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ABSTRACT

We’ve known for a while that the Internet has ossified as a result
of the race to optimize existing applications or enhance security.
NATs, performance-enhancing-proxies, firewalls and traffic nor-
malizers are only a few of the middleboxes that are deployed in
the network and look beyond the IP header to do their job. IP itself
can’t be extended because “IP options are not an option” [10]. Is
the same true for TCP?

In this paper we develop a measurement methodology for eval-
uating middlebox behavior relating to TCP extensions and present

the results of measurements conducted from multiple vantage points.

The short answer is that we can still extend TCP, but extensions’ de-
sign is very constrained as it needs to take into account prevalent
middlebox behaviors. For instance, absolute sequence numbers
cannot be embedded in options, as middleboxes can rewrite ISN
and preserve undefined options. Sequence numbering also must be
consistent for a TCP connection, because many middleboxes only
allow through contiguous flows.

We used these findings to analyze three proposed extensions to
TCP. We find that MPTCP is likely to work correctly in the Internet
or fallback to regular TCP. TcpCrypt seems ready to be deployed,
however it is fragile if resegmentation does happen—for instance
with hardware offload. Finally, TCP extended options in its current
form is not safe to deploy.

Categories and Subject Descriptors

C.2.2 [Computer-communication Networks]: Network Protocols;
C.2.6 [Computer-communication Networks]: Internetworking
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1. INTRODUCTION

The Internet was designed to be extensible; routers only care
about IP headers, not what the packets contain, and protocols such
as IP and TCP were designed with options fields that could be used
to add additional functionality. The great virtue of the Internet was
always that it was stupid; it did no task especially well, but it was
extremely flexible and general, allowing a proliferation of proto-
cols and applications that the original designers could never have
foreseen.

Unfortunately the Internet, as it is deployed, is no longer the In-
ternet as it was designed. IP options have been unusable for twenty
years[10] as they cause routers to process packets on their slow
path. Above IP, the Internet has benefited (or suffered, depending
on your viewpoint) from decades of optimizations and security en-
hancements. To improve performance [2, 7, 18, 3], reduce security
exposure [15, 29], enhance control, and work around address space
shortages [22], the Internet has experienced an invasion of mid-
dleboxes that do care about what the packets contain, and perform
processing at layer 4 or higher within the network.

The problem now faced by designers of new protocols is that
there is no longer a well defined or understood way to extend net-
work functionality, short of implementing everything over HTTP[25].
Recently we have been working on adding both multipath sup-
port[11] and native encryption[5] to TCP. The obvious way to do
this, in both cases, is to use TCP options. In the case of multipath,
we would also like to stripe data across more than one path. At the
end systems, the protocol design issues were mostly conventional.
However, it became increasingly clear that no one, not the IETF, not
the network operators, and not the OS vendors, knew what will and
what will not pass through all the middleboxes as they are currently
deployed and configured. Will TCP options pass unchanged? If the
sequence space has holes, what happens? If a retransmission has
different data than the original, which arrives? Are TCP segments
coalesced or split? These and many more questions are crucial to
answer if protocol designers are to extend TCP in a deployable way.
Or have we already lost the ability to extend TCP, just like we did
two decades ago for IP?

In this paper we present the results from a measurement study
conducted from 142 networks in 24 countries, including cellular,
WiFi and wired networks, public and private networks, residen-
tial, commercial and academic networks. We actively probe the
network to elicit middlebox responses that violate the end-to-end
transparency of the original Internet architecture. We focus on TCP,
not only because it is by far the most widely used transport pro-
tocol, but also because while it is known that many middleboxes
modify TCP behavior [6], it is not known how prevalent such mid-
dleboxes are, nor precisely what the emergent behavior is with TCP
extensions that were unforeseen by the middlebox designers.



We make three main contributions. The first is a snapshot of the
Internet, as of early 2011, in terms of its transparency to extensions
to the TCP protocol. We examine the effects of middleboxes on
TCP options, sequency numbering, data acknowledgment, retrans-
mission and segmentation.

The second contribution is our measurement methodology and
tools that allow us to infer what middleboxes are doing to traffic.
Some of these tests are simple and obvious; for example, whether
a TCP option arrives or is removed is easy to measure, so long as
the raw packet data is monitored at both ends. However, some tests
are more subtle; to test if a middlebox coalesces segments it is not
sufficient to just send many segments—unless the middlebox has a
reason to queue segments it will likely pass them on soon as they
arrive, even if it has the capability to coalesce. We need to force it
to have the opportunity to coalesce.

Finally we examine the implications of our measurement study
for protocol designers that wish to extend TCP’s functionality. In
particular, we look at proposals for Multipath TCP[11], TepCrypt[5],
and TCP Extended Option Space[9], and consider what our find-
ings mean for the design of these protocols and their deployability.

The remainder of this paper is organized as follows: Sec. 2 de-
scribes related work; in Sec. 3 we describe our methodology and
introduce the TCPExposure tool, our tool to inspect middlebox be-
havior; in Sec. 4 we examine middlebox behavior on each protocol
component in more detail, show how to detect this behavior, then
present our measurement results from running TCPExposure in 142
networks; in Sec. 5 we examine the impact on TCP extensions as
case-study. We summarize our conclusions in Sec. 6.

2. RELATED WORK

There exists a large body of work related to the measurement,
analysis and identification of different deployed TCP implemen-
tations, but none of it has specifically focused on analyzing TCP
middlebox behavior.

Padhye and Floyd perform a client-side analysis of numerous
public web servers to test their congestion control behavior and
ECN and SACK capabilities [23]. The client-only methodology
leverages existing public web servers to give great coverage, al-
lowing the authors to examine the behavior of many different TCP
implementations.

The study focuses on remote TCP implementations rather than
middlebox interactions; the same methodology is not applicable
for this middlebox study for three reasons. First, most users access
the Internet through home and cellular networks, yet few public
servers exist in these networks that could be used for tests. Fur-
ther, it is not possible to test qualitative middlebox behavior with-
out co-ordination of both end systems. Finally, the Padhye and
Floyd techniques cannot distinguish the effects due to middleboxes
from the particularities of remote TCP implementations and remote
hardware (such as segmentation offload).

Medina et al. measure in their 2005 study the impact of network
middleboxes on path MTU discovery transparency, sequence num-
ber shifting, as well as their effect on IP and TCP options [21]. This
study undertakes similar client-only measurements as in [23], and
suffers from the same limitations.

Allman [1] and Hétonen et al. [16] both examine the quantitative
application-level performance of various middleboxes in testbeds
where the box being tested is known and under their control. All-
man measures transaction delay, throughput and connection per-
sistence over the middleboxes he evaluated. Hétonen et al. mea-
sure NAT binding timeouts, queueing delays, throughput and sup-
port of new transport protocols over their testbed which includes a
large number of home-gateway devices. We adopt the end-to-end
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methodology of these papers and extend it further to examine the
qualitative middlebox behavior in the wild that we are interested in.

Paxson measures end-to-end packet dynamics such as out-of-
order delivery, packet corruption and retransmission on TCP bulk
transfers [24]. The author operates both end systems of each end-
to-end measurement by remote login; this limits the applicability of
the study to networks where the authors have (or are given tempo-
rary) direct access to hosts. This poses two challenges: first, obtain-
ing shell access to users’ machines to run privileged commands is
really difficult; second, even if permitted, accessing NATed boxes
is not possible unless users specifically open up NAT ports. To
avoid these issues we adopted the alternative approach of asking
contributors to run a single, self-contained, shell script and to post
the results.

Ford et al. [13] test hole punching availability of NAT boxes for
TCP and UDP. Tests are performed with a portable client tool run-
ning behind NATSs and two public servers that accompany test traf-
fic. This work does not measure middlebox behavior that we are
interested in. However, its methodology is similar to our work in
terms of real Internet path measurement, study of qualitative mid-
dlebox behavior, and control of both ends of measuring paths with
distributing a tool to contributors.

3. METHODOLOGY AND DATASETS

We use regular end-hosts to actively measure paths in the Inter-
net. Our aim is to test relevant properties that could impact yet-to-
be-deployed TCP extensions. We have resorted to active measure-
ment for a number of reasons:

o We need to generate traffic that mimics new TCP extensions.

o We generate artificial traffic patterns such as contiguous small
segments or gaps in the sequence space. It is difficult to use
passive measurements for this purpose.

Packets need to be inspected at both sender and receiver for
tests detecting TCP option removal, sequence number shift-
ing, re-segmentation, etc.

We need to test different destination ports including ports not
normally in use, as middlebox behavior depends on the des-
tination port.

3.1 Testing Tool

Our middlebox inspection tool is called TCPExposure and con-
sists of a client and a server tool. The client acts as an initiator
of a TCP connection (the end that sends the SYN), and the server
acts as a responder. These are a 3000-line program and a 500-line
program both written in Python. The initiator and the responder
run tests aiming to trigger on-path middlebox actions. The tools
send and receive TCP segments in user space via a raw IP socket or
using the Pcap library similarly to Sting [26].

The client tool was built to be easy to use, as most of our tests
are run by contributors. To maximize reach, the client tool is cross-
platform running on Mac OS, Linux and FreeBSD. It is self-contained
and only requires Python and libpcap on the host; these come pre-
installed on most systems. The client is straightforward to run: all
users need to do is to download it, launch a single shell script and
post the results.

The responder tool runs on Linux. It does not maintain state for
the TCP connections it is emulating; its replies depend solely on
the received TCP segments. For example, the responding segment
contains SYN/ACK if the responder has received SYN, acknowl-
edges the end of the sequence number, and has the sequence num-
ber based on the received acknowledgement (ACK) number. This



Table 1: Default TCP Parameters
Parameter Initiator | Responder
Initial Sequence Num (ISN) 252001 11259375
Window Size 8064 32768
MSS 512 512
Window Scale - 6
SACKOK - 1
Timestamp (TS_val) - 12345678
Payload
“Echo headers” IP/TCP
. command bytes Header A
Initiator > Responder
Payload
e e
-~ —
IP/TCP IP/TCP IP/TCP addin
. Header B | Header A | Header B | P 9
Initiator < Responder

Figure 1: Echo Headers Command

stateless behavior makes it relatively easy to reason about observed
behavior because there is no hidden server state.

3.2 Common Procedures

Table 1 lists the fixed TCP parameters at the initiator and the
responder. These values are used in all our measurements unless
stated otherwise.

We use a 512 byte MSS at both ends, less than what most TCP
implementations advertise. This value is smaller than the MTU of
most Internet paths, and was chosen to avoid unexpected fragmen-
tation during tests.

We expect middleboxes to behave differently depending on the
application type, and so our responder emulates TCP servers on
ports 80, 443, and 34343. Ports 80 and 443 are assigned by IANA
for http and https traffic; port 34343 is unassigned. The client port
is randomly chosen at connection setup.

Segments sent from the initiator include commands to operate
the responder. The default command is “just ack”, and the respon-
der sends back a pure ACK (no data). Another command is “echo
headers”. Fig. 1 illustrates how this command works.

The initiator transmits a crafted segment that includes bytes in-
dicating this command in its payload. The responder replies with a
segment that contains in its payload both the received headers and
the headers of the reply. The client then compares the sent and re-
ceived headers for both segments to detect middlebox interference.
The last command is “don’t advance ack”. The responder does not
advance the ACK number when it receives this command; instead
it sends back an ACK with the first sequence number of the receiv-
ing segment. This command is used in only the retransmission test
in Sec. 4.5.

3.3 Measurement Data

Our measurements target access networks, where ISPs deploy
middleboxes to optimize various applications with the goal of im-
proving the experience of the majority their customers. The core
is mostly just doing “dumb” packet forwarding. Many contributors
and we ran the TCPExposure client in a variety of access networks
detailed below. Contributors are mainly from IETF community, re-
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Table 2: Experiment Venues
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[ Country
Australia
Austria
Belgium
Canada
Chile
China
Czech
Denmark
Finland
Germany
Greece
Indonesia
Treland
Ttaly
Japan
Romania
Russia
Spain
Sweden
Switzerland
Thailand
UK.
U.S.
Vietnam
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lated research projects, and our labs. We ran the server tool (the
responder) in sfc.wide.ad jp, a middlebox-free network that we op-
erate.

From 25th September 2010 to 30th April 2011, we measured 142
access networks in 24 countries. Table 2 shows the venues and the
network types of the experiments.

Access networks are categorized in six types by human annota-
tion. Home networks consisting of a consumer ISP and a home-
gateway are labeled as Home. Public hotspots for example in cafes,
airports, hotels, and conference halls are labeled as Hotspot. Mo-
bile broadband networks such as 3G and WiMAX are labeled as
Cellular. Networks in universities are labeled as Univ. We count
two different networks (e.g., the lecture and the residence segments)
in the same university as two university networks. Enterprise net-
works (also including small offices) are labeled as Ent. Networks
in hosting services are labeled as Hosting.

4. TESTS AND RESULTS

4.1 TCP Option Tests

TCP Options are the intended mechanism by which TCP can be
extended. Standardized and widely implemented options include
Maximum Segment Size (MSS), defined in 1981; Window Scale,
defined in 1988; Timestamp, defined in 1992; and Selective Ac-
knowledgment (SACK), defined in 1996. IANA also lists TCP op-
tions defined since 1996, but SACK is the most recently defined
option in common use, and predates almost all of today’s middle-
boxes. The question we wish to answer is whether it is still possible
to rapidly deploy new TCP functionality using TCP options by up-
grades purely at the end systems.

Unknown TCP options are ignored by the receiving host. A TCP
extension typically adds a new option to the SYN to request the new
behavior. If the SYN/ACK carries the corresponding new option in
the response, the new functionality is enabled. Middleboxes have



the potential to disrupt this process in many ways, preventing or at
least delaying the deployment of new functionality.

If a middlebox simply removes an unknown option from the
SYN, this should be benign—the new functionality fails to nego-
tiate, but otherwise all is well. However, removing an unknown
option from the SYN/ACK may be less benign—the server may
think the functionality is negotiated, whereas the client may not.
Removing unknown options from data packets, but not removing
them from the SYN or SYN/ACK would be extremely problem-
atic: both endpoints would believe the negotiation to use new func-
tionality succeeded, but it would then fail. Finally, any middlebox
that crashes, fails to progress the connection, or explicitly resets it
would cause significant problems.

To distinguish possibly problematic behaviors, we performed the
following tests:

1. Unknown option in SYN. The SYN and SYN/ACK seg-
ments include an unregistered option.

2. Unknown option in Data segment. The test includes un-
known options in data segments sent by client and server.

3. Known option in Data segment. The test includes a well-
known option in data segments sent by client and server.

All three tests are performed using separate connections. We do
not use the unknown option in SYN for test 2 and 3. Test 3 is in-
cluded to allow us to determine whether it is the unknown nature
of the option that causes a behavior, or just any option. We use an
MP_CAPABLE option for test 1 and an MP_DATA option for test
2; both options are defined in a draft version of MPTCP [12] and
neither is currently registered with IANA, and no known middle-
box yet supports them. On receipt of a SYN with MP_CAPABLE,
our responder returns a SYN/ACK also containing MP_CAPABLE,
and on receipt of a data segment with MP_DATA, it returns an ack
packet containing an MP_ACK option, mimicking an MPTCP im-
plementation.*

For test 3, we used the TIMESTAMP option [17], which is not
essential to TCP’s functionality, but which is commonly seen in
TCP data segments. This option elicits a response from the remote
endpoint; a stateful middlebox may also respond, allowing us to
identify such middleboxes.

In the unknown option in SYN test, our code tests for the follow-
ing possible middlebox behaviors:

e SYN is passed unmodified.

e SYN containing the option is dropped.

e SYN is received, but option was removed.
e Connection is reset by the middlebox.

In the unknown and the known option in data tests, we test for the
same behaviors as in the SYN test. After a normal handshake, the
initiator transmits a full-sized TCP segment including MP_DATA
or TIMESTAMP, using the “echo headers” command described in
Sec. 3.2 to identify what the responder received. With this method
we can identify which outbound or inbound option is interfered
and whether the option is modified or zeroed. We also look for
middleboxes that split the connection, processing the TIMESTAMP
at the middlebox on either the inbound or outbound leg.

Middlebox Behavior on TCP Options

Tables 3 — 5 summarize the results of the options tests. 142 paths
were tested in total; for ports 80 (http) and 443 (https), we obtained

*We use March 2010 draft version of these options’ formats;
MP_CAPABLE is 12 byte length, MP_DATA is 16 byte length, and
MP_ACcK is 10 byte length. Option numbers are 30, 31 and 32,
respectively.
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Table 3: Unknown Option in Syn

Observed TCP Port

Behavior 34343 80 443
Passed 129 (96%) 122 (86%) 133(94%)
Removed 6 (4%) 20 (14%) 9 (6%)
Changed 0 (0%) 0 (0%) 0 (0%)
Error 0 (0%) 0 (0%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

Table 4: Known Option in Data

Observed TCP Port

Behavior 34343 80 443
Passed 129 (96%) 122 (86%) 133 (94%)
Removed 6 (4%) 9 (6%) 6 (4%)
Changed 0 (0%) 4 (3%) 3 2%)
Error 0 (0%) 7 (5%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

Table 5: Unknown Option in Data

Observed TCP Port

Behavior 34343 80 443
Passed 129 (96%) 122 (86%) 133(94%)
Removed 6 (4%) 13 (9%) 9 (6%)
Changed 0 (0%) 0 (0%) 0 (0%)
Error 0 (0%) 7 (5%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

results from all paths for all tests. However seven paths did not pass
the unregistered port 34343, even with regular TCP SYN segments.
These paths appear to run strict firewall rules allowing only very
basic services.

Most of the paths we tested passed both known and unknown
TCP options without interference, both on SYN and data packets.
The results are port-specific though; 96% of paths passed options
on port 34343, whereas only 80% of paths passed options on port
80. This agrees with anecdotal evidence that http-specific middle-
boxes are relatively common.

All the paths which passed unknown options in the SYN also
passed both known and unknown options in data segments. In the
tables, the “Removed” rows indicate that packets on that path arrive
with the option removed from the packet. For the unknown options
in the SYN packet, this was the only anomaly we found; no path
failed to deliver the packet due to its presence. In addition, all the
paths which passed the unknown option in the SYN also passed un-
known options in data segments. This bodes well for deployability
of new TCP options—testing in the SYN and SYN/ACK is suffi-
cient to determine that new options are safe to use throughout the
connection.

Our test did not distinguish between middleboxes that stripped
options from SYNSs and those that stripped options from SYN/ACKs.
With hindsight, this was an unfortunate limitation of our method-
ology that uses a stateless responder. However it is clear that any
extension using TCP options to negotiate functionality should be
robust to stripped unknown options in SYN/ACK packets, even
if they are passed in SYNs. If it is crucial that the server knows
whether or not the client received the option in the SYN/ACK, the
protocol must take this into account. For example, TcpCrypt re-
quires that the first non-SYN packet from the client contains the
INIT1 option - if this is missing, TcpCrypt moves to the disabled
state and falls back to regular TCP behavior.



Table 6: Types of removal behavior (SYN)

Path Other Observed TCP Port
Type Effects 34343 80 443
Elim. | None 5 4 5
Proxy | Proxy SYN-ACK 1 16 4
Total 6 20 9

For port 34343 and 443, the only behaviors seen were passing or
removing options. The story is more complicated for port 80 (http).
There were seven paths that did not permit our testing methodology
on port 80. In data packets our stateless server relies on instructions
embedded in the data to determine its response. These seven paths
appear to be application-level HTTP proxies, and we were foiled
by the lack of a proper HTTP request in our data packets. They are
labeled Error in the tables. We were able to go back and manually
verify two of these paths were in fact HTTP proxies; we did not get
a second chance to verify the other five. All seven were in the set
that removed options from SYN packets, which is to be expected if
they are full proxies. Two HTTP proxies that we manually verified
removed options from data packets and resegmented TCP packets
as well as proxies that are not HTTP-level ones.

There were no other unexpected results with unknown options,
but we did observe some interesting results with the TIMESTAMP
“known option in data” test. Four paths on port 80 and three paths
on port 443 passed on a TIMESTAMP option to the responder, but
it was not the one sent by the initiator. In these cases, although
the responder sent TIMESTAMP in response, this was not returned
to the initiator. This implies that the middlebox is independently
negotiating and using timestamp with the server. These paths are
labeled “Changed” in the tables. Paths in the Removed row in Ta-
ble 5 correspond to those in the Removed or the Changed rows in
Table 4 for all three ports. This implies that option removal on data
segments is not the unknown nature of the option.

Returning to the middleboxes that remove unknown options from
the SYN, we can use the results of additional tests to classify these
into two distinct categories. In the first category, the SYN/ACK
received is essentially that sent by the responder, whereas in the
second the SYN/ACK appears to have been generated by the mid-
dlebox. In Sec. 4.4 we explain how fingerprints in the SYN/ACK
let us distinguish the two. Paths in the first category appear to ac-
tively eliminate options (we label them “Elim” in Table 6), whereas
a middlebox in the second category is acting as a proxy, and un-
known options are removed as a side effect of this proxy behavior
(these are labeled “Proxy”).

These two categories (Elim and Proxy) also hold when we look
at data segments (see Table 7). Paths that eliminate SYN options
also eliminate data options, whereas paths that show proxy behav-
ior on SYNs also exhibit proxy behavior for data. In particular,
the proxy symptoms we see are Proxy Data Acks (Ack by the mid-
dlebox, see Sec. 4.4), segment caching (the middlebox caches and
retransmit segments, see Sec. 4.5), and re-segmentation (splitting
and coalescing of segments, see Sec. 4.6). These proxy middle-
boxes show symptoms of implementing most of the functionality
of a full TCP stack, rather than just being a packet-level relay.

Before we ran this study, anecdotal evidence had suggested that
cellular networks would be much more restrictive than other types
of network. The results partially support this, as shown in Table 8.
For port 80, eight out of 20 cellular networks that we tested remove
options; six of the eight proxy the connection. WiFi hotspots are
also relatively likely to remove options or proxy connections, espe-
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Table 7: Types of removal behavior (Data)

Path Other observed TCP Port
Type effects 34343 80 443
Elim. | None 5 4 5
Proxy | Proxy Data ACK, 1 9 4

Segment Caching,
Re-segmentation
Total 6 I3 9

Table 8: Option removal by Network Type

Remove option (Proxy conn)
Network Type port 34343 port 80 port 443
Cellular (out of 20) 4(1) 8 (6) 4(1)
Hotspot (out of 34) 1(0) 6 (5) 4(3)
Univ (out of 17) 0(0) 303) 0 (0)
Ent (out of 17) 1(0) 3(2) 1(0)
Total 6 20 9

cially for http. Overall though, the majority of paths do still pass
new TCP options.

We conclude that it is still possible to extend TCP using TCP
options, so long as the use of new options is negotiated in the SYN
exchange, and so long as fallback to regular TCP behavior is ac-
ceptable. However, if we want ubiquitous deployment of a new
feature, the story is more complicated. Especially for http, there
are a significant number of middleboxes that proxy TCP sessions.
For middleboxes that eliminate options, it seems likely that very
simple updates or reconfiguration would allow a new standardized
option to pass, assuming it were not considered a security risk. But
for transparent proxies, the middlebox would not only need to pass
the option, but also understand its semantics. Such paths are likely
to be more difficult to upgrade.

4.2 Sequence Number Modification

TCP Selective Acknowledgement (SACK) [20] is an example of
a TCP extension that uses TCP options that quote sequence num-
bers, in this case to indicate precisely which segments arrived at the
receiver. How might middleboxes affect such extensions?

In our sequence number modification test, we examine both the
outgoing and incoming initial sequence number (ISN) to see whether
middleboxes modify the sequence numbers sent by the end sys-
tems. Table 9 shows the result. Paths where neither the outbound
nor inbound sequence number is modified are labeled as Unchanged.
Paths where the outbound or inbound sequence number is modified
are labeled as Mod. outbound and Mod. inbound, respectively.

Table 9: Sequence Number Modification Test

TCP Port
Behavior 34343 80 443
Unchanged 126 (93%) 116 (82%) 128 (90%)
Mod. outbound 5 (4%) 5 (4%) 6 (4%)
Mod. inbound 0 (0%) 1 (1%) 1 (1%)
Mod. both 4 (3%) 13 (9%) 7 (5%)
Proxy (probably 0 (0%) 7 (5%) 0 (0%)
mod. both)
Total 135 (100%) 142 (100%) 142 (100%)




Paths where both the outbound and inbound sequence numbers are
modified are labeled as Mod. both.

Sequence numbers on at least 80% of paths arrive unchanged.
However 7% of paths modify sequence numbers in at least one di-
rection for port 34343 and 18% modify at least one direction for
port 80. For port 80, the same seven paths identified earlier as hav-
ing application-level HTTP proxies cannot be tested outbound, but
do modify inbound sequence numbers and almost certainly modify
both directions.

One might reasonably expect that middleboxes that proxy a con-
nection would split a TCP connection into two sections, each with
its own sequence space, but that other packet-level middleboxes
would have no reason to modify TCP sequence numbers. If this
were the case, then TCP extensions could refer to TCP sequence
numbers in TCP options, safe in the knowledge that either the op-
tion would be removed in the SYN at a proxy, or sequence numbers
would arrive unmodified. Unfortunately the story is not so simple.

At a TCP receiver, one use of sequence numbers is to verify the
validity of a received segment. If an adversary can predict the TCP
ports a connection will use, only the randomness of the initial se-
quence number prevents a spoofed packet from being injected into
the connection. Unfortunately TCP stacks have a long history of
generating predictable ISNs, so a number of firewall products try to
help out by choosing a new more random ISN, and then rewriting
all subsequent packets and acknowledgments to maintain consis-
tency [15,29].

We compared those paths that pass unknown options in the SYN
with those that modify sequence numbers in at least one direction.
On port 34343, 5 out of 9 allow unknown options and still modify
the sequence numbers. For port 80, 7 out of 26 pass unknown op-
tions, and for port 443 it is 7 out of 14. The numbers are the same
for unknown options in data packets.

We conclude that it is unsafe for TCP extensions to embed se-
quence numbers in TCP options (or anywhere else), even if the
extension negotiates use via a new option in the SYN exchange.

4.3 Sequence Space Holes

TCP is a reliable protocol; its cumulative Ack does not move
forwards unless all preceding segments have been received. What
would happen if from the vantage point of a middlebox, a TCP im-
plementation violated these rules? Perhaps it wished to implement
partial reliability analogous to PR-SCTP [28], or perhaps it simply
stripes segments across more than one path in a similar manner to
Multipath TCP?

We can distinguish two ways a middlebox might observe such a
hole:

e Data-First: it sees segments before and after a hole, but does
not see the segment from the hole. If the middlebox passes
the segment after the hole, it sees it cumulatively acked by
the recipient, despite the middlebox never seeing the data
from the hole.

e Ack-First: It sees a segment of data, then an ack indicates
the receiver has seen data not yet seen by the middlebox. If
the middlebox passes the Ack, the next segment seen contin-
ues from the point acked, leaving a hole in the data seen by
the middlebox.

These form the basis of our tests shown in Fig. 2. The left side is
the initiator’s time-line in both tests.

TSACK does embed sequence numbers in options, but it predates
the existence of almost all middleboxes. We hope that these mid-
dleboxes are aware of SACK and either rewrite the options or ex-
plicitly remove SACK negotiation from the SYN exchange.
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Figure 2: Sequence Hole Tests: data first (left) and ack first
(right)

Table 10: Data-First Sequence Hole Test

TCP Port
Behavior 34343 80 443
Passed 131 (97%) 120 (85%) 135 (95%)
No response 2 (1%) 6 (4%) 2 (1%)
Duplicate Ack 1 (1%) 9 (6%) 5 (4%)
Test Error 1 (1%) 7 (5%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

Table 10 shows the result of the data-first sequence hole test.
Paths where the second Ack was correctly received are labeled
Passed, and clearly have no middlebox that requires TCP flow re-
assembly. As before, on port 80 there are seven paths with http
proxies we cannot fully test; these are labeled Test Error. The one
path using port 34343 labeled 7est Error was due to high packet
loss during the experiment rather than middlebox interference.

The remaining cases are the most interesting. We observed two
distinct middlebox behaviors:

e No response was received to the second data packet.

o A Duplicate Ack was received, indicating receipt of the first
data packet and by implication, signaling loss of the packet
in the hole.

A middlebox implementing a full TCP stack would be expected to
break the path into two sections, separately acking packets from
the initiator before sending the data to the responder. This would
give the Duplicate Ack behavior. As expected, we see more such
middleboxes on port 80.

A middlebox that does not respond to the second packet is clearly
maintaining TCP state (or it would pass the second Ack), but it is
not independently acking data. Its reasons for doing so are unclear—
perhaps it is attempting to analyze the stream contents and is un-
willing to pass an ack for data it has not seen? Whatever the reason,
we still see more such middleboxes on port 80.

In the ack-first sequence hole test (Fig. 2, right), the initiator
acks a segment beyond that which is received (i.e., proactive ack).
The responder skips the data acked and sends an ack packet the se-
quence number of which follows on from the point that was acked.
To receive a response packet from the responder, the segment from
the initiator to the responder also contains data, but what we are
interested in is whether the proactive ack is received, and subse-
quently whether the packet following the hole is received. Table 11
shows the results.

The results of this test were a surprise—even on port 34343, mid-
dleboxes interfered with end-to-end behavior 24% of the time. As
before, seven paths on port 80 could not be tested. Of those that
could be tested, we saw three distinct behaviors:

e On around 20% of paths we saw no response to the proac-
tive ack. Either the proactive ack was dropped or the packet



Table 11: Ack-first Sequence Hole Test
TCP Port

Behavior 34343 80 443
Passed 102 (76%) 95 (67%) 105 (74%)
No response 28 (21%) 28 (20%) 29 (20%)
Ack fixed 4 (3%) 5 (4%) 3 (2%)
Retransmitted 1 (1%) 7 (5%) 5 (4%)
Test Error 0 (0%) 7 (5%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

above the hole was dropped, but the lack of a response does
not allow us to distinguish.

e On quite a few paths (labeled Ack fixed), an ack packet is
received, but the sequence number of which follows the last
packet sent by the responder as if we sent an ack without a
hole. Perhaps the proactive ack was re-written by the outgo-
ing middlebox to indicate the highest data cumulatively seen
by the middlebox.

e On some paths, the middlebox itself actually retransmitted
the last data packet sent by the responder from before the
hole. These paths also sent back ack packets observed on
Ack fixed paths, except for one path on port 80 and 443.

It is clear from these results that TCP extensions relying on se-
quence number holes are unsafe. Although some of the results can
be explained by proxy behavior at middleboxes, some paths that did
not exhibit clear proxy behavior (by performing separate acknowl-
edgment) do affect both sequence holes and proactive acking. Per-
haps some firewalls attempt to protect the initiator from potentially
malicious proactive acks? [27].

One interesting observation is that around 10% of home net-
works give no response in the ack-first sequence hole test. This
is striking because none of the home networks strip unknown op-
tions.

44 Proxy Acknowledgments

In Tables 6 and 7 we observed that a subset of the paths that
remove TCP options appear to show TCP proxy behavior. We now
elaborate on the tests we used to elicit this information.

A hypothetical TCP proxy[2] would likely split the TCP con-
nection into two sections; one from the client to the proxy and one
from the proxy to the server. Each section would effectively run its
own TCP session, with only payload data passed between the two
sections. Are the proxies we observed of this form, which is fairly
easy to reason about, or is their behavior more complex?

One symptom of a TCP proxy would be that acknowledgments
for data are locally generated by the middlebox. We performed two
tests examining this behavior:

e Proxy SYN-ACK: Is the SYN/ACK locally generated by
the proxy? In its SYN/ACKs, our responder generates quite
characteristic values for the initial sequence number, adver-
tised receive window, maximum segment size, and Window
Scale options. It is improbable that a proxy would generate
these values. We simply check the value of these fields in the
SYN/ACK received by the initiator—if they differ then this
is symptomatic of a proxy that crafts its own SYN/ACKs.

e Proxy Data Ack: Is data acknowledged by the proxy before
delivering it to the destination? Our initiator sends a data
packet to the responder, requesting the ack is sent on a packet
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Figure 3: Retransmission Test

that includes data. If the ack received does not include data,
it is extremely likely it was generated by the proxy rather
than the responder.

Neither test is conclusive by itself, but taken together they give a
good picture of proxy behavior. As before, there are seven paths
which have HTTP-level proxies; on port 80, all seven sent proxy
SYN/ACKs, but could not be tested for proxy data acks. Tables
6 and 7 show the number of proxies identified. The set of paths
showing Proxy SYN/ACK behavior is precisely the same as those
showing either Proxy Data Ack or HTTP proxy behavior. Taken
together, these tests provide good evidence for proxies of the form
described above.

4.5 Inconsistent Retransmission

If a TCP sender retransmits a packet, but includes different data
than the original in the retransmission, what happens? This might
seem like a strange thing to do, but it might be advantageous for
extensions that do not need stale data (such as VoIP over TCP).
Given that we know sequence holes are a bad idea (see Sec. 4.3), it
might make sense to fill the sequence hole with previously unsent
data.

Such inconsistent retransmissions would be explicitly “corrected”
by a traffic normalizer[15], as its role is to ensure that any down-
stream intrusion detection system sees a consistent picture. Equally,
depending on their implementation, TCP proxies might reassert the
original data. We set out to test what happens in reality.

Fig. 3 shows our retransmission test. The initiator sends two
consecutive segments, but we request that the responder sends a cu-
mulative ack only for the first segment, then a duplicate Ack. Any
stateful middlebox will infer that the second segment has not been
received by the responder, and depending on its implementation,
it may retain the unacked segment. We then send a “retransmis-
sion” of the second packet, but with a different payload (one that
requests the responder echo the packet headers so we can see what
is received).

We also repeat the test, but with the “retransmitted” packet being
either 16 bytes smaller or 16 bytes longer than the original packet.

From the responses, we can distinguish four distinct middlebox
behaviors, as listed in Table 12:

e Most paths passed the inconsistent retransmission to the re-
sponder unmodified. In the case of port 34343, only one path
did not do this.

e On some paths the initiator observes that the cumulative Ack
advanced, but the headers were not echoed. This implies
that the middlebox cached the original segment and resent
it. Most of these paths were ones that we had previously
identified as TCP proxies, but one on port 80 was not—it
caches segments but does not separately ack data. We cannot
know for sure, but this would be symptomatic of a traffic



Table 12: Results of Retransmission Test

TCP Port / Retransmitting size
Observed 34343 80 443
Behavior same smaller Targer same smaller Targer same smaller Targer
Passed 134 (99%) 134 (99%) 132 (98%) | 124 (87%) 124 (87%) 123 (87%) | 138 (97%) 138 (97%) 136 (96%)
No response 0 (0%) 0 (0%) 1 (1%) 0 (0%) 0 (0%) 1 (1%) 0 (0%) 0 (0%) 1 (1%)
Ack adv’ced 1 (1%) 1 (1%) 1 (1%) 10 (7%) 10 (7%) 10 (7%) 4 (3%) 4 (3%) 4 (3%)
Reset conn 0 (%) 0 (0%) 0 (0%) 1 (1%) 1 (1%) 1 (1%) 0 (0%) 0 (0%) 0 (0%)
Error 0 (0%) 0 (0%) 1 (1%) 7 (5%) 7 (5%) 7 (5%) 0 (0%) 0 (0%) 1 (1%)
Total 135 (100%) 142 (100%) 142 (100%)
normalizer or a snoop [3]. For port 443, one path in fact Sea. | | Sed. | | Seq:
' ; 20513 - 21025 20257-20513 20001-20257
echoed headers after the separate cumulative ack packet for -
the retransmission of the 16 byte longer packet. However, Initiator > Responder
what the responder received is a 16 byte piece that does not
overlap with the original —the other part is probably cached
by the middlebox. Figure 4: In-order Segment Coalescing Test
e One path returned no response at all when the inconsistent re- Seq. | | Seq. | | Seq.
transmit was larger than the original, and did so for all ports. 20001 - 20513 20769-21025 | [ 20513-20769
There is no obvious reason for such behavior, so we specu- Initiator > Responder

late it might be a minor bug in a middlebox implementation.

e One path on port 80 reset the connection. This seems to be a
fairly draconian response.

The usual seven paths with HTTP proxies could not be tested. One
path on port 34343 and one on port 443 also failed to complete the
test due to high packet loss.

Overall, any extension that wished to use inconsistent retrans-
missions would encounter few problems, so long as it did not mat-
ter greatly whether the original or the retransmission actually ar-
rives. The one path that resets connections might however give the
designers of extensions cause for concern.

We note that the proposal for TCP extended options might result
in retransmissions that appear inconsistent to legacy middleboxes,
even if the payload is consistent. This might occur if the value of
an extended option such as a selective acknowledgment changes
between the original and the retransmission.

4.6 Re-segmentation

TCP provides a reliable bytestream abstraction to applications,
and makes no promises that message boundaries are preserved.
Some TCP extensions such as
TepCrypt wish to associate a new option with a particular data
segment—in the case of TepCrypt to carry a MAC for the data.
How will such extensions be affected by middleboxes?

We expect that TCP proxies will coalesce small segments if a
queue builds in the proxy, and might split segments if the proxy
negotiates a larger MSS with the client than that negotiated by the
server. However, our results show such proxies remove unknown
options from the SYN exchange, so any adverse interaction (be-
yond falling back to regular TCP) is unlikely. Our concern there-
fore is whether there are middleboxes that are not proxies that re-
segment packets. In particular, any middlebox that passes new op-
tions and also re-segments data might be problematic.

To test segment splitting, we simply send a full-sized segment.
Our responder advertises a relatively small 512 byte MSS. Any
middlebox advertising a more normal (larger) MSS will be forced
to resegment larger data packets into smaller ones. In fact, MSS ad-
vertised by 16 SYN proxies we observed at port 80 varied between
1372 — 1460 bytes. We perform the test without option, that with
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Figure 5: Queued Segment Coalescing Test

the known option (TIMESTAMP) and that with the unknown option
(MP_DATA) to see if options are copied to the split segments.

We found that 1 path on port 34343, 9 paths on port 80 and 4
paths on port 443 split segments in this way. These are the same
paths identified as proxies in Table 7. None passed options to the
split segments.

The opposite of segment splitting is segment coalescing, where a
middlebox combines two or more segments into a larger segment.
To test for this, we must send two consecutive small segments and
observe whether a single larger segment arrives. However, a mid-
dlebox that has the ability to coalesce might still not do so unless it
is forced to queue the segments. We therefore perform two versions
of the test, as shown in Figures 4 and 5.

o We test if segments are coalesced if the two small segments
arrive in order (Fig. 4).

e We reorder the segments so that the small segments arrive
after a gap in the sequence space, creating an opportunity for
middleboxes to queue them (Fig. 5). We then send the seg-
ment which fills the sequence hole. If a middlebox queued
the small segments, this will release them, potentially allow-
ing coalescing to occur.

As before, we repeat the tests without options and with both known
and unknown options.

Table 13 shows the results. Most middleboxes running TCP
proxies coalesced segments in both in-order and queued cases (la-
beled Coal. both), and the other proxies did so in only the queued
case (labeled Coal. queued). No middlebox copies either known or
unknown options to the coalesced segments. One non-proxy path
did coalesce segments in the in-order test on ports 80 and 34343 (la-
beled Coal. ordered), but passed all the other tests. Interestingly, it
only coalesced when options were not present.

As before, on port 80 seven HTTP proxy paths could not be
tested. Three other cases gave unexpected results. One path on
port 34343 failed in the queued test that does not contain options,



Table 13: Results of Segment Coalescing Test

Observed TCP Port

Behavior 34343 80 443
Passed 132 (98%) 123 (87%) 138 (97%)
Coal. ordered 1 (1%) 1 (1%) 0 (0%)
Coal. queued 1 (1%) 3(2%) 1 (1%)
Coal. both 0 (0%) 6 (4%) 3 (2%)
Error 1 (0%) 9 (6%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

but did not coalesce in the other tests. One path on port 80 acked
only the third segment in the queued test—returned no payload;
other tests show this path does not show proxy behavior and does
pass TCP options, but gives no reply to the data-first sequence hole.
Likely it is also ignoring out of order segments in this test too. The
other path on port 80 showed similar behavior except that it does
not return payload even in the in-order test and does cache seg-
ments. We do not know what form of middleboxes these are, but
their behavior seems fragile.

Among those paths that coalesced, we saw quite a variety of be-
havior. The two small segments we sent were of 244 bytes. When
coalescing occurred, depending on the path, the first coalesced seg-
ment received could be of 256, 488, 500 or 512 bytes in the in-order
test and 256, 476 or 488 bytes in the queued test. We have no idea
what motivates these particular segment sizes.

Overall, the story is quite good for TCP extensions. Although
middleboxes do split and coalesce segments, none did so while
passing unknown options (indeed one changed its behavior when
options were present). Thus it seems relatively safe to assume that
if an option is passed, it arrives with the segment on which it was
sent.

4.7 Intelligent NICs

Most of the experiments in this paper probe the network behav-
ior, but with the rise of “intelligent” Network Interface Cards, even
the NIC can have embedded TCP knowledge. Thus the NIC itself
might fight with new TCP extensions.

We are concerned in particular with TCP Segmentation Offload
(TSO), where the host OS sends large segments and relies on the
NIC to resegment to match the MTU or the receiver’s MSS. In
Linux, the TCP implementation chooses the split segment size to
allow all the TCP options to be copied to all the split segments
while still fitting within the MTU. But what do NICs actually do—
do they really copy the options to all the split segments?

We tested twelve TSO NICs from four different vendors; In-
tel (82546, 82541GI, 82566MM, 82577LM, 82567V, 82598EB),
Nvidia (MCP55), Broadcom (BCM95723, BCM5755) and Marvell
(88EB053, 88E8056, 88E8059). For this, our initiator tool consists
of a user application and a custom Linux kernel, and we reused
the responder tool from the earlier middlebox tests. The key points
about the experiment are:

e Our application calls write() to send five MSS of data to the
socket layer at one time.

e The OS TCP stack composes one TCP segment that includes
all the data and passes it to the TSO layer. This large segment
also includes the TIMESTAMP or MP_DATA TCP option.

e The NIC performs TSO, splitting the large segment into mul-
tiple segments and transmits them.

e Our responder receives these segments and responds with a
segment echoing the headers in its payload so we can see
what was received.
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All the NICs we tested correctly copied the options to all the split
segments. TSO is now sufficiently commonplace so that designers
of extensions to TCP should assume it. The implication is that
TCP options must be designed so that when they are duplicated on
consecutive segments, this does not adversely affect correctness or
performance.

We also tested Large Receive Offload (LRO) behavior with the
Intel 82598EB ten gigabit ethernet NIC to see how TCP options
are treated. First, we receive bulk TCP traffic with the NIC; all
packets in the traffic include an MP_DATA option with the same
values. Second, we receive similar traffic, but change the values of
the MP_DATA between packets. We also conducted the same tests
with a TIMESTAMP option instead of the MP_DATA. For both op-
tion kinds, packets were coalesced only when their option values
are same. The coalesced segment has one of the options on the
original segments. This behavior seems sane: on this particular
NIC, LRO simply tries to undo what TSO did by duplicating op-
tions. If options are different, no coalescing happens.

Both TSO and LRO seem to forbid TCP extensions to reliably
use the counts of sent and received options for signaling. Instead,
TCP extensions experiencing offload should be prepared to handle
both duplicate and “merged” options. Disabling offload altogether
at endpoints is possible, but will result in a performance penalty.

5. PROTOCOL DESIGN IMPLICATIONS
5.1 Multipath TCP

As more and more mobile devices come equipped with multiple
network interfaces such as 3G and WiFi, single path transport is
fundamentally unable to utilize the aggregate capacity and robust-
ness of the separate links. Multipath TCP (MPTCP) [11, 12, 30]
enables each TCP connection to be striped across multiple paths,
while offering the same reliable, in-order, byte-oriented transport
service to unmodified applications.

At first sight, MPTCP seems straightforward to implement, but
the design has been evolving for a couple of years now, with most
changes aimed at accommodating the middleboxes deployed today
in the Internet. The measurement results in this paper have guided
the design, now undergoing standardization at the IETF.

To  negotiate MPTCP, the endpoints use the
Mp_CAPABLE TCP option on SYN packets; they fall back to regu-
lar TCP if either endpoint does not support MPTCP or middleboxes
along the path remove the new option. Our results indicate that if
the option handshake goes through, MPTCP options will also be
allowed on data segments. To be on the safe side though, MPTCP
reverts to regular TCP if its options do not get through on any of
the data segments sent during the first RTT of the connection.

Sequence numbers are fundamental to the MPTCP design. It
would be easiest to reuse the TCP sequence numbers by striping
segments coming from the TCP stack across different paths (e.g.,
by selecting different addresses for the same endpoint). A short-
coming of this approach is that, on each path, MPTCP subflows
will look like TCP flows with holes in their sequence space. Our
results show that 2 — 10 % of paths do not allow sequence holes by
data segments and around 25 % of paths do not allow those by Ack
segments to pass, and so MPTCP had to use one sequence space
per subflow to pass through middleboxes. This in turn implies the
need to add an additional data-level sequence number to allow the
receiver to put segments back in order before passing them to the
application.

How should the sender signal the data sequence numbers to the
receiver? There are two possibilities: use TCP options or embed
them in the TCP payload. Sending control information in the pay-



load implies some form of payload chunking, similar to TLS-style
TLV encoding. This would cause the inconsistent retransmission
that is risky (see Sec. 4.5). This approach also would make it dif-
ficult for future middleboxes to work with MPTCP, as they would
be forced to parse the payload. From these reasons it is cleaner to
encode data sequence numbers as TCP options.

The simplest solution is use a TCP option to add a data sequence
number (DSN) to each segment. Although we observed no middle-
box that both passed options and resegmented data, NICs perform-
ing TCP Segmentation Offload (TSO) would replicate the data se-
quence number onto multiple segments. Multiple segments would
then have the same DSN —not what is desired.

Such a failure is a consequence of an implicit mapping of sub-
flow sequence numbers (in the TCP headers) to data sequence num-
bers (in the options). The solution adopted by MPTCP is to make
this mapping explicit: a data sequence mapping option carries the
starting data sequence number, the starting subflow sequence num-
ber and the length of the mapping. This allows MPTCP to support
both TSO as well as LRO if coalescing happens only for segments
with duplicate options.

To complicate things more, we have seen that subflow sequence
numbers may be rewritten by middleboxes. To avoid this problem,
MPTCP signals subflow sequence numbers relative to the initial
subflow sequence number.

Finally there is one form of application-level gateway we did
not test for—a NAT with knowledge of FTP or SIP that rewrites
IP addresses in the TCP payload. Such rewriting can change the
payload length and would be really bad for MPTCP: Reordering at
the receiver might result in arbitrary-ordered data being passed to
the application. MPTCP includes a checksum in the DSN mapping
option to guard against such payload changes, and falls back to
single path TCP if required.

There are many more design decisions in MPTCP that were dic-
tated by verified, anecdotal or just possible middlebox behaviors.
We quickly list two here:

e Retransmitting data: to avoid the problems we observed with
sequence holes, MPTCP always sends the original data on
retransmission, even though that same data may already have
been received by the receiver via a different subflow.

e Proactive ACKing middleboxes might fail before sending data
to the receiver; this would halt MPTCP if data-level ACKs
were inferred from subflow ACKs. Although we observed no
pro-actively acking middlebox that would pass MPTCP op-
tions, MPTCP includes a data-level acknowledgement, sent
as a TCP option, to guard against such failures.

MPTCP was designed from ground up to co-exist with current
middleboxes and to play nicely with future ones. Our tests con-
ducted in this paper have provided a solid basis for MPTCP’s de-
sign choices.

5.2 TcpCrypt

TcpCrypt is a proposed extension to TCP that opportunistically
encrypts all TCP traffic [4, 5]. TcpCrypt endpoints share a public
key on the wire and use that to derive a session key. After the initial
handshake TcpCrypt connections are secure against eavesdropping,
segment insertion or modification and replay attacks. During the
initial handshake, connections are susceptible to man-in-the-middle
or downgrade attacks, but TcpCrypt also provides hooks to allow
application-level authentication of the encrypted connection.

TcpCrypt was motivated by the observation that server comput-
ing power is the performance bottleneck. To make ubiquitous en-

cryption possible, highly asymmetric public key operations are ar-
ranged so that the expensive work is performed by the client which
does not need to handle high connection setup rates. This is in con-
trast to SSL/TLS where the server does more work. This reversal
of roles together with ever increasing computing power makes it
feasible to have “always on” protection [5].

Use of TcpCrypt is negotiated with new CRYPT options in SYN
segments, and keying material is included in INIT messages that
are sent in both directions in the TCP payload before application
data is sent. The INIT exchange also probes the path support for
new options on data segments, thus coping with any middleboxes
that allow new options on SYNs but not on data. After the initial
negotiation, TcpCrypt can be either in the encrypting or disabled
states. In the disabled state TcpCrypt behaves exactly like regular
TCP. No further transitions are allowed once the connection reaches
one of these two states [4]. This is because applications can query
the TcpCrypt connection state and use it to make authentication
decisions.

In the encrypting phase TcpCrypt encrypts the TCP payload with
the shared session key and also adds a TCP MAC option to each
segment that is validated at the receiver. The keyed MAC covers the
encrypted payload as well as parts of the TCP header: the sequence
numbers, the TCP options, and the length, as well the acknowledge-
ment sequence number. The MAC covers neither the TCP ports nor
the IP header to allow network address translation.

TcpCrypt only accepts segments whose MAC is correct; when
the TCP MAC option is missing or incorrect the segment is silently
dropped. Hence, each segment will have a unique MAC, which also
will prevent segments from being coalesced by LRO.

Middleboxes that resegment TCP packets would cause TcpCrypt’s
MAC to fail validation, causing the connection to stall. Unlike
MPTCP, fallback to vanilla TCP behavior after entering the en-
crypting state is not viable. Fortunately we have not observed any
paths that both pass new TCP options and resegment data. TSO
would also cause TcpCrypt to fail, but the OS can disable this—the
performance penalty is negligible compared to the cost of encryp-
tion.

To guard against segment injection and replay attacks the MAC
needs to cover the TCP sequence numbers. This would fail when
middleboxes rewrite the ISN, so TcpCrypt includes the number of
bytes since the start of the connection in the pseudo-header covered
by the MAC rather than the absolute sequence number.

The MAC also covers acknowledgement sequence numbers. Any
proactive ACKs sent by middleboxes will just be dropped. If no
ACKs are passed end-to-end the connection will fail. Fortunately,
this problem is unlikely as such boxes are proxies (see Sec. 4.4),
and so would prevent TcpCrypt negotiation in the initial handshake
by removing the SYN options. Finally, HTTP-level proxies require
a valid HTTP header, which TcpCrypt would hide. However, such
proxies also prevent the initial handshake.

A key difference between TcpCrypt and MPTCP is the distinc-
tion between disabled and enabled; when
TcpCrypt is enabled it gives extra security to applications, which
then rely on the protection provided. Once enabled it is unaccept-
able from a security point of view to revert to TCP. MPTCP, on the
other hand, provides the same reliable, in-order, byte-stream ser-
vice to applications, and can detect problems and revert to TCP at
almost any time during a connection’s lifetime.

5.3 Extending TCP Option Space

Extending TCP option space has been a discussion topic on IETF
mailing lists on many occasions, starting as early as 2004. The
main reason that no solution was standardized is because people



felt there was no pressing need for more option space. MPTCP
uses a relatively large option space, as does TcpCrypt; this usage,
combined with existing options in use, leaves very little TCP op-
tion space remaining. With MPTCP approaching standardization,
extending the TCP option space has now gained enough support to
happen in practice.

Option space is scarce on both SYN and regular data packets.
Extending the option space on the first SYN (active open) is dif-
ficult because of the need to be backward compatible: if one adds
more options to the SYN, a legacy host might treat the extra options
as application data, corrupting the connection [19].

Extending the option space in regular segments seems straight-
forward at first sight; the sending host simply needs to “extend” the
data offset field in the TCP header. This is what the Long Option
(LO) draft [9] suggests: add a new LO option that a 16 bit-wide
value of the data offset. As with the other extensions we have dis-
cussed, resegmentation would be problematic here, but we did not
observe any middlebox that passes options and resegments. Still, it
would be good if the use of long options did not preclude TSO, and
this solution would—every split segment would appear to carry a
long option when in fact only the first would.

To allow TSO, the sender must be explicit about the placement
of extended options, and solutions will resemble MPTCP’s data
sequence mapping. The receiver will be told the start of extended
options and their length¥.

The same constraints apply as in the case of MPTCP signaling:
the ISN may be rewritten, thus the sequence number must be rel-
ative to the beginning of the flow. If middleboxes change payload
length (for instance by rewriting IP addresses for FTP/SIP), the ex-
tended option sequence numbers will be inaccurate; a checksum
covering the extra options is needed to cover such cases.

Another problem with extending TCP option space is the interac-
tion between middleboxes that understand deployed TCP options,
such as SACK. A middlebox might modify sequence numbers in
both the header and SACK blocks, but not understand the LO op-
tion. However, if the sender places a SACK block in the extended
option space, such middleboxes will not see it, and so cannot cor-
rect the selective acknowledgment numbers. We observed a signif-
icant number of middleboxes that modify sequence numbers and
pass the unknown TCP options, so this problem does not seem hy-
pothetical.

Segment caching middleboxes can also affect the LO option. If
the options in the payload differ between the original and the re-
transmitted segments, the middlebox will consider them as differ-
ent application data. We observed such segments could induce con-
nection failures.

Work arounds are possible —SACK blocks would have to be
placed in the regular options space, and no option in the extended
option space would be allowed to change on a retransmission. But
such workarounds rather limit the usefulness of extended options
and increase both the complexity of implementations and the po-
tential for subtle bugs.

6. CONCLUSION

Our goal in this paper has been to determine whether it is still
possible to extend TCP. In particular, what limitations are imposed
on TCP extensions by middleboxes and by “intelligent” NIC hard-
ware? To answer these questions necessitated building novel mea-
surement tools and recruiting volunteers from all over the world to
run them on a wide range of networks.

This is very much the functionality provided by the urgent pointer,
but this is known not to go well through middleboxes[14]
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From our results we conclude that the middleboxes implement-
ing layer 4 functionality are very common—at least 25% of paths
interfered with TCP in some way beyond basic firewalling. We also
conclude that it is still possible to extend TCP using its intended ex-
tension mechanism— TCP options—but that there are some caveats.
Here are some guidelines:

e Negotiate new features on the SYN exchange before use.

e Be robust if an option is removed from the SYN/ACK —just
because the server agrees to use a feature does not mean the
client sees that agreement.

o Assume segments will be split (by TSO) and options dupli-
cated on those segments.

e Assume segments will be coalesced by LRO and some of
duplicated options eliminated.

There are also some warning stories, regarding behavior that is not
safe to assume:

e Do not assume sequence numbers arrive unmodified—if you
have to quote them, quote bytes from the start of the connec-
tion rather than absolute sequence numbers.

e Do not leave gaps in the sequence space—middleboxes need
to see all the packets.

e Retransmitting inconsistent information is risky.

e Proxies are common, especially on port 80, and will strip
TCP options.

e If options are removed, don’t assume message boundaries
will be preserved.

e Some middleboxes are surprisingly fragile to out of order
packets.

Based on this information, we looked at whether three exten-
sions to TCP had made sensible choices. We found that for the
most part they had; in fact they were rather tightly constrained by
middlebox behaviors to the solutions they had chosen. Of the three
extensions we considered, TCP Long Option presents the greatest
cause for concern. In particular, it becomes quite easy with long
options to produce behavior that looks to a middlebox like inconsis-
tent retransmission due to the contents of extended options chang-
ing. Such inconsistent retransmission is demonstrably unsafe. If
TCP Long Option were to be deployed, it would require additional
constraints to avoid this problem.

Here are some guidelines for middlebox designers:

e Do not drop packets including new options: this makes de-
ploying new options very difficult as it impacts performance.
Remove new options instead, if new functionality is not be
allowed.

e Resegmentation should only be enabled if new options are
not allowed to pass. Otherwise, TCP extensions wishing the
option to be strictly bound to the original segment will fail to
be deployed.

e Be consistent in the treatment of segments with new options:
if new options are allowed on the SYN, they should be al-
lowed both on the SYN/ACK and the data segments.

o Inconsistent retransmissions might happen for good reasons:
they should be allowed through whenever possible.



Middleboxes currently deployed in the wild are relatively be-
nign from our measurements; all paths conformed to our first three
recommendations. For example, none of them dropped segments
including new options. Resegmentation was only observed for full
TCP proxies that prohibit new extensions from being negotiated, or
on segments that do not contain options. Finally, when new options
got through in the initial exchange, they were also allowed in the
data segments.

In general, we note that it is tricky to implement stateful process-
ing of TCP segments in middleboxes that do not behave like full
proxies. For instance, some middleboxes gave no response when
they saw holes in the sequence number space, and one middlebox
reset the connection when they saw inconsistent retransmissions.

We urge middlebox designers to consider explicitly whether they
want to allow new TCP extensions when implementing certain func-
tionality. It is much better to stop new negotiation of new exten-
sions than to allow it through only to fail unexpectedly later. Failure
to do so seriously complicates the seemingly easy task of extend-
ing TCP; we have experienced this in our long running quest to
standardize MPTCP.

We continue our work to extend its coverage in both tests run
and networks examined. Long-term continuous measurements are
necessary to study the evolution of middleboxes and their effects
on the Internet; this paper only presents a snapshot. Recent work
has advocated using HTTP as the narrow waist of the future Inter-
net [25]. It would be interesting to conduct measurements to test
whether HTTP is allowed to evolve, or has itself already ossified.
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result in throttles but not any rewrititing/ policing?
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network path these middleboxes were found.
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Human annotation or ISP names?
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middleboxes.



3.3, middlebox behavior, you blame inability to detect SYN/ACK
option stripping on to the statelessness of your tool, but that
doesn’t seem to be accurate.

4.3, “We hope that these middleboxes are aware of SACK”... are
they or are they not? Hoping doesn’t do...

4.7, the main trouble is that simply duplicating options onto all
segments, as TSO does isn’t enough in many cases...
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well thought out experiments, and some unexpected findings.

Weaknesses: Writing is repetitive. A number of ‘problems’ were
due to mis/aggresively configured HTTP proxies and do not
reflect behavior of other TCP flows.

Comments to Authors: Is there a reason for the distribution of
the 142 networks in the paper? They are not representative of
Internet traffic volume, and it is not clear that they are
representative of middlebox behavior.

The related work should refer to the TCP Sidecar paper (IMC
2006) which describes how active measurements can go through
middleboxes.

For the most part, the results are not surprising. Application layer
gateways try to parse data and fail if they don’t see everything.
Proxies/middleboxes that regenerate sequence numbers don’t
preserve options that refer to literal sequence numbers (much like
FTP PORT command and NAT interaction). However, the paper
is valuable in that it provides a systematic catalog of anecdotal
behavior.

The paper is repetitive, and the writing verbose. The information
here can be fit into a very good seven page paper, as opposed to
the loose fourteen pager that is presented. Section 4.5+ adds very
litle that has not already been stated or could be put inline with
the other results. The entire issue with the seven HTTP proxies is
a red herring and could be mentioned once in a footnote.

The paper is also very difficult to follow since the tables are
scattered all over, making it difficult to refer to them while
reading the text.

Reviewer #5

Strengths: An extensive study. I particularly like that the test
traffic is controlled at both ends of the path (by having clients
voluntarily download and run a test program) as it is much less
limiting than client or server only approaches. Useful results that
are not otherwise known. Anyone seriously looking to extend
TCP will want to read this paper.
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Weaknesses: The paper is a bit ad hoc. The questions that are
asked about how middleboxes handle TCP are mostly driven by
efforts to deploy a multipath TCP, which is both good (they are
relevant questions!) and bad (as it causes them to focus heavily on
sequence numbers and is unclear that they will cover the needs of
other extensions that may come). The paper would benefit from
being a bit more systematic in its exploration of the space.

Comments to Authors: Thanks for an interesting paper; I have
relatively few comments.

I think your paper will benefit from stepping back a bit to separate
it from MTCP. What other aspects of middlebox behavior might
be important for extensions? For example, are there games with
flow control? What about the window scale, MSS, and
authentication options, etc., as they at least seem worth some
study? One exercise you might attempt is to go through all known
extensions and make a a table with the TCP header fields or other
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People are likely to read your paper to get guidance on what is
safe/unsafe. Thus you might provide an easily accessible and
complete summary of the takeaways (that is more comprehensive
and standalone than in the conclusion).
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how we collect data, and how we identified the venue.
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