
OpenStack networking for humans: symbolic
execution to the rescue

Radu Stoenescu, Dragos Dumitrescu, Costin Raiciu
University Politehnica of Bucharest

Email: firstname.lastname@cs.pub.ro

Abstract—Neutron is the OpenStack component that imple-
ments networking and it has been mocked and derided the
weakest link in OpenStack [11]. We propose to use network
symbolic execution to improve Neutron’s ability to correctly
implement tenant policies and to provide tenant traffic isolation.

We propose to apply symbolic execution on two different
OpenStack layers: the tenant view of the network and the
actual deployment. Analyzing the tenant view is useful in many
ways; first, it helps the tenant better understand its configura-
tion’s behavior before deployment. Secondly, its outputs can be
compared to the analysis of the deployment to check if they
are equivalent. We have built a prototype implementation and
conducted preliminary evaluation, finding that we can verify
our department’s OpenStack deployment in seconds and detect
certain common Neutron problems.

I. INTRODUCTION

The cloud is taking over the world of computing. Public
clouds such as Amazon EC2, Microsoft Azure or Rackspace
are widely used, and smaller clouds are being built pretty
much everywhere. Network operators are building miniature
clouds in their core networks (e.g. DT is deploying racks
collocated with PoPs) while mobile operators are deploying
processing close to the edge to enable mobile edge computing
[7]. Deploying a cloud is no easy task. Major public clouds
providers have each developed their own custom cloud man-
agement software, but the software is deployment-specific and
not available publicly. New cloud players are very numerous
and eyeing smaller deployments; having each of them develop
cloud software makes no sense.

OpenStack is the leading community effort to build a
production-quality, open source platform that enables building
public and private clouds with ease. OpenStack has a lot of
momentum, with major companies investing human and capi-
tal resources, and is reaching maturity. Hundreds of OpenStack
clouds have already been deployed [2]. We focus on Neutron,
the networking component of OpenStack, that allows users to
specify their high-level networking configuration and deploys
it. Neutron is notoriously unreliable, to the point where it has
become known as the weakest link in OpenStack and bashed
in popular media by company executives [11]. Neutron has
certainly improved recently, but it is still far from perfect.

In this position paper we propose to use network static
analysis, in particular symbolic execution [13], to improve
Neutron. Rather than provide a definitive solution, we provide
a high level approach to solving Neutron’s woes. Our key idea
is to use symbolic execution to analyze the properties of a) the

Fig. 1. OpenStack Networking Layers.

tenant virtual network configuration before deployment and b)
the actual network dataplane after deployment.

We have built a prototype to showcase our approach and
check its validity, and performed a preliminary evaluation. Our
initial results are promising: verification is fast (seconds) and
can detect common problems with Neutron deployments.

II. OPENSTACK NETWORKING WITH NEUTRON

Network virtualization in OpenStack is enabled by Neutron
[8]. It offers an API to tenants allowing the creation of virtual
networks that are decoupled from the underlying networking
topology and the configuration chosen for deployment. The
tenant network is then instantiated on the physical topology,
and this mapping is influenced by the way the cloud provider
has deployed OpenStack. Neutron layering is captured in
Figure 1 and it aims to achieve the following goals:

• Policy Compliance. Neutron aims to allow tenants to
configure networks that satisfy their high-level security
policies, for instance separation of public and back-end
traffic, reachability, etc.

• Implementation Correctness. The properties of the vir-
tual network configured by the tenant should be matched
by the actual deployment. For instance, Internet packets
that can reach an instance in the virtual network should
also reach the instance in the instantiated network.

• Traffic Isolation. A tenant’s traffic should not reach other
tenants unless Neutron is explicitly configured to do so.

• Performance. Neutron must allow cloud providers and
tenants to effectively utilize fast interconnects including
40Gbps and 100Gbps Ethernet.

Achieving all these properties simultaneously is very tricky.
Achieving tenant policy compliance appears simple: the tenant
only has to correctly configure its virtual network (given



VLAN
9	  

10.9.0.016	  

192.168.0.0/24	  

	  
Router	  

R1	   	  
Router	  

R2	  Inside	  

	  
Instance	  

B	  

Private	  

	  
Instance	  

C	  

192.168.1.0/24	  

192.168.0.4	   192.168.1.2	  

	  
Instance	  

A	  

10.9.0.?	  

Fig. 2. Example of a tenant network topology in the Horizon GUI.

the appropriate configurationAPI), however tenants are not
networking professionals usually, so many configuration errors
are possible. Furthermore, the short and inexpensive configure-
deploy cycle facilitates the introduction of configuration bugs.

Implementation correctness and traffic isolation are achieved
through coding best practices in the open-source community;
however this implies that only very popular approaches will be
heavily scrutinized, and many bugs will exist in less popular
code. Achieving correctness and isolation in the context of
proprietary drivers for third-party networking hardware is even
more challenging. Even with code review, there is no guarantee
that these properties are met in practice. Finally, achieving
high networking performance implies using pass-through tech-
nologies such as SR-IOV for virtual machines, and rely-
ing on networking hardware to implement Neutron. SR-IOV
traffic bypasses the local hypervisor stack (e.g. iptables and
Openvswitch) and only basic security is provided, meaning
that other tenant-specified functionality (such as firewalling)
may not be provided. We now provide a more detailed view
of OpenStack networking and highlight the difficulties when
trying to meet the OpenStack goals.
Tenant network view. Tenants use an virtual network view
to configure the way their instances are connected. To this
end they can use layer 2 networks (flat or VLANs), routers,
firewalls, VPNs and load balancers. In more detail, tenants can
use the Horizon GUI or the Neutron API as follows:

• The simplest choice is to use a flat network where
virtual machine instances are assigned IP addresses from
a DHCP server run by the cloud provider. The DHCP
server also provides a gateway for outgoing connections
and performs network address translation. Incoming con-
nections are dropped by default.

• Create VLAN(s) and associated subnet(s) where the con-
nected instances are assigned, at configuration time, dis-
tinct IP addresses from the subnet’s range. One instance
can be connected (have interfaces in) multiple VLANs.

• Create routers that can interconnect different VLANs
and provide Internet connectivity. All addresses assigned
(either with subnets or DHCP) are private and thus not
reachable from the Internet. Outgoing Internet connectiv-
ity can be provided by using NAT.

• Assign floating IPs if incoming connectivity is desired
(e.g. for the tenant to be able to ssh into its instance). A
floating IPs is a public IP addresses that is associated to a
private IP address of the tenant. Neutron perform address

translation between the floating address and the private
one, transparent to the VM.

• Specify firewall rules to be applied to specific ports.
• Further constructs include VPNs and traffic load balanc-

ing, and this list is likely to increase in the future.

In Figure 2 we show an example tenant networking config-
uration in the Horizon GUI of our university’s OpenStack de-
ployment. The tenant wants to deploy a web server connected
to a database server. Its policy is that that its web server should
be publicly accessible on port 80, and that the database is only
reachable from the web server, and not the Internet.

The tenant configures two VM instances: B will run the
web server and is connected to the green VLAN, and C is the
database server and is connected to the red VLAN. The two
VLANs are connected via router R2, and the green VLAN
is connected via router R1 to the Internet. R1 is setup as
an Internet gateway. The blue VLAN (VLAN9) is created
automatically by this particular OpenStack deployment and
is where the Internet gateway resides. The tenant also starts A
for testing purposes and attaches it to VLAN9.

Is this network configuration a correct implementation of
this tenant’s policy? An experienced OpenStack network ad-
ministrator will, most likely, be able to debug this config-
uration quite easily and find that, for instance, there is no
incoming connectivity to the web server since a floating IP has
not been assigned. The average OpenStack tenant, however,
will not be a networking specialist. Such a person needs a
fairly large set of skills: they need to be able to create a
VM image, they need to install and manage various servers
(e.g. web and database), setup the tenant network and, finally,
develop their application logic. In the pre-cloud era, multiple
people were needed maintain such a website: e.g. a networking
administrator, a web admin, a web developer. In the cloud era,
it is possible (and expected) that a single person will fulfill all
these roles, but they will not be networking experts.

Ensuring that a tenant policy is met by a network configu-
ration requires more than manual debugging - we need tools
that help the tenant quickly find the problems and fix them.

Cloud provider view of networking. When deploying Neu-
tron, the cloud provider has to meet the above goals (correct-
ness, isolation, performance) in the context of its local network
policy, and with the added constraint of isolating tenant traffic
from local traffic and treating tenant traffic as “outside” traffic
when deciding access to local machines.

When the tenant starts the deployment of its configuration,
virtual machine instances are placed on the available Open-
Stack Compute Nodes and the tenant networking configuration
is instantiated; the instantiation depends on the way the cloud
provider has deployed Neutron.

One of the most popular networking deployments is to use
Openvswitch [10] on every Compute Node, use iptables for
firewalling and have a Network Node running on one of the
servers to implement NAT and routing. Traffic leaving from
the Compute Nodes is encapsulated in VXLAN tunnels and
carried to the Network Node, which also enables Internet



connectivity. This configuration meets all the requirements,
except the performance one.

There is however great flexibility in how a cloud provider
can configure its network to work with Neutron, including:

• Using fault-tolerant Network Node implementations
called VRRP.

• Deploying routing and firewalling on every Compute
Node, in a configuration called DVR.

• Using hardware switch support and VLANs to ensure the
tenant traffic isolation instead of VXLAN.

• Using merchant hardware to implement routing and fire-
walling (called firewall as a service).

A performance-oriented deployment would use SR-IOV for
each tenant, bypassing the hypervisor stack, and apply VLAN
encapsulation on the NIC. VLAN support in switches would
then be used to carry traffic to a hardware firewall (e.g.
a CISCO ASA box), where firewall rules belonging to the
cloud provider and tenants would be applied. Routing between
VLANs and NATting could also be implemented in hardware.
In such a deployment, ensuring the isolation and correctness
properties hold is trickier: tenant firewall rules could clash or
overlap with provider rules, and the correct order in which they
should be applied is not obvious. Installing a set of predefined
rules for all tenants is feasible, however allowing per-tenant
firewall policies is difficult to do.

This versatility of Neutron makes it adaptable for a wide
range of uses and requirements. However, it also raises ques-
tions about the correctness of any non-trivial individual de-
ployment, especially when less scrutinized third-party software
or hardware are used.

III. SYMBOLIC NETWORK EXECUTION

We propose to use static network analysis to improve
Neutron. There are many static network analysis tools such as
[3], [5], [6], [9], [13], [14]; they all require as input a model
of network functionality including the processing performed
in different boxes, such as switches and routing, as well as a
snapshot of the network state, for instance router forwarding
table snapshots or switch dynamic MAC tables. Then, the tools
“simulate” what happens when certain packets are injected at
different parts of the network: given a packet with specific
header fields, static analysis tools tracks the path of the packet
through the network and the evolution of its header fields.

The strength of static analysis stems from its ability to
quickly test a wide range of possible packets (e.g. all possible
headers destined to a server) without having to iteratively test
all possible combinations of concrete header fields. How this
is achieved depends on the tool being used. The different
tools offer different tradeoffs in terms of speed of analysis and
properties checked, and an overview of all these tools can be
found in [13]. A very good option is to use network symbolic
execution, as enabled by the SymNet symbolic execution tool.
We use SymNet in this paper and provide a brief overview
below; please refer to [13] for more details.

In SymNet, network boxes are modeled as modular elements
having an arbitrary number of input and output ports. Network

links are modeled as directed edges between the output port
of an element to an input port of another one. To describe
the functionality of a box, each port has associated a set of
instructions that are executed when a packet reaches that port.
The set of instructions associated to each port is written in a
language called SEFL and described in detail in [13]. SEFL
is a simple imperative programming language and offers usual
instructions e.g. assignment, if and basic expressions (addition,
subtraction). SEFL is optimized to allow scalable network
symbolic execution as follows:

• The constrain instruction adds restrictions on header
fields, such as firewall rules.

• The forward instruction makes a packet go to a spec-
ified output port.

• The fork(p1,p2,...) instruction sends a copy of the
packet to each of the specified output ports (p1, p2, ...).

• There are no unbounded loops in SEFL.
We give an example in Figure 3 where we have two

network elements: a three-port Openflow switch and a firewall
connected to port 2 of the switch. Element input ports are
numbered in red and shown as triangles; output ports are
numbered in green, and shown as squares. Port 0 is connected
to an inside network, and port 1 is connected to the Internet.
The configuration aims to ensure that all packets are checked
by the firewall, and performs ingress filtering for the ports
connected to the two networks. Packets from the firewall port
are sent to the local network or the Internet based on their
destination address.

InputPort(0):
Constrain(IpSrc in 141.85.37.0/24)
Constrain(IpDst not in 141.85.37.0/24)
If (Constrain(TcpDst==80||TcpDst==443),

Forward(OutputPort(2)),
Forward(OutputPort(1)))

InputPort(1):
Constrain(IpSrc not in 141.85.37.0/24)
Constrain(IpDst in 141.85.37.0/24)
If (Constrain(TcpSrc==80||TcpSrc==443),

Forward(OutputPort(2)),
Forward(OutputPort(0)))

InputPort(2):
If (Constrain(IpDst in 141.85.37.0/24),

Forward(OutputPort(0)),
Forward(OutputPort(1)))

Below we provide the model for the firewall which only
allows HTTP traffic from our local network and the associated
return traffic. To keep per-flow state the model creates a
metadata called FirewallState and sets in the packet.
When the return traffic arrives, it will have the same variable
set and will be allowed through.

InputPort(0):
If (Constrain(FirewallState==1),

Forward(OutputPort(0)), //allow seen flows
InstructionBlock(//outgoing HTTP traffic

Constrain(IpSrc in 141.85.0.0/16),
Constrain(IpDst not in 141.85.0.0/16),



1	   1	  

2	   2	  
{…}	  
{...}	  	   {…}	  

{…}	  

SWITCH	  

0	   0	  
FIREWALL	  
{...}	  	  

0	   {…}	   0	  {…}	  

Fig. 3. SymNet network models: elements and interconnections

OpenStack User

Neutron
Callback
System

Networking
API

OpenStack Network
to SEFL Model Compiler

SEFL Network
Models Library

Symnet Execution Engine

Results
OpenStack

Virtual Network
Change Request

2
      4

                      5

  
1

        3

Fig. 4. Verifying the tenant network

Switch	  
InputPort(0):	  

Constrain(IpSrc	  in	  	  
	  	  	  	  	  	  	  	  	  141.85.37.0/24)	  
Constrain(IpDst	  not	  in	  	  
	  	  	  	  	  	  	  	  	  141.85.37.0/24)	  
If	  (Constrain(TcpDst==80||	  
	  	  	  	  	  	  	  	  	  	  	  	  	  TcpDst==443),	  
	  	  Forward(OutputPort(2)),	  
	  	  Forward(OutputPort(1)))	  

*	   *	   *	   *	  
IP	  Src	   IP	  Dst	   Tcp	  Src	  Tcp	  Dst	  

141.85	   *	   *	   *	  

141.85	   ~141.85	   *	   *	  

141.85	   ~141.85	   *	   80,443	   141.85	   ~141.85	   *	   ~80,443	  

Packet	  1	  

Packet	  2	  

141.85	   ~141.85	   *	   80,443	  

Output	  Port	  1	  	   Output	  Port	  2	  

141.85	   ~141.85	   *	   ~80,443	  

Fig. 5. Symbolic execution example: injecting a symbolic packet in the switch model on input
port 0. Two packets are generated with different constraints, one that exits on port 1 and one
on port 2.

Constrain(TcpDst==80||TcpDst==443),
Allocate(FirewallState),
Assign(FirewallState,1),
Forward(OutputPort(0))

))

To understand symbolic execution, we inject a packet on
input port 0 of the switch and trace its evolution in Figure 5
(only switch processing on port 0 is captured in the figure).
The packet has all header fields initialized to symbolic values:

1) The values of IpSrc and IpDst are constrained. Then,
the If instruction results in two packets (or symbolic
execution paths).

2) The “else” branch packet, packet 2, captures non-HTTP
traffic and is forwarded to the switch output port 1; at
this point symbolic execution of packet 2 stops, as output
port 1 is not connected in our model.

3) On the If branch, the TCP destination port is constrained
to be HTTP(S), and the packet is forwarded on output
port 2 and onto the firewall on port 0.

4) The packet is processed at the firewall. There is no
FirewallState in the packet so the else branch runs, and
constraints are added for TcpDst. The state is allocated
and assigned and the packet sent to output 0.

5) The packet enters the switch via input port 2, the else
branch is run and the packet finally reaches output 1.

The output of symbolic execution is 1) a set of packets
that have reached unconnected output ports, together with 2)
a set of packets that have failed en-route, because some of the
constraints applied to their header fields did not hold. The first
category is more interesting for network verification. For each
path, SymNet reports in a JSON-formatted output file all the
instructions executed, all the ports visited, the values and/or
constraints for all header fields.

In particular, if we examine the output from SymNet for the
example above, we can conclude that outgoing reachability
is permitted for all packets with correct IP addresses. We
also find that the packet headers are not modified by our
configuration: all header fields are bound to the same symbolic
variable at the beginning and end of the execution. To gain
more insights in this configuration, we also inject a purely

symbolic packet at input port 1, and also add a symbolic value
for the FirewallState variable. The results show that all HTTP
response traffic is dropped unless firewall state is set to 1, and
all other traffic is allowed unmodified.

IV. ANALYZING OPENSTACK WITH SYMNET

We provide a high level description of how SymNet can
be used to improve Neutron to achieve all the its goals,
namely tenant policy compliance, implementation correctness,
traffic isolation and performance. To this end, we will rely on
SymNet for network verification on two layers: the abstract
tenant network and the deployed network.

A. Checking the abstract tenant network.

To check policy compliance, the tenant can use SymNet
to run reachability from all instances to all other instances
and the Internet before the configuration is deployed. The
SymNet output allows the tenant to quickly check whether
the reachability matches their expected behavior.

We have implemented support for such testing in Neutron
and our implementation is shown in Figure 4. Whenever a
tenant uses Neutron to create or modify a virtual network
topology (step 1) and prior to the effective deployment, we
insert an additional verification step that uses SymNet to
analyze the tenant configuration. The deployment process is
stalled until the analysis process ends.

To receive information about the creation of new topologies
or the modification of existing ones, SymNet registers to
the Neutron callback system. Every time such a callback
is executed (step 2), SymNet queries the OpenStack HTTP
Networking API [1] for the Neutron network configuration
currently in place. Next, we need a SEFL model of the
tenant network. We have modeled the functionality offered
by Neutron including routers, firewalls, NATs and created a
library of SEFL models. For every network function used
by the tenant, we obtain the corresponding SEFL element
by configuring the generic SEFL library component with the
parameters provided by the tenant (step 3). The element’s input
and output ports are then interconnected according the virtual
links provided by the tenant.



Finally, symbolic execution is performed by injecting sym-
bolic packets at all the instances’ network attachment points, as
well at the Internet gateway. The result is detailed reachability
for all VMs in the abstract tenant network. Currently, the result
of the analysis is provided to the tenant in JSON format, which
manually checks whether it obeys its policy. In the future, we
plan to automatically check simple popular policies, such as:

• All-to-all VM communication for ICMP, UDP and TCP
traffic.

• Outgoing ICMP and TCP reachability from all instances.
• Incoming SSH reachability (TCP on port 22) for all

instances.

B. Checking the deployed network dataplane.

The second step of our verification happens after the
tenant’s configuration is deployed, and its goal is to ensure
isolation of tenant traffic and correctness of implementation.
To this end, we use two complementary approaches: guided
testing and symbolic execution.

Guided testing [13], [15] is very simple: for every path
resulting from the tenant network analysis, generate a match-
ing packet and inject it in the actual network, observing the
packets reachable at other instances or in the Internet. The
big advantage for guided testing is that it can be run by the
tenant, without cloud provider support and is independent of
the deployed network. We have implemented a simple version
of guided testing by using SymNet to generate test packets for
the provided paths, generating packets using the Click modular
router [4] and using tcpdump for reception.

Guided testing is not exhaustive: even if it reports success
for the tested packets, there are no guarantees the deployment
is indeed correct, or that tenant traffic is correctly isolated.

To get hard guarantees we resort to symbolic execution
of the deployed network. Compared to the abstract tenant
network, the setup needed to symbolically analyze the real net-
work is much more complex: we need accurate SEFL models
and snapshots of the dataplane state for all the boxes (hardware
and software) deployed in the cloud-operator network that
interact with tenant traffic. This includes network ports for
all instances of all tenants, hypervisor functionality (software
switching, tunelling and local filtering), OpenStack network
nodes, hardware switches and routers.

Creating a solution that is applicable to all networks is
an extremely challenging task, given the heterogeneity of
deployed infrastructure and the pervasive use of middleboxes
[12]. Generating accurate SEFL models of middlebox func-
tionality is not trivial and requires a lot of expert effort. There
is currently no generally applicable recipe to all networks.
Modeling real networks, however, is feasible. In prior work
we have developed a model of our department’s network
[13]. This model relies on the following building blocks:
a) a switch model that can be automatically created when
given a snapshot of the dynamically-learned MAC table; b) a
router model created from a snapshot of the forwarding table,
obtained via standard commands on Cisco routers, and c) a
CISCO firewall model (Application Security Appliance) that

Packet	  header	  
	  

	  
	  
	  

Tenant	  
View	  

Real	  
Network	  

(a)	  No	  reachability	  

	  

	  
	  
	  

(b)Par8al	  reachability	  

	  

	  
	  
	  

(c)Unsafe	  reachability	  

	  

	  
	  
	  

(d)Correct	  

Fig. 6. Checking for equivalence between the tenant abstract network
configuration and the deployment

is created automatically given the configuration file. We are
currently using this model as a basis to implement OpenStack
deployment checking in our network.

Given an accurate model of a deployed network, we can use
symbolic execution to ensure key properties for Neutron. We
initiate reachability checks from the new tenant’s instances
and from the Internet and use the SymNet output to check
isolation and correctness, as described next.
Checking isolation. If any VM from any other tenant is
reachable from or reaches the instances of the new tenant,
we report a violation of the isolation properties. Symbolic
execution enables this analysis, but it is complex because
its runtime depends grows linearly with the number of ten-
ants/VMs. Optimizations are needed to ensure it scales to large
clouds and may include only checking outgoing connectivity
from the new tenant, or defining tenant equivalence classes
and running reachability between equivalence classes.
Checking correctness. We can compare the sets of paths
resulting from the abstract tenant view and the deployment
view to decide whether the deployment correctly implements
the tenant network. In essence, we want to decide whether the
two configurations are equivalent. Equivalence is undecidable
for general programs, however we restrict our definition to
reachability: we want to ensure the same packets are reachable
in the two configurations.

Before we describe the algorithm, we give a few definitions.
We assume all packets contain the same set of headers H1,
H2, etc., for which we care to verify equivalence; all other
headers are ignored. Let CHi

(Pj) denote the set of constraints
of header field Hi in packet Pj at some reference port in the
network. Let C(PJ) = CH1(PJ)∩CH2(PJ)∩ · · · denote the
conjunction of all constraints applied to all headers of packet
PJ at the same port.
Output Equivalence Algorithm. Input: The set of symbolic
packets Pi, i = 1...N and Qj , j = 1...M obtained by checking
reachability between ports a and b in the tenant network and
real network, respectively.
Algorithm: To test for equivalence, first we compute the
disjunction of constraints of all packets in the two networks
at port b: X = C(P1) ∪ C(P2) · · · ∪ C(PN ) and Y =
C(Q1) ∪ C(Q2) · · · ∪ C(QM ). The two sets of paths are
equivalent if and only if the expression (X ∩¬Y )∪ (¬X ∩Y )
is not satisfiable.

The intuition for this algorithm is given in Figure 6 where
we show a packet with two header fields. The hashed areas
corresponds to the reunion of constraints at node b resulting
from symbolic execution of the tenant network and the actual



network, respectively. The output equivalence algorithm aims
to determine if the two areas overlap perfectly.

We have four cases: first, the tenant reachability does not
overlap at all with the deployment reachability, resulting in
a completely broken instantiation of the tenant network: the
tenant has no reachability for its traffic, while unwanted traffic
is allowed. In the next case we have partial reachability, but
at least the configuration is safe: unwanted traffic is stopped.
The third configuration allows full reachability, however also
allows other packets through—this could indicate that the
firewall rules have not been instantiated properly. Finally,
the last case is when there is perfect overlap, and the two
configurations are equivalent from an output port point of view.

Note that output equivalence is fairly weak in networks that
modify header fields. There, additional constraints could be
applied on the initial values of the header fields that influence
reachability, yet they are not captured by output equivalence.
In our future work we plan to explore stricter notions of
equivalence such as input-output equivalence.

V. PRELIMINARY EVALUATION

We ran reachability analysis for the tenant configuration
in Figure 2 by injecting a symbolic packet at all the tenant
instances and the gateway. It takes 5 to 7 seconds to run the
reachability analysis, for which 3 to 5 seconds are spent in
Neutron API calls and 2s to generate the SEFL code and run
the reachability analysis.

Our first analysis showed no connectivity at all because
the tenant configuration didn’t have static IPs assigned and
no DHCP server was enabled either. We changed the con-
figuration by assigning static IPs to all the instances; the
analysis found that all instances can communicate directly.
Further, A and B have outgoing Internet connectivity, and that
connections initiated from the Internet are not allowed. Finally,
C has no Internet connectivity.

Next, we deployed the configuration and ran our guided
testing implementation. Surprisingly, guided testing showed
that instance C had Internet connectivity but it couldn’t access
instances A or B; this is the exact opposite of the tenant
configuration, where C has no Internet connectivity but it
can reach A and B. It turned out that this problem was
transient: when we reran the guided testing scheme, the
results were as expected. The culprit was identified to be the
propagation latency between high level commands and driver
implementation in Neutron, which we measured to be on the
order of minutes in our deployment.

VI. CONCLUSIONS

OpenStack Neutron is a complex piece of software, provid-
ing different views to different stake-holders and incorporating
code from multiple parties. It has been anecdotally called the
weakest link in OpenStack [11].

We argue this happens because debugging currently only
relies on standard best practices for code development, with-
out taking into account the particularities of Neutron. As a
complement to existing approaches, we propose using static

network analysis to improve OpenStack Neutron. We have
shown how network symbolic execution can be used on two
levels: to check the abstract tenant network and its deployment
in the actual network. We have an initial implementation of
these ideas that we have integrated with the Neutron API.
Our preliminary evaluation has found interesting nuggets: a
propagation delay bug in OpenStack (that was known) and
can help tenants more easily deploy their networks.

This is a work in progress, and many refinements are needed
to our prototype until it can be applied to a wide range
of configurations automatically. On the algorithmic side, we
intend to explore stronger version of equivalence. Finally, we
intend to fully model our department’s network (including
Openvswitch, Neutron nodes, etc) and perform full symbolic
analysis of the deployed network.

ACKNOWLEDGEMENTS

This work was partly funded by Superfluidity H2020 (671566).

REFERENCES

[1] OpenStack Networking API 2.0 Specification. http://developer.
openstack.org/api-ref-networking-v2.html.

[2] OpenStack users share how their deployments
stack up. http://superuser.openstack.org/articles/
openstack-users-share-how-their-deployments-stack-up.

[3] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:
Static checking for networks. In Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI’12,
pages 9–9, Berkeley, CA, USA, 2012. USENIX Association.

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
click modular router. ACM Trans. Comput. Syst., 18(3):263–297, Aug.
2000.

[5] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese.
Checking beliefs in dynamic networks. In NSDI, NSDI’15, pages 499–
512, Berkeley, CA, USA, 2015. USENIX Association.

[6] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King. Debugging the data plane with anteater. In Sigcomm, 2011.

[7] Michael Till Beck and Martin Werner and Sebastian Feld and Ludwig
Maximilian and homas Schimper. Mobile Edge Computing: A Taxon-
omy. In AFIN 2014.

[8] Openstack. Neutron Networking. https://wiki.openstack.org/wiki/
Neutron.

[9] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and S. Shenker. Verifying
Isolation Properties in the Presence of Middleboxes. Tech Report
arXiv:1409.7687v1.

[10] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado.
The design and implementation of open vswitch. In NSDI, pages 117–
130, Oakland, CA, May 2015. USENIX Association.

[11] T. Register. HP: OpenStack’s networking nightmare Neutron ’was
everyone’s fault’. http://www.theregister.co.uk/2014/05/13/openstack
neutron explainer/.

[12] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: Network
processing as a cloud service. In SIGCOMM, 2012.

[13] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu. SymNet:
scalable symbolic execution for modern networks. http://arxiv.org/abs/
1604.02847, 2016.

[14] G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalm-
tysson, and J. Rexford. On static reachability analysis of ip networks.
In Proceedings of Infocom, 2005.

[15] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown. Automatic test
packet generation. In Proceedings of the 8th International Conference
on Emerging Networking Experiments and Technologies, CoNEXT ’12,
pages 241–252, New York, NY, USA, 2012. ACM.


