showing thatthe frontend can scale up to a thousand

nodes. Here we go further and examine its performance at larger scale, and in comparison with the

simpler PTN scheduling routine.

To perform the comparison, the membership server was changed to create “fake” servers with ran-

dom ranges. A few thousand queries were then scheduled by thefrontend, and the scheduling delay was

recorded. In contrast to the large scale experiment, the frontend numbers here do not account for the

delay to serialize and send all the sub-queries, focusing only on the time needed to schedule the query.

Results are presented in Fig. 7.12 for one, five and ten thousand servers, and three values ofp for

each. In Section 4.8 we found the algorithm complexity to beO(n) for PTN andO(n log p) for ROAR.

The experimental results show that in practice thelog P factor results in two to four times increase in

scheduling delay for ROAR compared to PTN.

Our prototype is written in Java and unoptimized, yet the absolute numbers are encouraging:

scheduling on 5000 servers (the estimated size of a Google search cluster) takes on average 62ms com-

pared to PTN’s 30ms. Batch-scheduling simultaneous queries is a very simple technique that can be used

to reduce query delays, and is quite effective when it is needed most: when queries are frequent. When

using batches of 5 queries, scheduling delay would drop to around 10ms.

In its current incarnation, our prototype running on a single core can handle about 16 queries per

second without batch scheduling, and 100 queries per secondwith batching. The scheduler is, however,

7.9. Query Delay Comparison: ROAR vs. PTN 102

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40 45 50

P
ro

ce
ss

in
g

S
pe

ed

Server ID

In Memory
Buffer Cache

Disk Bound

Figure 7.13: Observed Server Processing Speeds

easily paralelizable to many cores or indeed to many machines, and can easily be scaled to support very

high query rates.

7.9 Query Delay Comparison: ROAR vs. PTN

We have so far shown that ROAR can easily adjustp while queries are running and this brings end-to-

end benefits such as reduced power consumption and increasedthroughput. One lingering question is,

however, how do ROAR’s query delays compare to PTN’s? Our analytical evaluation offered insights

into when ROAR is worse, better or equal to PTN, but we still need to see how the algorithms perform

in practice.

To gain a better understanding of the differences, we implemented PTN too and performed a head-

to-head comparison of the two algorithms. Implementing PTNwas relatively straightforward, given the

code base we had for ROAR: the biggest changes were made to themembership server (that now creates

clustered ranges for nodes) and to the frontend server.

All our previous experiments ran from the buffer cache, as that was the setup that was closest to real

world deployment. Here, however, we wish to compare the algorithms in a range of operating regimes,

and see the differences. Besides the buffer cache, we ran experiments where data was read from disk

(disk-bound), and one where data was already in the memory-cache. These three represent the spectrum

of operating regimes for PPS; reality will be somewhere in between.

Running experiments with data from hard disks is tricky: unless huge amounts of data are read, the

OS buffer cache kicks in and reads do not reach the disk anymore5. To avoid the buffer cache we create

200 users each with 1M objects. In total the metadata has 40GB, which are partitioned and replicated on

the servers such thatp = 10.

For the buffer cache and in memory experiments we create a more stressing test environment, with

5 million metadata being searched by each query. On our fastest machines, running this query would

5Manually clearing the buffer cache is possible but tricky because our servers netmount their root filesystem; periodically

clearing the buffers for all 50 servers created such a high load that it brought down our NFS server.

7.9. Query Delay Comparison: ROAR vs. PTN 103

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10 15 20 25 30 35 40 45 50

Q
ue

ry
 D

el
ay

 (
s)

P

ROAR 1/s
PTN 1/s

ROAR 3/s
PTN 3/s

(a) Disk-Bound, 1M objects

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 5 10 15 20 25 30 35 40 45 50

Q
ue

ry
 D

el
ay

 (
s)

P

ROAR 1/s
PTN 1/s

ROAR 3/s
PTN 3/s

(b) Buffer-Cache, 5M objects

 0

 0.5

 1

 1.5

 2

 2.5

 3

 5 10 15 20 25 30 35 40 45 50

Q
ue

ry
 D

el
ay

 (
s)

P

ROAR 2/s
PTN 2/s

ROAR 4/s
PTN 4/s

(c) In Memory, 5M objects

Figure 7.14: Query Delay Comparison ROAR vs. PTN

take well over 4s.

We show the sorted server processing speeds for the three scenarios in Figure 7.13. Disk-bound is,

as expected, slowest of all and has three different plateaus, corresponding to the three hard drive models

in our slow, intermediate and fast servers. The speed difference between the fastest and slowest server

is 2x. In memory processing is significantly faster, and has abimodal distribution, with slower servers

being 3 times slower than faster ones. Finally, loading fromthe buffer cache is in between, with a 3.5x

difference between the fastest and slowest machines. Thesevalues validate our choices in the analytical

evaluation, where we used a 4x difference between the slowest and fastest servers.

Query delay results are presented in Figure 7.14. Each graphshows the algorithms running under

light load (1 or 2 queries/s) and moderate load (3-4 queries/s). ROAR and PTN have similar behavior

in all scenarios, with PTN outperforming ROAR when load is low (1 or 2 queries/s) by 5% to 40%. on

average. Under moderate load, ROAR outperforms PTN by 5% to 15%. The explanation is simple: when

load is low machine performance is highly predictable, and PTN does a better job of assigning more work

to faster servers. When load increases, server performancebecomes more variable: concurrency across

queries increases query delay variability, and the Java virtual machine memory management operations

(garbage collection, etc) affect the query runtimes. In such cases, assigning work only to the fastest

servers is not necessarily best. That is why ROAR - which spreads its work more across servers -

7.10. Evaluation Summary 104

outperforms PTN.

The main point of this comparison is that inherent variability in runtime speed tends to negate the

effects of perfect scheduling: there is a fundamental tension between achieving the lowest query delays

and coping with variability in runtimes. ROAR does a fair jobof obtaining query delays under moderate

load levels.

The shapes of the curves are similar for all three scenarios,yet the slope is gentler for the disk-

bound experiment: there increasingp brings fewer benefits. Different users experience different read

speeds on the same machine, depending on where the user file isplaced on disk and how contiguous it

is. Because of this variability, the frontend is fundamentally unable to estimate per user speeds from the

average it maintains per ROAR server. The more servers are involved in a search, the more it is likely

that one will be slow reading their part of the data.

Surprisingly, for the disk-bond experiment, the optimalp to achieve minimum delay depends on the

system’s load. As in the large scale experiment, increasingp to maximum does not guarantee minimum

delay. This implies that achieving minimal delay is not possible with staticp: adaptation is required.

7.10 Evaluation Summary
Our evaluation shows in a practical system that ROAR can indeed scale PPS to many objects (we ran as

many as 5 million) and many users while providing low query delay. ROAR allows easy adaptation of

p while the system is servicing queries providing a knob to optimize the system dynamically. We used

this to automatically adaptp to reach a target delay, and measured the power benefits that can be had.

We cross-validated the analytical comparison to PTN, and found that in practice ROAR achieves

similar query delays to PTN, while being able to seamlessly changep at runtime. The ROAR scheduling

algorithm, although unoptimized, can support tens of queries per CPU core, and can easily be scaled up.

To evaluate at scale, we ran ROAR on 1,000 servers on Amazon. We found that even at such scale

none of our centralized components became bottlenecks, andthat changingp is an effective way to

control query delay. We also found that high values ofp can increase end-to-end delays because of TCP

incast problems in certain network configurations. This increases our belief that the ability to seamlessly

changep is a useful addition to all distributed rendezvous systems used in practice.

Chapter 8

Related Work

ROAR builds upon a large body of work in the distributed systems literature. ROAR is most related to

distributed rendezvous search systems running in data centers where data is placed on nodes and queries

routed without taking content into account. Existing systems in this category are reviewed in detail in

Section 8.2. We provide background information on the alternative of using content to distribute work

in Section 8.1

There has been a tremendous amount of work in providing peer to peer search solutions, which

in turn has built upon work in structured overlays. ROAR builds upon ideas from this work which is

reviewed in Section 8.3.

Content-based publish/subscribe systems are conceptually close to search, some researchers dub-

bing them as two sides of the same coin [BC92]. Section 8.4 provides an overview.

Large scale processing was initially researched in distributed databases targeting parallel execution

of SQL queries. We conclude our survey of related work with a brief outlook of distributed databases in

Section 8.5.

8.1 Content Based vs. Content Insensitive Distributed Search

Is Distributed Rendezvous the proper solution for search? Here we position distributed rendezvous

against alternative solutions. Distributed Rendezvous iscontent insensitive: it does not use contents of

the data or the queries for replica placement or query execution. The alternative is to use content when

executing distributed queries.

Distributed Rendezvous has two advantages over content-sensitive solutions: simplicity and gen-

erality. The fact that it does not take into account content means that it is immune to skewed content

distributions or variations of such; thus mechanisms to deal with these are not needed. Distributed Ren-

dezvous is general in that it can support a wide variety of queries and data types: any algorithm taking

as input data objects and answering yes/no can be used as a query. DR can easily employ randomization

as it does not care about content. This is a big gain, as it allows good load balancing. All giant-scale

services seem to employ randomization [Bre01].

On the downside, its content agnostic approach precludes content-based optimizations, such as

indices on distributed tables, or smart clustering of web documents based on content. Indeed, much

8.2. Distributed Rendezvous Solutions 106

research effort has gone to devising techniques to cluster web documents based on content (i.e. LSI

based, keyword based), to cluster attribute values and support range queries (Mercury), etc.

In information retrieval, there are two main ways of partitioning a collection of documents amongst

servers: keyword-based or document-based [MWZ06]. Document-based partitioning is similar in spirit

to DR, as it does not take into account content when assigningdocuments to servers, or queries to

servers. This solution has natural load balancing, and is easier to manage as each server computes its

own index subset locally. However, if the collection is stored on disk, more seeks are required than in

the keyword-based version.

Keyword-based partitioning uses keywords in documents andqueries to guide document storage

and query execution. It has fewer disk seeks but imbalance can indeed kill it. Moffat et al. have

studied numerous techniques to improve load balancing and throughput of keyword-based partitioning,

including replicating the highest volume keywords and balancing keywords across servers according

to their frequency; what they have found is that for a deployment on a small number of servers, the

throughput of the optimised keyword-based scheme is alwaysa bit lower than that of document-based

partitioning [MWZ06]. The main reason for this decrease areshort term load imbalances amongst the

servers. In short, a mechanism that seems better in theory ismore complex in practice and achieves

similar results to the simple document-based partitioningin practice.

Furthermore, content-based solutions suffer if content indata and queries is highly skewed, if con-

tent distribution varies, and do not work when content is unknown—as is the case with privacy preserving

search.

8.2 Distributed Rendezvous Solutions
There are many proposed distributed rendezvous solutions in the literature [BDH03, FRA+05, TBF+04,

TKLB07, GS04]; some target peer to peer deployments and somedata centers, yet almost all offer a

fixed trade-off between the partitioning and replication levels.

The Google cluster architecture [BDH03] (PTN) is the classical cluster-based solution, with a fixed

r-p trade-off. We have analyzed it extensively throughout thisthesis, finding that changing thep-r

tradeoff is quite difficult. ROAR achieves delays similar delays to PTN’s while being able to reconfigure

the system on the fly, at runtime.

Another similar solution is the Load Balancing Matrix (LBM)[GS04]. LBM is the only solution

we are aware of that allows changingr dynamically. LBM use the same cluster structure as PTN, but

at a virtual level: the clusters are mapped onto a Distributed Hash Table. Serveri from clusterj is

mapped to the DHT server in charge ofhash(i, j). When repartitioning, LBM inherits all the problems

of the Google approach. Furthermore, LBM has load balancingproblems as virtual cluster servers are

mapped using consistent hashing onto the Chord ring: with high probability, the busiest server will

hostlog n/ log log n cluster servers. Because of the virtual mapping LBM loses the nice load balancing

properties of PTN. There is no easy way to fix this. One solution is that each server has to insert

itself many times on the ring (as many aslog n/ log log n), which significantly increases distributed

rendezvous costs for large networks. Furthermore, the appealing simplicity of PTN - where all servers

8.3. Structured Overlays and Peer to Peer Search 107

in a cluster stored identical data - is lost, without any major gains.

BitZipper [TBF+04] is a distributed rendezvous solution which is also routed on top of a DHT

and aimed at peer to peer deployment; here the tradeoff between replication and partitioning is fixed, as

p ∼ r ∼ √n. BitZipper is optimised to minimize total throughput. In data centers bandwidth usage for

search applications is not a big concern. If it were, ROAR canbe used to controlp andr such that they

are proportional to
√

n, also minimizing bandwidth usage.

A few randomized solutions have also been proposed, and theyare similar to the RAND algorithm

we have described in Section 3: Ferreira et al. [FRA+05] use random walks for both object storing and

for queries, while BubbleStorm [TKLB07] uses bubbles to speed up object storing and query execution.

These algorithms are built for peer to peer systems and have great resilience to node churn (nodes coming

and going) and failures. For instance, BubbleStorm [TKLB07] can withstand 50% node failures, without

needing any centralised component. They offer probabilistic guarantees of finding objects, and these may

not be good enough in data center like searches. Also, their operating costs are much higher (for instance

with BubbleStormp · r = 4n), needing more hardware and more energy to do the same amountof work.

For this reason, randomized solutions are not suitable to data center environments where failure rates are

low.

Glacier [HMD05] is a distributed storage system that replicates objects tor equally-spaced servers

on a Chord ring to improve availability. It would be easy to turn Glacier into distributed rendezvous:

route each query to all the servers in a1/r arc. However, to change the replication levels each server

needs to record the servers in charge of the previous and nextreplica for every object, resulting in

memory and bandwidth costs and creating consistency issueswhen servers fail. ROAR deliberately

chooses the dual approach to eliminate these problems: queries (transient in nature) are routed to where

the objects would be stored; object-consistency issues arereduced to synchronising with neighbours.

Beehive [RS04] replicates objects to achieve one hop lookups, assuming object popularity is Zipf

distributed. Beehive’s replica placement algorithm stores replicas on servers at Hamming distance 1 in

the ID space, and only allows values forr that are a power of 2. It appears easy to use Beehive’s replica

placement strategy for distributed rendezvous, but the complexity of object replication combined with

restrictions on values ofr limit possible benefits.

Chain replication [vRS04] is similar in spirit to ROAR’s object placement strategy. Van Rennesse

et al. show that to achieve consistency and high throughput,object updates should be serialized at the

home server and queries should be executed by the active server. This works when individual objects are

accessed; in distributed rendezvous all objects must be accessed so using this strategy is infeasible, as

the query must be broadcast to all the servers.

8.3 Structured Overlays and Peer to Peer Search
Structured overlays like Chord [SMK+01], Pastry [RD01] or CAN [RFH+01] organise a large set of

servers into a network structure that has low degree and low diameter. Their biggest appeal is complete

decentralisation: nodes are completely self organising, there are no centralised components.

Chord [SMK+01] assigns each server a random identifier in a 160 bit circular space. Each server is

8.3. Structured Overlays and Peer to Peer Search 108

in charge of the range between himself and its predecessor. It maintains links to a few of its predecessor

and successor nodes, and alsolog n “finger” pointers to nodes further out on the ring. Key lookupis the

basic operation supported by Chord: starting from an initiator node, the request is routed closer to the

desired ID by using the neighbour or finger pointers; on average log n steps are required. Objects are

replicated in Chord on their home node and a few successors.

Pastry [RD01] has a similar structure and similar properties to Chord. CAN uses ad dimensional

torus, having constant node degree and larger diameter thanChord.

ROAR borrows the idea of ring from Chord. ROAR replication has a subtle but important difference

from Chord: ROAR objects are replicated on a fixed ID range rather than on a fixed number of servers.

This allows us to decouple server and object locations, a crucial property for practical distributed ren-

dezvous. Further, ROAR has centralised server membership,its servers do not maintain finger pointers,

and it does not use logarithmic lookup to run queries. All these are possible in data centers, and allow

ROAR to obtain low query delays that couldn’t otherwise be obtained.

A number of systems have been recently deployed in data-centers to allow key-value stores or

database-like functionality, including Dynamo [DHJ+07] and Cassandra [LM10]. Dynamo is essentially

a one hop DHT built on top of Chord that favours availability and partition tolerance over consistency;

it uses vector clocks to detect conflicts and defers the conflict resolution to the application. Cassandra is

similar to Dynamo, but offers richer functionality than thekey-value store. Cassandra supports database-

like row and column-based operations, but does not explicitly support SQL. Both systems use data

replication and partitioning as building blocks, as ROAR does. Cassandra, in particular, allows quorum

reads and writes with configurable ratios; the quorum uses the same intersection property that ROAR

uses to achieve its functionality. Cassandra basic storagemechanism is borrowed from Chord, and it has

many problems when used in a distributed rendezvous context(these were discussed in detail in Chapter

3.3).

Chord, CAN and Pastry only offer basic primitives to store and retrieved named items; hence they

are collectively called distributed hash tables (DHT). This basic functionality does not support key-

word search, however much research has gone into executing queries on DHTs, including keyword

search [RV03, TXD03, TD04] and range queries [BAS04].

Straightforward partitioning of documents based on keywords is proposed by Reynolds at al

[RV03]. Techniques are devised to minimise the amount of communication between servers, when inter-

secting document lists. Load balancing is ignored in this work, which questions its scalability. ESearch

[TD04] goes a step further and only uses the top 25 keywords ineach document for indexing, observing

that this suffices usually, and by replicating full documentinformation at these nodes. Load balancing is

performed for document storage by using DHT specific mechanisms. In effect, partitioning replicates a

keyword on multiple nodes, and therefore query load balancing is not dealt with directly. We have seen

in our experiments that load balancing is paramount to achieving high throughput.

In an attempt to even out the balancing of inverted indexes tonodes, Liu et al. propose to remove

inverted lists pertaining to highly used words and distribute this information to the other nodes [LL04].

8.4. Content-Based Publish/Subscribe Systems 109

Conjunctive queries containing popular terms will be answered with documents that contain the less

popular terms. Information about the fusion dictionary is replicated to all the nodes in the system, and so

are the lists of files that contain only these words. When multiple keywords are removed, their lists are

aggregated and a synthetic keyword is used to store documents that contain those two keywords. This

in fact removes the initial mappings and introduces correlated mappings for frequently occurring pairs;

based on our analysis in [Rai06], we show that the number of routing hops is not reduced drastically and

therefore the impact of this heuristic is not substantial.

PSearch [TXD03] uses document and query content to store documents and route queries on top

of CAN. Instead of using the actual terms, PSearch uses Latent Semantic Indexing to map all the doc-

uments and queries onto a multidimensional semantic space,which is then mapped onto a CAN with a

lower number of dimensions. The authors propose techniquesto reduce the number of needed dimen-

sions by using a rolling index and replicating each documenta few times on the overlay. They also

propose techniques to balance the document load on the servers. Despite these techniques, load is still

skewed: in the authors’ experiments, 35% of the servers store 70% of the indices with all the techniques

enabled. These results outline once again the fundamental difficulty of properly balancing documents

with content-sensitive placement.

In general, directly using the peer to peer search techniques for data center deployments seems

wrong. An interesting discussion about the feasibility of scaling peer-to-peer search for web search is

provided in [LLH+03], and it is shown that currently the resource usage would be one order of magnitude

higher than the resources available. Google is clear evidence that in data centers web search is feasible.

To support it, however, techniques must be designed specifically to take advantage of the properties

of the data centers that differentiate them from peer to peersystems: zero churn, single administrative

domain, high bandwidth and low failure rates. While ideas from ROAR are more general and could be

applied to peer-to-peer search, ROAR has also been designedfor use in data centers.

8.4 Content-Based Publish/Subscribe Systems
Content-based publish/subscribe (CBPS) is an interactionmodel where interests of subscribers, ex-

pressed as predicates over the desired attributes in notifications, are stored in a content based matching

infrastructure. Publishers push notifications into the infrastructure, and the notifications are typically

attribute name-value pairs. The infrastructure’s task is to decide which notifications should go to which

subscribers in an online manner. Research has focused on howto distribute this intermediary to scale

interaction to a large number of users. Content-based publish subscribe systems are conceptually close

to search: if stored subscriptions are replaced by documents, and notifications by queries, we have a

distributed search system. Hence, solutions from CBPS can in principle be applied to distributed search.

Existing architectures for content-based publish/subscribe can be divided roughly in two categories:

fixed topology architectures (the traditional approach to pub/sub, including Siena [CRW01], Gryphon

[gry99], their optimisations and variants) and DHT-based architectures, including Mercury [BAS04],

Homed [CPP04] and so on. In the first category, event routing is intertwined with content-based match-

ing, with the noticeable exceptions of Medym [CS05] and EDN [CDNF01]. The second class of applica-

8.5. Relational Databases 110

tions usually focuses on resilience to node churn and fault tolerance (inherited from DHTs), attempting

to minimize the number of routing hops for matching and putting in the same time less focus on event

routing.

Most architectures assumes fixed topologies (typically trees or directed acyclic graphs) that are cre-

ated by the users (Siena [CRW01], Gryphon [gry99], Medym [CS05]). The algorithms are generally

conceived for fault-free operation. Assuming that the connections between nodes are (manually) es-

tablished based on network proximity, fixed topology architectures achieve minimal network delay for

delivering messages to each subscriber. Their biggest advantage is low bandwidth usage: for each noti-

fication, a multicast tree is built which replicates the notification as late as possible. Perhaps the biggest

drawback is their worst-case behavior: the number of routing hops a notification traverses grows linearly

with the number of nodes in the system and every subscriptiongets replicated to every node (for both

Siena [CRW01] and Gryphon [gry99]). Also, application level content-matching is usually performed at

each hop, incurring significant delays for notifications crossing a large number of hops.

If these systems were used for distributed search, a lot of the optimizations they embed would

become meaningless. For instance, when running a query all the results need to be returned to the front-

end: there is no need to create a multicast tree to subscribers as in CBPS. Further, CBPS event routing is

sequential, whereas distributed search systems such as Google’s or ROAR send a query to many servers

in parallel to reduce query delay. To conclude, these solutions are not applicable in practice to distributed

search.

8.5 Relational Databases
Speeding up queries has always been a goal of database systems, and parallel databases [Cor83,

CABK88, DGG+86, LDH+89, SAL+96, TD03, KW94] provided a shift in this direction. The trend

was to move away from mainframe computers using either shared-disk or shared-memory computer

architectures towards shared-nothing machines [DG92, Sto86].

To parallelise execution of queries the most effective technique is to horizontally partition the input

table across many nodes [DG92], such that each node can execute the query in parallel on its subset of the

data; the results are then merged. The biggest dangers to scaling up query processing to larger datasets

and speeding up queries were identified to be skew (load imbalance), startup costs and self interference

from different parts of the same query [CABK88, GD90, DG92].

Partitioning can be round robin (suited for sequential scans), hash-based (suited for sequential

scans and associative access) and range partitioning [DG92]. Range partitioning, used in Arbre, Bubba,

Gamma, Oracle and Tandem, is similar in concept to content-based placement of data and queries, and

can suffer from load imbalance. Adjusting the range sizes can counter this effect, as in [CABK88] The

problem with using range partitioning for full text searches is that there are too many dimensions to

partition (e.g. see the latent semantic space, as in pSearch[TXD03]). As such, hash based-partitioning

(used by Arbre, Bubba, Gamma and Terradata) is preferrable for search. This is also what ROAR uses.

How much should a table be partitioned? Partitioning too much might have adverse effects, increas-

ing query delay and decreasing system throughput [CABK88, GD90]. This is the same observation we

8.5. Relational Databases 111

made both qualitatively and quantitatively in this thesis.Traditional parallel databases have fixed parti-

tioning strategies, whereas ROAR provides a means to dynamically trade-off query overhead vs. query

delay.

In general, research in distributed databases aims to optimise execution of powerful relational

queries in a distributed setting. ROAR is much simpler: it isjust a “select” operation executed in a dis-

tributed manner on a single table. In effect, ROAR can be usedas a tool underlying traditional databases

to optimise access to large tables with poor indexing options. At a conceptual level, ROAR is similar to

the exchange operator proposed by Graefe et al. to provide extensible query execution [GD93].

Distributed Computation. There are many other algorithms for distributing computation among many

machines, such as [BTAD+04, ADAT+99, DG04, YIF+08]. Google’s MapReduce [DG04] offers a

simplified, functional programming model that hides parallelisation from the programmer. ROAR offers

a weaker programming abstraction, equivalent to the “map” operation, but differs in its handling of data

objects: while Map Reduce moves data to the servers performing the computation, ROAR will run the

computation on enough servers such that all the data objectsare visited without actually moving the

data objects. Instead, ROAR allows the application to change r, which controls the minimum number

of servers that must be visited. The major difference between ROAR and MapReduce is their intended

use: MapReduce optimises execution of large jobs on huge datasets that take from seconds to hours to

execute, while ROAR is aimed at running sub-second queries against smaller amounts of data. By not

copying data for every query allows ROAR to save bandwidth and obtain smaller delays.

Chapter 9

Conclusions

The performance of distributed rendezvous systems such as web search engines is heavily influenced

by the partitioning levelp, which controls how an ensemble of servers handle queries and store data.

This parameter is the primary control that determines search latency, and so has a huge impact on the

usability of distributed search systems. We have found thatthe query delay variation asp increases is not

necessarily monotonically decreasing, as it depends on theload on the servers and on the particularities

of the search application. Further, higher values ofp increase the fixed costs associated to queries be

they hard drive seeks, OS related overheads, or network bandwidth costs. This dependency matters: on

our small cluster, running withp = 50 instead ofp = 5 wastes energy costing 50$ per server per year.

In the three year lifetime of a 1,000$ server savings could beup to 150$. While not astounding, these

savings are worthwhile.

Fixed costs associated to queries naturally pushp down as long as delay targets are met. We have

further shown that object updates pushr to be small, otherwise server throughput is affected. To be

efficient, a distributed rendezvous system needs to run at its optimal operating point, wherepr = n.

Despite this and the fact thatp should be continuously adapted according to the system’s load in

order to achieve optimal performance, search engines such as Google rely on the simple PTN algorithm

that does not allow for dynamic reconfiguration ofp. PTN’s simple structure fundamentally prevents it

from reconfiguring easily, as it loads nodes asymmetricallyduring changes, and reduces the capacity of

the system while change is taking place.

9.1 Contributions

The premise of this thesis is that allowing seamless reconfiguration brings alive another dimension on

which the distributed rendezvous system can be optimised continuously to track the load it is serving.

We have introduced ROAR, a novel distributed rendezvous algorithm that allows on-the-fly re-

configuration ofp at minimal cost while still servicing queries. Further, ROAR can add and remove

servers without stopping the system, cope with temporary and permanent server failures, and provide

very good load-balancing even in the face of servers having heterogeneous hardware capabilities. ROAR

uses rings organize servers, and uses fixed replication ranges to store documents on servers. This allows

it to decouple query routing and replica placement from server density on the ring, overcoming the main

9.1. Contributions 113

problems with the SW algorithm.

We have created an analytical model to study the properties of ROAR and compare it to PTN. We

have explored the parameter space comparing ROAR, PTN and SWalong multiple dimensions including

query delay, availability, and the ability to reconfigure.

One major challenge in ROAR was to provide comparable query delay to PTN. We achieved this

through three main techniques:

• Server range balancingassigns larger ranges to more powerful servers, helping overall load

balancing and reducing query delays.

• Multiple rings provide the power of two choices for query execution, breaking away from ther

choices available to the SW algorithm.

• Range adjustmentis a local heuristic that reduces the delay of the sub-query running on the most

loaded server.

These three mechanisms work harmoniously together to reduce ROAR query delays. Through

simulations we compared the query delays of PTN and ROAR, finding that ROAR outperforms PTN

when server speeds are fluctuating and can’t be perfectly predicted, while PTN behaves better when

server speeds are more predictable. ROAR can reconfigure seamlessly as it places uniform, minimal

bandwidth load on all servers during the change. In contrastPTN asymmetrically loads servers and

takes orders of magnitude more time to reconfigure. Further simulations have shown that ROAR and

PTN both give high availability,

To test ROAR in practice we implemented a privacy-preserving search application that used ROAR

as its underlying algorithm, and ran experiments on a 50-server dedicated testbed and on a 1000-server

configuration using Amazon’s EC2.

Our practical experiments show that the ability to change partitioning dynamically has many ben-

efits, from allowing the network to cope with load fluctuations gracefully to reducing bandwidth and

energy costs. ROAR works well in practice: it can cope with failures and it balances load well. Given

a target query delay, ROAR can automatically reconfigure thenetwork to achieve that delay while min-

imising other costs. All these results give us confidence that ROAR is a practical alternative to PTN,

offering an important knob to optimise system behaviour -p - a knob that does not exists in systems to-

day. Distributed rendezvous systems can make more efficientuse of resources by continuously adapting

to load and environment changes.

We also performed a head-to-head comparison between ROAR and PTN, measuring query delays.

The results cross-validated our simulations, showing thatROAR delays are better than those of PTN

when load is moderate or high, while PTN is better when load islow.

The other major contribution of this work is Privacy Preserving Search. PPS addresses a major

privacy concern raised by the “online” convergence of user data by supporting search when user data are

stored encrypted. Simulation studies indicate that, at least for mobile devices, PPS should consume a lot

less bandwidth than and is thus preferable to the naive solution of encrypting the search index.

9.2. Future Work 114

To support PPS we have proposed novel cryptographic constructions to match numeric attributes,

and built a search system that allows moderately complex privacy preserving searches, including key-

word, modification date and file size searches. Our experimental analysis of PPS on a single machine

outlines the need for parallelism: a single query running against 1 million metadata takes well over 4s.

We parallelised PPS with ROAR and achieved sub-second querydelays for much larger datasets (5

million files). As user queries are relatively infrequent, aset of machines can be used to server many

clients. We believe it should be possible to build an economically viable PPS system; however this is not

the purpose of this -thesis.

9.2 Future Work
In the future, we hope to test ROAR more on large clusters withthousands of nodes, and explore different

optimisation criteria. Most interestingly, it would be great to see if ROAR can be directly applied to web

search in practice.

ROAR opens an interesting research question: what are the fundamental techniques we can use to

create efficient distributed algorithms? Energy efficient computing has been mostly looking at individual

components such as CPU, disk or whole servers to try and make their energy usage load adaptive. Our

work shows that different values ofp always change the total amount of work done by the system, and

that controllingp opens the door for further energy savings. In its quest for efficiency, ROAR makes the

distributed algorithm rather than the individual components the focus of optimisation. This new focus

seems promising.

Bibliography

[ADAT +99] Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuhaft,David E. Culler, Joseph M.

Hellerstein, David Patterson, and Kathy Yelick. Cluster i/o with river: making the fast case

common. InProc. Workshop on I/O in parallel and distributed systems, 1999.

[AFLV08] Mohammad Al-Fares, Alexander Loukissas, and AminVahdat. A scalable, commodity

data center network architecture. InProc. SIGCOMM, 2008.

[AGM+10] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel,

Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan.Data center tcp (dctcp). In

Proc. Sigcomm 2010, volume 40, 2010.

[Ama] Amazon. Elastic compute cloud.

[BAS04] Ashwin R. Bharambe, Mukesh Agrawal, and SrinivasanSeshan. Mercury: supporting

scalable multi-attribute range queries.SIGCOMM Comput. Commun. Rev., 34(4), 2004.

[BC92] Nicholas J. Belkin and W. Bruce Croft. Information filtering and information retrieval: two

sides of the same coin?Commun. ACM, 35(12):29–38, 1992.

[BDH03] L. A. Barroso, J. Dean, and U. Holzle. Web search for aplanet: The google cluster archi-

tecture.Micro, IEEE, 23, 2003.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.Communi-

cations of the ACM, 13(7), 1970.

[Bre01] Eric A. Brewer. Lessons from giant-scale services.IEEE Internet Computing, 5(4):46–55,

2001.

[BTAD+04] John Bent, Douglas Thain, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and

Miron Livny. Explicit control a batch-aware distributed file system. InNSDI, 2004.

[CABK88] George Copeland, William Alexander, Ellen Boughter, and Tom Keller. Data placement in

bubba.SIGMOD Rec., 17(3):99–108, 1988.

[CDNF01] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The jedi event-based infras-

tructure and its application to the development of the opss wfms. IEEE Trans. Softw. Eng.,

27(9):827–850, 2001.

Bibliography 116

[CFSS05] Chris Chambers, Wu-chang Feng, Sambit Sahu, and Debanjan Saha. Measurement-based

characterization of a collection of on-line games. InIMC 2005: Proceedings of the 5th

ACM SIGCOMM conference on Internet Measurement, pages 1–1, Berkeley, CA, USA,

2005. USENIX Association.

[CGKO06] Reza Curtmola, Juan Garay, Seny Kamara, and RafailOstrovsky. Searchable symmetric

encryption: improved definitions and efficient constructions. InCCS ’06: Proceedings of

the 13th ACM conference on Computer and communications security, pages 79–88, New

York, NY, USA, 2006. ACM.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, andMadhu Sudan. Private information

retrieval. InProceedings of IEEE Symposium on Foundations of Computer Science, FOCS,

pages 41–50, 1995.

[CGL+09] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, and Anthony D. Joseph. Under-

standing tcp incast throughput collapse in datacenter networks. InWREN 2009: Proceed-

ings of the 1st ACM workshop on Research on enterprise networking, pages 73–82, New

York, NY, USA, 2009. ACM.

[CHL+08] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas,Lin Xiao, and Feng Zhao.

Energy-aware server provisioning and load dispatching forconnection-intensive internet

services. InNSDI 2008: Proceedings of the 5th USENIX Symposium on Networked Sys-

tems Design and Implementation, pages 337–350, Berkeley, CA, USA, 2008. USENIX

Association.

[CM05a] Yan-Cheng Chang and Michael Mitzenmacher. Privacypreserving keyword searches on

remote encrypted data. InProc. ACNS, 2005.

[CM05b] Yan-Cheng Chang and Michael Mitzenmacher. Privacypreserving keyword searches on

remote encrypted data. InACNS, 2005.

[Cor83] Teradata Corp. Teradata: Dbc1012 data base computer concepts and facilities. Document

No. C02-0001-00, 1983.

[CPP04] Y. Choi, K Park, and D. Park. Homed: A peer-to-peer overlay architecture for large-scale

content-based publish/subscribe systems. In3rd International Workshop on Distributed

Event-Based Systems (DEBS’04), 2004.

[CRW01] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and evaluation

of a wide-area event notification service.ACM Trans. Comput. Syst., 19(3):332–383, 2001.

[CS05] Fengyun Cao and Jaswinder Singh. Medym: Match-earlywith dynamic multicast for

content-based publish-subscribe networks. pages 292–313. 2005.

Bibliography 117

[CW03] Antonio Carzaniga and Alexander L. Wolf. Forwardingin a content-based network. In

Proceedings of ACM SIGCOMM, pages 163–174, Karlsruhe, Germany, August 2003.

[Dea] Jeffrey Dean. Personal Communication. Google.

[DG92] David DeWitt and Jim Gray. Parallel database systems: the future of high performance

database systems.Commun. ACM, 35(6):85–98, 1992.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large

clusters. InProc. OSDI, 2004.

[DGG+86] David J. DeWitt, Robert H. Gerber, Goetz Graefe, MichaelL. Heytens, Krishna B. Kumar,

and M. Muralikrishna. Gamma - a high performance dataflow database machine. InVLDB

’86: Proceedings of the 12th International Conference on Very Large Data Bases, pages

228–237, San Francisco, CA, USA, 1986. Morgan Kaufmann Publishers Inc.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash

Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vo-

gels. Dynamo: amazon’s highly available key-value store. In Proceedings of twenty-first

ACM SIGOPS symposium on Operating systems principles, SOSP ’07, pages 205–220,

New York, NY, USA, 2007. ACM.

[DR02] Joan Daemen and Vincent Rijmen.The design of Rijndael: AES — the Advanced Encryp-

tion Standard. 2002.

[FJ93] Sally Floyd and Van Jacobson. Random early detectiongateways for congestion avoidance.

IEEE Trans. Netw., 1(4):397–413, 1993.

[FKN94] Uri Feige, Joe Killian, and Moni Naor. A minimal model for secure computation (extended

abstract). InSTOC ’94: Proceedings of the twenty-sixth annual ACM symposium on Theory

of computing, pages 554–563, New York, NY, USA, 1994. ACM.

[FRA+05] Ronaldo A. Ferreira, Murali Krishna Ramanathan, Asad Awan, Ananth Grama, and Suresh

Jagannathan. Search with probabilistic guarantees in unstructured peer-to-peer networks.

In Proc. P2P, 2005.

[GD90] Shahram Ghandeharizadeh and David J. DeWitt. A multiuser performance analysis of

alternative declustering strategies. InProceedings of the Sixth International Conference on

Data Engineering, pages 466–475, Washington, DC, USA, 1990. IEEE Computer Society.

[GD93] G. Graefe and D. L. Davison. Encapsulation of parallelism and architecture-independence

in extensible database query execution.IEEE Trans. Softw. Eng., 19(8), 1993.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In

SOSP 2003: Proceedings of the nineteenth ACM symposium on Operating systems princi-

ples, pages 29–43, New York, NY, USA, 2003. ACM Press.

Bibliography 118

[GHMP09] Albert Greenberg, James Hamilton, David A. Maltz,and Parveen Patel. The cost of a

cloud: research problems in data center networks.SIGCOMM Comput. Commun. Rev.,

39(1):68–73, 2009.

[GLL+09] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang,Yunfeng Shi, Chen Tian,

Yongguang Zhang, and Songwu Lu. Bcube: a high performance, server-centric network

architecture for modular data centers. InProc. SIGCOMM, 2009.

[Goh03a] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.

[Goh03b] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.

http://eprint.iacr.org/2003/216/.

[Gol01] Oded Goldreich.Foundations of Cryptography, volume Basic Tools. Cambridge Univer-

sity Press, 2001.

[Gre09] Albert Greenberg el al. VL2: a scalable and flexible data center network. InProc. ACM

Sigcomm, 2009.

[gry99] An efficient multicast protocol for content-based publish-subscribe systems. InICDCS

’99: Proceedings of the 19th IEEE International Conferenceon Distributed Computing

Systems, page 262, Washington, DC, USA, 1999. IEEE Computer Society.

[GS04] Jun Gao and Peter Steenkiste. Design and evaluation of a distributed scalable content

discovery system.IEEE Journal on Selected Areas in Communications, 22, January 2004.

[HGSW10] Daniel Halperin, Ben Greensteiny, Anmol Shethy, and David Wetherall. Demystifying

802.11n power consumption. InProc. HotPower, pages 1–, Berkeley, CA, USA, 2010.

USENIX Association.

[HMD05] Andreas Haeberlen, Alan Mislove, and Peter Druschel. Glacier: Highly durable, decen-

tralized storage despite massive correlated failures. InProc. NSDI, 2005.

[HMT04] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A privacy-preserving index for range

queries. InProceedings of VLDB - Conference on Very Large Databases, 2004.

[IK97] Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with applica-

tions. InISTCS ’97: Proceedings of the Fifth Israel Symposium on the Theory of Comput-

ing Systems (ISTCS ’97), page 174, Washington, DC, USA, 1997. IEEE Computer Society.

[KHF06] Eddie Kohler, Mark Handley, and Sally Floyd. Designing dccp: congestion control without

reliability. ACM SIGCOMM, 2006.

[KKG+10] Michael Kounavis, Xiaozhu Kang, Ken Grewal, Mathew Eszenyi, Shay Gueron, and David

Durham. Encrypting the internet. InProc. Sigcomm 2010, 2010.

http://eprint.iacr.org/2003/216/

Bibliography 119

[KW94] Brigitte Kröll and Peter Widmayer. Distributing a search tree among a growing number of

processors.SIGMOD Rec., 23(2), 1994.

[Lam01] Leslie Lamport. Paxos made simple.SIGACT News, 32(4):51–58, December 2001.

[LDH+89] R. Lorie, J. Daudenarde, G. Hallmark, J. Stamos, and H. Young. Adding intra-transaction

parallelism to an existing dbms: Early experience.IEEE Data Engineering Newsletter,

12(1), 1989.

[LL04] Lintao Liu and Kang-Won Lee. Keyword fusion to support efficient keyword-based search

in peer-to-peer file sharing. InCCGRID 2004: Proceedings of the 2004 IEEE International

Symposium on Cluster Computing and the Grid, pages 269–276, Washington, DC, USA,

2004. IEEE Computer Society.

[LLH +03] Jinyang Li, Boon Loo, Joseph Hellerstein, M. Kaashoek, David Karger, and Robert Morris.

On the feasibility of peer-to-peer web indexing and search.In Peer-to-Peer Systems II,

volume 2735 ofLecture Notes in Computer Science. Springer Berlin / Heidelberg, 2003.

[LM10] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage

system.SIGOPS Oper. Syst. Rev., 44:35–40, April 2010.

[Mit01] Michael Mitzenmacher. The power of two choices in randomized load balancing.IEEE

Transactions on Parallel and Distributed Systems, 12:1094–1104, 2001.

[MWZ06] Alistair Moffat, William Webber, and Justin Zobel.Load balancing for term-distributed

parallel retrieval. InSIGIR 2006: Proceedings of the 29th annual international ACM

SIGIR conference on Research and development in information retrieval, pages 348–355,

New York, NY, USA, 2006. ACM.

[NDR08] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write off-loading: Practi-

cal power management for enterprise storage.Trans. Storage, 4(3):1–23, 2008.

[NPI+08] Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy, and David

Wetherall. Reducing network energy consumption via sleeping and rate-adaptation. In

NSDI 2008: Proceedings of the 5th USENIX Symposium on Networked Systems Design

and Implementation, pages 323–336, Berkeley, CA, USA, 2008. USENIX Association.

[oST95] National Institute of Standards and Technology. Secure hash standard, 1995.

[Rai06] Costin Raiciu. Phd transfer report: On distributedonline filtering. UCL, 2006.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and

routing for large-scale peer-to-peer systems.Lecture Notes in Computer Science, 2218,

2001.

Bibliography 120

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker. A

scalable content-addressable network. InProc. SIGCOMM, 2001.

[RR06] Costin Raiciu and David S. Rosenblum. Enabling confidentiality in content-based pub-

lish/subscribe infrastructures. InProc. Securecomm, 2006.

[RRH07] Costin Raiciu, David S. Rosenblum, and Mark Handley. Distributed online filtering. In

Poster Session: ACM Sigcomm, 2007.

[RS04] Venugopalan Ramasubramanian and Emin Gün Sirer. Beehive: O(1) lookup performance

for power-law query distributions in peer-to-peer overlays. InProc. NSDI, 2004.

[RV03] Patrick Reynolds and Amin Vahdat. Efficient peer-to-peer keyword searching. InMid-

dleware 2003: Proceedings of the ACM/IFIP/USENIX 2003 International Conference on

Middleware, pages 21–40, New York, NY, USA, 2003. Springer-Verlag New York, Inc.

[SAL+96] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam Sah, Jeff Sidell,

Carl Staelin, and Andrew Yu. Mariposa: a wide-area distributed database system.The

VLDB Journal, 5(1), 1996.

[SG07] Bianca Schroeder and Garth A. Gibson. Disk failures in the real world: what does an

mttf of 1,000,000 hours mean to you? InFAST ’07: Proceedings of the 5th USENIX

conference on File and Storage Technologies, page 1, Berkeley, CA, USA, 2007. USENIX

Association.

[SMK+01] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan. Chord:

A scalable Peer-To-Peer lookup service for internet applications. InProc. SIGCOMM,

2001.

[SNR+10] Aaron Schulman, Vishnu Navda, Ramachandran Ramjee, Neil Spring, Pralhad Deshpande,

Calvin Grunewald, Kamal Jain, and Venkata N. Padmanabhan. Bartendr: a practical ap-

proach to energy-aware cellular data scheduling. InProc. Mobicom, pages 85–96, New

York, NY, USA, 2010. ACM.

[Sto86] Michael Stonebraker. The case for shared nothing.Database Engineering, 9:4–9, 1986.

[SWP00] Dawn Song, David Wagner, and Adrian Perrig. Practical techniques for searches on en-

crypted data. InProceedings of the IEEE Symposium on Security and Privacy, 2000.

[TBF+04] Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Jussi Kangasharju, and Alejandro Buch-

mann. Bit zipper Rendezvous—Optimal data placement for general P2P queries. InProc.

EDBT Workshop on Peer-to-Peer Computing and DataBases, 2004.

[TD03] Feng Tian and David J. DeWitt. Tuple routing strategies for distributed eddies. InProc.

VLDB, 2003.

Bibliography 121

[TD04] Chunqiang Tang and Sandhya Dwarkadas. Hybrid global-local indexing for effcient peer-

to-peer information retrieval. InNSDI 2004: Proceedings of the 1st conference on Sym-

posium on Networked Systems Design and Implementation, pages 16–16, Berkeley, CA,

USA, 2004. USENIX Association.

[Tec10] Ars Technica. Ftc reminds us that storing data in thecloud has drawbacks, January 2010.

[TKLB07] Wesley W. Terpstra, Jussi Kangasharju, Christof Leng, and Alejandro P. Buchmann. Bub-

blestorm: resilient, probabilistic, and exhaustive peer-to-peer search. InProc. SIGCOMM,

2007.

[TXD03] Chunqiang Tang, Zhichen Xu, and Sandhya Dwarkadas.Peer-to-peer information retrieval

using self-organizing semantic overlay networks. InProc. Sigcomm, 2003.

[VPS+09] Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G. Andersen, Gre-

gory R. Ganger, Garth A. Gibson, and Brian Mueller. Safe and effective fine-grained tcp

retransmissions for datacenter communication. InACM SIGCOMM, 2009.

[vRS04] Robbert van Renesse and Fred B. Schneider. Chain replication for supporting high through-

put and availability. InProc. OSDI, 2004.

[WAB+06] Christian Wallenta, Mohamed Ahmed, Ian Brown, Steven Hailes, and Felipe Huici.

Analysing and modelling traffic of systems with highly dynamic user generated content.

University of Oxford Research Note RN/08/10, 2006.

[web09] The size of the world wide web. http://www.worldwidewebsize.com/, November 2009.

[Yao86] Andrew C. Yao. How to generate and exchange secrets.In Proceedings of the IEEE

Symposium of Foundations of Computer Science, FOCS, 1986.

[YGN06] Haifeng Yu, Phillip B. Gibbons, and Suman Nath. Availability of multi-object operations.

In Proc. NSDI, 2006.

[YIF+08] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu,Úlfar Erlingsson, Pradeep Kumar

Gunda, and Jon Currey. Dryadlinq: a system for general-purpose distributed data-parallel

computing using a high-level language. InOSDI’08: Proceedings of the 8th USENIX

conference on Operating systems design and implementation, pages 1–14, Berkeley, CA,

USA, 2008. USENIX Association.

	Introduction
	Problem Space
	Problem Definition
	Running a Query

	The Distributed Rendezvous Trade-off
	Scope
	Server Reliability
	Communication Costs
	Application Delay Bounds

	Solution Space
	Partitioned Distributed Rendezvous
	Randomized Distributed Rendezvous
	Sliding Window Distributed Rendezvous
	Limitations of Existing Solutions

	ROAR: Rendezvous On A Ring
	Storing objects
	Forwarding Queries
	Adding Nodes
	Removing Nodes
	Changing the Replication Level
	Load Balancing: Proportional Ranges
	Multiple Sliding Windows
	Running Queries on Heterogeneous Servers
	Scheduling Algorithm
	Optimisations
	Multiple Front-End Servers
	Sending Queries Reliably

	Managing Ring Membership
	Adapting to Changing Load
	Reducing Cross-Sectional Bandwidth Usage

	Application: Privacy Preserving Search
	Motivation
	Limitations of Online Privacy

	Basic Approach and Scope
	Analysis of the Index-Based Solution
	Bandwidth Comparison

	Definition of Privacy Preserving Search
	Security Preliminaries
	Security Assumptions and Scope
	Problem Definition
	Limitations of Confidentiality

	Solutions for Privacy Preserving Search
	Equality Matching
	Keyword Matching
	Numeric Matching
	Supporting Ranked Queries
	Supporting Generic Queries

	Implementation
	Overview
	Managing Metadata
	Running Queries
	Metadata Encoding
	Multi-Predicate Queries

	Evaluation
	Dynamic predicate ordering
	Query delays with varying numbers of metadata

	Related Work
	Conclusions

	Analytical Evaluation
	Query Delay
	Bounding Optimal Query Delay
	Query Delay Comparison when pq=p
	Query Delay Comparison when pQ>p
	Analysis of ROAR Mechanisms

	Fault Tolerance
	Changing the p/r tradeoff
	Comparison Conclusions

	Experimental Evaluation
	Experimental Setup
	The Application
	Basic Tradeoff
	Query Latencies Decrease with p
	Query Overheads Increase with p
	Higher Overheads=Wasted Resources
	Update Overhead Increases with r
	Does the trade-off matter?

	Changing p Dynamically
	Node Failures
	Load Balancing
	Large Scale Deployment
	Frontend Scheduling Performance
	Query Delay Comparison: ROAR vs. PTN
	Evaluation Summary

	Related Work
	Content Based vs. Content Insensitive Distributed Search
	Distributed Rendezvous Solutions
	Structured Overlays and Peer to Peer Search
	Content-Based Publish/Subscribe Systems
	Relational Databases

	Conclusions
	Contributions
	Future Work

	Bibliography

