
Dataplane equivalence and its applications

Dragos Dumitrescu, Radu Stoenescu, Matei Popovici, Lorina Negreanu and Costin Raiciu
firstname.lastname@cs.pub.ro

University Politehnica of Bucharest

Abstract
We present the design and implementation of netdiff, an
algorithm that uses symbolic execution to check the equiva-
lence of two network dataplanes modeled in SEFL [42]. We
use netdiff to find new bugs in Openstack Neutron, to test
the differences between related P4 programs and to check
the equivalence of FIB updates in a production network. Our
evaluation highlights that equivalence is an easy way to find
bugs, scales well to relatively large programs and uncovers
subtle issues otherwise difficult to find.

1 Introduction

Misconfigured or faulty networks ground airplanes, strand-
ing thousands of passengers and render online services inac-
cessible for hours on end, leading to disgruntled users and
massive losses in revenue. Network verification promises
to fix such rare yet devastating problems by ensuring that
networks always follow their operator’s stated policy. Ver-
ification proposals can uncover faulty dataplane configura-
tions [19, 29, 42, 30, 20], can simulate the effect of control
plane changes (such as configuration changes) before they
are applied [8, 11, 4] or inject these changes into an emulated
clone of the live network to examine their effects [26]. The
key behind the success of network verification in traditional
networks is the simplicity of the policy, a mix of reachabil-
ity and isolation constraints that administrators can readily
specify once and verify recurrently.

As networks become more dynamic and programmable,
both ensuring network correctness and specifying policy are
significantly harder. Virtual networks are instantiated dy-
namically in cloud networks on tenant demand by massive
software stacks, potentially developed by multiple players
(e.g. Openstack); here, the key challenge is to ensure that
tenant demands are implemented correctly and that tenant
traffic is properly isolated from other tenants.

Languages such as P4 [5] or Flowblaze [34] allow the im-
plementation of customized packet processing logic that can
be deployed and run at wire speeds on real switch hardware
(e.g. Barefoot’s Tofino). Specifying the behavior of pro-
grammable dataplanes entails specifying the expected output
packet(s) for every possible input packet; such a specification
relies on formal methods and expert time [38, 35, 46], being
out of reach of network administrators and programmers.

We observe that, in many cases, dataplane correctness
properties can be specified implicitly by equivalence to other
dataplanes. A P4 programmer might need to restructure

or trim his program to meet the target switch constraints
[16, 39] while preserving the functionality. In cloud comput-
ing, the abstract network configuration provided by tenants
(e.g. two VMs connected via a L2 network) is translated by
the cloud management software into an actual configuration
for switches and routers that must offer equivalent function-
ality to the two VMs. Finally, a network administrator that
knows his network behaves correctly1 simply wants the net-
work to behave in the same way in the future.

Checking equivalence could therefore be very useful for
easy-to-use verification of modern dataplanes. Unfortu-
nately, checking equivalence between arbitrary programs is
a well-known undecidable problem. Variants of it, however,
are decidable for domain-specific programming languages;
in the networking field, NetKAT [3], NOD[29] and HSA [19]
support various forms of equivalence checking. These lan-
guages, however, are not expressive or not efficient enough
to check programmable dataplanes such as P4.

In this paper we show that checking equivalence is pos-
sible for programmable dataplanes and that it scales well
enough to uncover many interesting bugs. netdiff, our pro-
posed algorithm, is implemented on top of the Symnet sym-
bolic execution engine and can test the equivalence of two
network dataplanes expressed in the SEFL language [42].
We formally prove netdiff correctly decides if two data-
planes are equivalent when they do not contain infinite loops;
we rely on prior work to detect infinite loops [43].

We have used netdiff to find bugs in Neutron, Open-
Stack’s cloud management software networking driver, by
checking the equivalence of tenant configurations and the
low-level implementation of those configurations. We have
found ten implementation bugs in Neutron, three of which
were unknown, and four configuration bugs. We have also
used netdiff to check that P4 program optimizations pre-
serve correctness, to test different dataplane models of the
same network functionality are equivalent, to detect routing
changes in a university network and to check that a FatTree
instance behaves like a single, big switch. netdiff runs all
these tasks in seconds/minutes. Finally, to enable scalability
to a large Neutron deployment, we rely on a compositional
verification approach where we test equivalence for indepen-
dent components in isolation.

2 Goals
Network dataplane equivalence has many potential applica-
tions, a subset of which we explore in detail in §6. To guide
our exposition, we use as running example the code snippets

If (TTL>1) TTL--;
Else Fail;

If (dst in 10.10.0.1/32)
Forward("if0");

Else If (dst in 10.10.0.0/16)
Forward("if0");

Else If (dst in 10.0.0.0/8)
Forward("if1");

Else Fail;

dst	 in	 10.10.0.1/32&&TTL>0	 	 	

Path	 2:	 dst	 in	 10.10/16&&TTL>0	
&&	 dst	 not	 in	 10.10.0.1/32	

Path	 3:	 dst	 in	 10/8	 &&	 TTL>0	
dst	 not	 in	 10.10.0.0/16	 &&	
dst	 not	 in	 10.10.0.1/32	 Path	 5:	 dst	 not	 in	 10/8	

dst	 not	 in	 10.10/16	 &&	
dst	 not	 in	 10.10.0.1/32	

X	
X	

TTL-‐-‐	
if0	

if1	

Path	 1:	

Path	 4:TTL==0	 	

(a) Basic router coded with If/Else: code(left) symbex(right)

TTL--;
Constrain(TTL>0);

Fork (
Path1 {
Constrain(dst in 10.10.0.0/16);
Forward("if0");}

Path2 {
Constrain(dst in 10.0.0.0/8);
Forward("if1");})

if0	

if1	

Path	 1:	 dst	 in	 	
10.10/16	 &&	 TTL	 >0	
	

Path	 2:	 dst	 in	 	
10.0.0.0/8	 &&	 TTL>0	

(b) Optimized router: code(l) symbex(r)
Figure 1: Two SEFL programs modeling a router with three entries in its FIB. Are they equivalent?

in Figure 1 that model a router with three FIB entries; the
code is adapted from [42]. Despite its simplicity, the exam-
ple highlights well the difficulty of equivalence checking.

The first program is simple to understand as it relies on a
sequence of If/Else clauses that forward the packet to the
correct output port; there is one If per FIB entry. The second
program is optimized to enable faster dataplane verification:
it does not use If instructions at all, first Forking the packet
(i.e. creating clones of it) and then using the Constrain in-
struction for each clone to restrict the packets that may leave
on each port. Constrain drops all packets that do not match
the constraint and has no effect on packets that do.

The two programs are meant to be equivalent; informally
this means that injecting any packet into equivalent input
ports of the two programs (e.g. in) will result in both
dropping the packet, or both emitting the same packet(s) on
equivalent output ports. Even though the two programs seem
trivial, checking their equivalence is not possible today.

Our goal is to automatically and scalably decide if two dat-
aplane programs are equivalent.

Before we discuss possible solutions, we first give a for-
mal definition of equivalence. Let Prog denote the set of
programs - defined as mappings (functions) between Ports
(function names) and instructions. Let Packet denote the set
of all admissible input packets. Injecting a packet p into
a program prog at port port0 will result in a set of output
packet and port pairs O(prog, p,port0) defined as follows.

Definition 2.1 Let O : Prog×Packet×Ports→ 2Packet×Ports:

O(prog, p, port0) = {(σ1, port1),(σ2, port2), ...,(σn, portn)}

be the set of packet and output port pairs resulting from the
execution of prog given packet p on input port port0.

We define network equivalence as follows:

Definition 2.2 Let p∈Packet an input packet, P1,P2 ∈Prog,
Ports1 and Ports2 the program ports of P1 and P2 respec-
tively. Let I and R be partial injective functions between
Ports1 and Ports2 called input and output port correspon-
dence respectively.
We call programs P1 and P2 equivalent with respect to in-
put packets Q ⊆ Packet, input ports port1 ∈ Ports1 and

port2 ∈ Ports2 s.t. I (port1) = port2 and output rela-
tion ω ⊆ Packet×Packet iff ∀p ∈ Q, ∃χ bijection between
O(P1, p, port1) and O(P2, p, port2) s.t.

χ(σ1i, pc1i) =
(
σ2 j, pc2 j

)
⇐⇒

R(pc1i) = pc2 j ∧ (σ1i,σ2 j) ∈ ω

Definition 2.3 We call P1 and P2 equivalent with respect to
Q⊆Packet and ω ⊆Packet×Packet iff ∀(port1, port2)∈I
P1 and P2 are equivalent w.r.t. Q, port1, port2 and ω .

Intuitively, the above definition goes to say that given the
same input packet, the number of output packets from both
programs coincide and there must be a one-to-one correspon-
dence between packets emitted by both programs. Also,
packets in correspondence must satisfy the output packet
condition ω , which typically requires that the values of se-
lected header fields in the two packets are equal.

It is the verifier who provides I , R and ω . For example,
in Figure 1, R maps i f 0 and i f 1 in a) to ports with the same
name in b) and I maps the input port in a) to that in b).
ω usually identifies a subset of header fields which must be
equal. In our running example, two packets are equivalent
if the ttl and dst fields are equal. In our evaluation, we use
sensible defaults for these functions - L2, L3 and L4 fields.

3 Approaches to checking equivalence

Exhaustive testing for all inputs is one way to test equiva-
lence, but it is not feasible to use in practice for networks:
network headers size are 64B or more, meaning that one
needs to test 2512 possible packets.

Existing work on dataplane verification allows us to scal-
ably explore how packets are processed by a dataplane
[19, 3, 29, 20, 42, 7, 30]. Intuitively, all these works try
to find equivalence classes of packets that are handled in the
same way, and explore their processing in one go; as long
as the number of such classes is small, these tools can fully
characterize dataplane processing without needing to explore
each individual packet. We will take the same approach to
answer whether two dataplanes are equivalent.

To enable scalability, all dataplane analysis tools restrict
the language in which the dataplane can be described, place
additional constraints on possible encapsulations and use op-
timized data structures to track packet equivalence classes.

All these choices limit the extent to which we can check
equivalence; we will come back to these limitations after we
discuss the equivalence properties we seek to capture.

All dataplane verification tools are able to predict the al-
lowed values of packet header fields as they exit a given net-
work port. The simplest way to check equivalence is to com-
pare which packets can exit any given port by examining the
feasible values for each header field—we call this output
equivalence.

In the example in Figure 1, consider the two if1 ports:
compared to the basic model, the optimized model wrongly
allows more packets to pass (packets in 10.10.0.0/16), so
the two paths are not equivalent, and thus the models are
not equivalent for ports if1. If, however, we consider
the two if0 ports, we find that TTL ∈ (0,255] and dst
∈ 10.10.0.0/16, thus the two paths are equivalent.

The careful reader will have noticed that the two routers
differ in how they treat packets when TTL is 0. The basic
router will drop the packet straightaway. However, the opti-
mized router will decrement the TTL regardless of its value,
and when it is zero it will wrap around to 255 as TTL is un-
signed — thus, the constraint TTL> 0 always holds. The two
models are not equivalent, but checking just output equiva-
lence is not enough to capture this problem.

The next step is to also check the constraints applied on the
original (input) values of the header fields, before any modi-
fications are made; when combined with output equivalence
checking, we are now checking for input and output equiv-
alence. With input/output equivalence, we will find that the
basic model only allows packets to pass when TTL> 1 while
the optimized model allows packets when TTL6= 1; as the two
ranges are not the same, the two models are not equivalent.

Checking for input/output equivalence is necessary to find
bugs, but on its own it is still not sufficient. To see why
this is the case, consider two trivial models where one leaves
the TTL field unchanged, while the other executes the in-
struction T T L = 255−T T L. Both the input values (0-255)
and the possible output values (0-255) of the two models are
the same, yet they are obviously not equivalent. What we
also need is functional equivalence: regardless of the initial
value of the TTL, the two values of the TTL after execut-
ing the two programs should always be equal. In our exam-
ple, functional equivalence is not true because the condition
T T L = 255−T T L never holds.

Note that all three checks are simultaneously needed to
ensure equivalence: removing a single check leads to wrong
results. We have already shown that input/output equivalence
is not sufficient and functional equivalence is needed. Let’s
show that any combinations of two checks is insufficient.

Do functional and output equivalence imply two models
are equivalent? Consider one program that simply sets TTL
= 0, and another that runs Constrain(TTL>100);TTL=0.
The output is always 0, and for any allowed packet we have
both functional and output equivalence. Yet, the first model

Algorithm Equivalence ExpressivenessInput Output Func.
HSA[19], Veriflow[20] 3 3 7 forward,filter
NetKAT [3] 3 3 3 switch,filter
NOD [29] 3 7 7∗ forward,filter,tunnel
Dobrescu[7],Symnet[42]
UC-KLEE[36]

3 7 3 programmable dat-
aplane (e.g. P4)

Table 1: Checking equivalence with existing tools.

allows all packets through, while the second only allows
those with TTL>100; the programs are not equivalent.

Input and functional equivalence are also insufficient.
Compare a NoOp program with one that forks the packet.
These two are equivalent from an input and functional point
of view, however they are not equivalent on output: the first
emits a single packet while the secqond emits two.

3.1 Existing solutions fall short

Existing dataplane verification tools (see Table 1), cannot
check equivalence for programmable dataplanes. Header
Space Analysis [19] and Veriflow [19] optimize for
OpenFlow-like processing by tracking equivalence classes
of packets through the network. Both are fast and their out-
puts can be fed to SMT solvers to check for output and input
equivalence. Unfortunately, they do not track (symbolic) as-
signments and cannot scalably check functional equivalence.

NetKAT [3] offers a strong theoretical foundation to
OpenFlow verification by reducing it to a Kleene algebra
with tests. They show that equivalence is decidable in this
algebra, and offer an efficient equivalence checking algo-
rithm [9]. Compared to HSA and Veriflow, NetKAT sup-
ports assignment but lacks support for arithmetic operations.
As such, it cannot express programmable dataplanes.

Network-optimized datalog [29] uses datalog to express
network processing and policies. NOD is more expressive
than prior tools because it also supports arbitrary tunnels, and
checking equivalence is just another datalog query that can
be fed to Z3 [6]. On the downside, it is very difficult to use
datalog queries to reason about packet multiplicity on vari-
ous ports. Furthermore, NOD’s difference-of-cubes is very
inefficient for arithmetic operations, both space-wise 2 and
computation-wise 3. Thus, NOD does not support neither
output nor functional equivalence.

Symbolic execution for network dataplanes has been pro-
posed by Dobrescu et al.[7] and Symnet [42]; it tracks the
symbolic values of header fields and supports assignment,
encapsulation and arithmetic operations. Symbolic execu-
tion is expressive enough to analyze programmable data-
planes as shown by recent work [40, 10, 32]. While symbolic
execution has traditionally been plagued by poor scalability,
applying it to dataplanes has been shown to scale quite well.

Checking dataplane equivalence via symbolic execution is
not supported by [7, 42, 40, 32, 10], but prior work from pro-
gram symbolic execution can be adopted. UC-KLEE is the

leading proposal [36]: it can check for all types of equiv-
alence for standard programs, but is not expressive enough
to deal with packet duplication, a common primitive in net-
work processing. We present netdiff, our algorithm that
fixes this shortcoming.

4 Dataplane equivalence with netdiff

netdiff uses symbolic execution to show equivalence of
two dataplanes according to definition 2.2. To enable scal-
ability and expressiveness, we consider network dataplanes
written in the SEFL language that only provides a set of basic
instructions such as if then else, a filter (constrain) in-
struction, variable assignments and jumps to predetermined
locations in the program called ports. The specificity of dat-
aplane processing consists in the existence of an additional
cloning instruction (fork in SEFL) which produces multiple
copies of the same packet and pushes them on different paths
through the network.

The symbolic execution state of a dataplane program is
represented by a set of variables (packet header values and
associated per-flow state) and a program counter which in-
dicates the next instruction to be executed. A path through
such a program is a list of program counters. Symbolic ex-
ecution begins at some initial port, takes a packet as input,
where some or all header fields can have symbolic values,
and produces a set of packets issued on output ports. Sym-
bolic execution is a method to exhaustively infer predicates
on the input variables of a program in order for the execution
to take some path [22]. The outcome of symbolic execution
is a set of pairs comprised of a path condition and the cor-
responding path. The path condition is a logical proposition
required by the inputs to a program such that execution will
follow a certain path through the program.

For concreteness, consider Figure 1 where we inject at
router input a packet with symbolic TTL and IP destination
address (dst) fields, meaning they can take any value al-
lowed in their range. The figure shows the symbolic execu-
tion of the two programs in our running example, the result-
ing paths and path conditions.

When a branch condition depends on a symbolic vari-
able, the symbolic execution engine uses a constraint solver
to check if the condition is satisfiable: if it is, the con-
straint is recorded in the path and the execution continues
on the “then” branch (path). At the same time, the engine
checks whether the negated constraint holds, and if it does
it also continues execution on the “else” branch, recording
the negated constraint that must hold. Both paths are now
explored until they finish, independently. For instance, in
the basic router program, the first If branch results in a path
where the TTL is at least 2, then decrements the TTL and
forwards the packet to the appropriate interface(s). The else
path where the TTL is 0 or 1 is also explored, but it stops
immediately because the packet is dropped.

Algorithm 1 netdiff equivalence algorithm
1: function EQUIVALENCE(M1,M2, i1, i2, p0) . Are M1

and M2 equivalent for input symbolic packet described by predicate p0
injected on ports i1 and i2?

2: Q1← DataplaneSymbex(M1, i1, p0)
3: for all (q1,π1) ∈ Q1 do
4: . for each path π1 and path condition q1
5: Q2← DataplaneSymbex(M2, i2,q1)
6: for all (q2,π2) ∈ Q2 do
7: if ¬EQP(π1,π2,q2) then
8: return false
9: end if

10: end for
11: end for
12: return true
13: end function

netdiff, our proposed algorithm, is shown in Algorithm
1 and uses symbolic execution to check for equivalence be-
tween two SEFL programs. netdiff takes as input SEFL
programs M1 and M2 and injects a set of packets given by
predicate p0 into the user-specified input ports i1 of M1 and i2
of M2. The procedure DataplaneSymbex(M, i, p), described
in detail in subsection 4.1, performs symbolic execution for
program M starting at input port i with a symbolic input
given by predicate p on the set of all possible input Packets.
Each π resulting from symbolic execution represents a path-
set, which is an individual path or a set of paths that have the
same path condition q (the latter captures cloned packets).

netdiff follows a similar approach to UC-KLEE [36]:
it performs symbolic execution of M1 (line 2) and then, for
each resulting pathset (q1,π1), performs symbolic execution
of M2 starting with initial symbolic packet described by the
path condition q1 (line 5). The algorithm then compares each
resulting pathset (π2) to (π1) for the packets in q2 (line 7).

netdiff ensures input equivalence by design because
the union of the sets of packets described by all predicates
q2 ∈ Q2 must be equal to the set described by q1, and all
sets described by q2 predicates are disjoint (see Lemma 1).
The EQP predicate’s job is to check for output and functional
equivalence for each pair of outputs. There are two main dif-
ferences between netdiff and UC-KLEE, both stemming
from packet cloning, that we describe in detail below:

1. The fork instruction can result in multiple paths for
the same set of input packets; for netdiff to work cor-
rectly, the standard symbolic execution is followed by
processing that groups output paths that have overlap-
ping path conditions into pathsets (see §4.1).

2. Finding the right path equivalence predicate EQP to re-
flect Definition 2.1 is also tricky. For sequential impera-
tive languages, this predicate is a simple equality check
for the output values of the two paths being compared.
To cope with packet cloning, we need to compare path-
sets instead of individual paths (see §4.2).

Algorithm 2 Dataplane symbolic execution
1: function DATAPLANESYMBEX(M, i, p0) . Run symbolic execution by

injecting the symbolic packet described by predicate p0 in port i.
2: Q← Symbex(M, i, p0)
3: L← /0 . L holds pathsets with disjoint conditions
4: for all (q,π) ∈ Q do . Sieving algorithm to collapse paths
5: for all (l,s) ∈ L do . with overlapping path conditions.
6: if SAT (q∧ l) then
7: L← L\{(l,s)}
8: L← L∪{(q∧ l,s∪π),(l∧¬q,s)}
9: (q,π)← (q∧¬l,π)

10: end if
11: end for
12: if q 6= /0 then
13: L← L∪{(q,π)}
14: end if
15: end for
16: return L
17: end function

4.1 Dataplane symbolic execution

Algorithm 2 shows our dataplane symbolic execution algo-
rithm. On dataplane code, standard symbolic execution Sym-
bex returns tuples of (path condition, path) in the set Q, but
the path conditions are not guaranteed to be disjoint, as they
would be in a standard program. This can be seen in our run-
ning example (Figure 1.b): symbolic execution yields Path 1
and 2 with overlapping path conditions (dst ∈ 10.10/16).

Dataplane symbolic execution performs sieving to elim-
inate path condition overlaps, returning pathsets with dis-
joint path conditions. To achieve this, the algorithm first runs
standard symbolic execution, and then proceeds to group all
paths that have overlapping path conditions (lines 6-9).

The result is collected into L, which starts as the empty
set and always contains pathsets with disjoint path condi-
tions. Whenever there is a path condition overlap (which we
test with Z3), we remove the existing pathset from L and
insert two new pathsets: one containing the overlapping con-
dition q∧ l and the union of the paths, and one corresponding
to original pathset with updated path condition l ∧¬q. The
iteration then continues with the remaining path predicate
(q∧¬l); note that the newly added entries are not revisited.

In the example from Figure 1.b, L has two pathsets:
(10.10/16,{Path1,Path2}) and (10/8\10.10/16,{Path2)}.

The complexity of this algorithm is O(|Q|2); as symbolic
execution can yield many paths, this cost can quickly become
prohibitive. Changes to the symbolic execution procedure to
reduce this cost to be proportional to the number of fork
instructions are part of our future work. Instead, in our im-
plementation we use a heuristic where we only run the algo-
rithm for broadcast packets and disable it for unicast packets;
the user can override this behavior via a command-line flag.

4.2 Equivalence between pathsets

Given pathsets O1 (from M1) and O2 (from M2) and path con-
dition pc, we need to decide if the two pathsets obey func-

Algorithm 3 EQP predicate between two pathsets
1: function EQP(O1,O2, pc). True if bijection between O1 and O2 found
2: . O1 and O2 are pathsets and pc the path condition
3: if |O1| 6= |O2| then
4: return false . If cardinality different, there is no bijection
5: end if
6: E←ComputeEdges(O1,O2, pc)
7: G = (V = (O1 ∪O2),E)
8: return MaxBipartiteMatching(G)
9: end function

Algorithm 4 Edge computation
1: function COMPUTEEDGES(O1,O2, pc) . Return the adjacency matrix
2: . O1 and O2 are pathsets, pc the current path condition
3: for all (σi, pi) ∈ O1 do
4: for all (σ j, p j) ∈ O2 do
5: E[i][j] = piRp j . output port equivalence
6: if E[i][j] then
7: E[i][j] = ¬SAT (pc∧¬(σiωσ j)) . Func. equiv.
8: end if
9: end for

10: end for
11: return E
12: end function

tional and output equivalence.
First, consider the simple case where the two pathsets have

exactly one path each. Let σ1 and σ2 denote the values of the
header fields for the two paths at the output ports, expressed
as constants or functions of the symbolic header values at
input. To decide equivalence according to Definition 2.1 we
must check whether: (1) the two paths exit on equivalent
output ports and (2) the output packet values satisfy the ω

relation (i.e. the header fields of interest are the same for all
input packets described by pc).
netdiff checks equivalence between two paths as follows:
piRp j∧¬SAT (pc∧¬(σ1ωσ2)). The port check is obvious;
the second check asks the solver for an input packet that sat-
isfies pc and results in output packets that are not equivalent.
If the check is not satisfiable, functional equivalence holds
for all packets allowed by path condition pc. In this case,
there is a single path in each pathset and input and functional
equivalence guarantee output equivalence.

Now, consider the case where the two pathsets have differ-
ent number of paths. This implies the two programs are not
equivalent because there is some input packet which results
in a different number of output packets being emitted.

Finally, consider the remaining case where the two path-
sets have the same cardinality N > 1. To check equivalence
we must find a bijective mapping between the paths in O1
and O2, i.e. each path in O1 must have a path in O2 that
is equivalent, and all paths in O2 must have an equivalent
in O1. If such a mapping exists, then the two pathsets are
equivalent, otherwise they are not.

We now show that finding this bijection can be reduced
to the classical problem of maximum bipartite matching
(MBM). MBM takes as input a bipartite graph G = (V =
(X ∪Y),E) with X ∩Y = /0, where X is the set of workers

and Y is the set of tasks such that |X |= |Y |. If worker i qual-
ifies for job j, there is an edge from i to j, i.e. E[i][j] = 1.
In MBM, no worker can take more than a job; the algorithm
decides whether all workers can get jobs.

The EQP equivalence algorithm is implemented in Algo-
rithms 3 and 4. O1 and O2 are the pathsets to be compared;
their paths will form the vertices of our bipartite graph. We
have an edge between two paths if the paths are matching:
E[i][j] = 1 iff the output ports are corresponding w.r.t. R and
the output packets are equivalent w.r.t. ω . EQP calls MBM
to find whether all paths in O1 have an equivalent in O2.
If the answer is positive. then is a bijection between these
paths which guarantees both functional equivalence and out-
put equivalence. As input equivalence is ensured by the way
in which we run symbolic execution, netdiff correctly de-
cides whether the two programs are equivalent.

The bottleneck in EQP is the necessity of computing the
output equivalence between all pairs of paths in O1 and O2
in order to derive the graph (Algorithm 4, line 6). Comput-
ing satisfiability of a complex formula is a hard problem and
dominates the entire equivalence decision procedure. That is
why our algorithm first checks for output port equivalence;
when this check fails, the solver call in Line 6 is not made.

4.3 Correctness and complexity
It is worth noting that we can decide the equivalence of
two dataplane programs only if they terminate on all inputs.
netdiff uses an existing loop detection algorithm to detect
infinite loops [43], which leads to the following possibilities:

• Both programs are infinite-loop free. We
can decide on their equivalence with a worst
case complexity of C(DataplaneSymbex1) + n ·(
C(DataplaneSymbex2)+m · p2 ·C(SMT)

)
, where n

and m are the number of M1’s and M2’s pathsets, p is the
maximum number of paths in any pathset and C(SMT) is
the complexity of the SMT solver.

• When only one of the programs contains an infinite loop,
equivalence is decidable - the programs are not equivalent.

• When both programs have infinite loops, we cannot decide

Theorem 4.1 EQUIVALENCE(M1,M2, i1, i2, p0) is true iff
M1, M2 are equivalent w.r.t. Q = {x ∈ Packet|p0(x) = true}
and input ports i1, i2.
Proof: Because of the properties of symbolic execution listed
in Appendix A, all path conditions corresponding to pathsets
resulting after symbolically executing M2 are equivalence
classes of the initial input space w.r.t. the outcomes of M1
and M2. The full proof can be found in Appendix A. �

5 Implementation

Our implementation of netdiff takes as input two SEFL
programs, together with two correspondence maps, one be-

tween their input ports and the other with respect to their out-
put ports. By default, it injects basic Ethernet/IP/{TCP, UDP,
ICMP} packets into the provided input ports and checks for
equivalence between a number of header fields including IP
and Ethernet source and destination, TTL, IP protocol, L4
ports, etc. Note that both the symbolic input packet and the
fields to be checked can be customized by the user if needed.

When equivalence fails, netdiff outputs a series of tu-
ples (Input condition, Offending path in program 1, Offend-
ing path in program 2, reason), where the reason may be
either different number of output packets, unmatched ports,
unmatched output fields. A path in program x is a series of
symbolic output packets together with a list of visited ports
and either the output port or the failure reason.

We ran netdiff on the example shown in Figure 1. It
takes around 200ms to check equivalence and output the re-
sults to file. The tool reports 10 symbolic packets that were
treated differently by our two programs. The first five pack-
ets catch the TTL decrement bug in the optimized model (the
TTL underflows when it is zero). The other five packets
highlight the second problem: there is an overlap between
packets exiting on port if0 in the basic model and if1 in
the optimized model - i.e. a packet in 10.10/16. netdiff’s
output makes it easy to find the bug and then correct it.
Core implementation. The core of netdiff is imple-
mented in just 200 lines of Scala code. We also implemented
a series of additions and changes to Symnet resulting in cca.
2kLOC that ensure netdiff behaves correctly. In detail,
we implemented sieving (Algorithm 2) that takes the out-
puts of Symnet—a list of tuples (Input condition, single path
through network)— and outputs pathsets of the form (path
condition, paths) with non-overlapping path conditions. Fur-
thermore, we changed the internal representation of Sym-
net’s state to allow a clean separation between path condi-
tions and current packet values, in order to make netdiff’s
internals more scalable and easier to test. To aid debugging
and model validation, we also implement an input generator
which produces an example packet from a path condition.

5.1 OpenStack Neutron Integration
netdiff requires two SEFL programs to check equivalence.
To generate SEFL programs for our evaluation, we have
both created new translators (see below) and re-used exist-
ing ones: Vera to translate from P4 programs to SEFL [40]
and existing translators from router FIBs to SEFL [1].

Checking OpenStack Neutron is our most significant use
of equivalence so far; it required 15KLOC of Java, Scala and
ANTLR4 parser grammars to automatically integrate with
Neutron and translate to SEFL. Out of this, only 1KLOC
is OpenStack-specific, while the biggest part consists of re-
usable translators for iptables, OVS, ipsets, which are widely
deployed in numerous scenarios - e.g. Kuberenetes. Further-
more, this work is one-time only and can be further used
for any other verification purpose. We contrast this effort to

other verification techniques which also require writing and
maintaining correctness specifications. We describe our im-
plementation here.

OpenStack is an open-source cloud management platform.
Similarly to other cloud platforms (e.g. EC2), OpenStack ab-
stracts away the complexity of the provider’s infrastructure,
allowing the tenant to create and manage virtual machines
with ease. Tenants may connect their VMs in rich network
topologies comprised of VLANs connected via routers and
NATs, and also enforce security policies at VM level.

Neutron is the networking service of OpenStack and is
implemented as a distributed middleware application which
takes the tenant network configuration and implements it in
the actual network. Neutron’s operation is complex as it de-
pends on multiple software components, so bugs may oc-
cur anytime during the translation process leading to non-
compliance to the tenant configuration. Neutron’s com-
plexity and its distributed deployment makes manual trou-
bleshooting cumbersome.

To verify whether Neutron correctly implements a given
tenant configuration, we automatically generate two SEFL
models and use netdiff to check their equivalence. The
first model is derived from the tenant configuration. The sec-
ond model is created from a snapshot of the actual Openstack
deployment resulting after the VMs are instantiated and it in-
cludes OVS OpenFlow rules, iptables rules, etc.
Modeling tenant configurations. Our translator uses a
tenant-level snapshot of the configuration (a dump of the
Neutron database in practice) and then generates SEFL code
that implements each user defined resource (e.g. router,
switch, NAT). The simplest abstraction is a virtual network
which forwards packets according to a static CAM table
mapping Ethernet addresses to virtual ports. Virtual routers
perform L3 routing and provide virtual machines with access
to and from the Internet (via NAT). Neutron also defines se-
curity groups which are rules that filter traffic at VM level.
Each abstract object is translated separately to SEFL, and
they are connected using links according to the tenant con-
figuration. For more details, we refer the reader to[41].
Dataplane modeling. A Neutron deployment is usually im-
plemented as interconnected Linux servers running a num-
ber of network processing tools. We implement parsers and
SEFL translators for many of the Linux Kernel packet pro-
cessing primitives - iptables rules, ipsets, OpenVSwitch
(OVS) software switches [33], OpenFlow tables, VXLAN
tunnels, routing tables, Linux Bridges, ARP tables. We then
interconnect the distinct components based on the physical
or virtual links acquired from the topology.

Both iptables and OVS bridges use similar concepts such
as tables and rules which match against packet header fields
or per-packet metadata and apply one or more actions. To
translate such matches we generate simple If/Else con-
structs; provided that all matches in a rule are satisfied, an
action will be fired which will either alter the state of the

packet (e.g. push a tunnel header) or alter the processing
pipeline (e.g. drop or forward to further processing).

Modeling stateful processing in SEFL is straightforward
as long as the state depends only on the given flow (i.e.
it is not global state) [42]. We use a similar technique to
model the connection tracking engine (or conntrack) imple-
mented within the Linux Kernel. Conceptually, conntrack
defines a connection as a 5-tuple and tracks it independently.
To model conntrack we use two sets of metadata variables
called forward and backward expectations. The former rep-
resent packets flowing in the same direction as the initial
SYN packet, while the latter represent reply packets belong-
ing to the same connection. When state is created for a con-
nection (a conntrack commit action), we store it as metadata;
the metadata is then checked when execution arrives at the
conntrack module and the appropriate action is taken.
Dataplane modeling caveats. One of the issues that we en-
countered during our experiments was missing information
from the dataplane snapshot which lacked ARP tables and
switch CAM tables. A possible solution to bypass this issue
is to simply modify the acquisition script to gather ARP ta-
bles for all Linux network namespaces and CAM tables for
all OVS and Linux Bridges in the topology. However, these
entries would only depict a transient state of the network dat-
aplane with incomplete or stale information.

Our solution implies converging the ARP and CAM tables
into a steady, concrete state. Following the observation that
cloud provider middleware implements anti-spoofing tech-
niques, we use the constraint solver’s capabilities to derive
all possible ARP packets which may reach a certain point
in the network. With this information, we infer (IP, MAC)
pairs for all network namespaces in the system. We use a
similar approach to infer all CAM tables on all switches in
the deployment. We implement our approach in a tool called
ARPSim and apply it to our department’s Openstack deploy-
ment containing 87 servers. For this deployment, ARPSim
discovers 885 ARP entries in 4 minutes and infers 28889
CAM entries in L2 switches in 7 minutes.
Mapping ports. As discussed in §2, netdiff provides sen-
sible defaults for mapping ports and deciding what packets
are equivalent. For Neutron, we map virtual ports to corre-
sponding OpenVSwitch tap interfaces (functions R,I).

6 Evaluation
We run our evaluation of netdiff on a server with a Xeon
E5-2650 processor @ 1.7GHZ and 16GB of RAM. Our main
goal is to understand whether netdiff can catch interest-
ing bugs or behaviors in practice, for realistic network data-
planes. We examine a range of applications including Open-
stack Neutron, P4 program equivalence, and the correctness
of FIB updates. Finally, we test netdiff’s scalability and
contrast its performance to NoD [29]. The scenarios de-
scribed below make use of header arithmetics and packet du-

A B

green red

Same MAC

Tenant
expectation

Figure 2: Identical
trunked MACs

	
	
	
	

Tenant	 Configura-on	

A	

isolated	

B	

private	

Network	 isola-on	
assump-on	

	
	
	
	
	

Compute	 Node	

A	 B	

	 	 	 	 	 	 	 OVS	 br-‐int:	
*,	 ac0ons=NORMAL	
…	

OVS	 rule	
matched	

instan0ate	

Figure 3: Network isolation bug

plication primitives and motivate the use of netdiff instead
of systems like HSA, NetKAT or NoD.

6.1 Neutron bugs
To validate netdiff’s capabilities in finding production
bugs, we begin our experiments by first reproducing known
bugs and discovering a number of unknown bugs in Open-
stack Neutron in a small scale deployment in our lab. Our
experiments here focus mostly on functionality.

While Neutron is only one of many cloud networking
drivers, the same method applies to most network virtual-
ization solutions deployed by commercial cloud providers.
Identical MAC Addresses for trunking ports. The first
bug appears in the configuration shown in Fig.2: the tenant
defines a topology with two VMs connected via 2 networks
(red and green). Machine A is connected via a trunk port
to both the red and green networks while machine B is only
connected to the green network. The tenant-level expecta-
tion for this topology is that all packets from B towards A
reach their destination. However, if A uses the same MAC
for both its trunked ports this prevents communication be-
tween A and B. This bug was reported on the OpenStack
Neutron bug tracker 4. netdiff found a number of failed
states which indicated that all packets leaving machine B
were being dropped in the forward path by an anti-spoofing
rule in the br-int bridge connecting the two machines.
Allowed address pairs bug. An allowed address pair is an
extra IPv4, MAC address pair specifically tailored to allow
bridging at VM level. Thus, the expected tenant-level be-
havior is that traffic with destination addresses in the list of
allowed address pairs for a VM be allowed on egress. 5

However, an implementation bug in the firewall module
stops traffic from getting through. Thus, traffic issuing from
VM A towards VM B is correctly forwarded to VM B, but
the reverse traffic from VM B to VM A is dropped. The
issue is correctly traced by netdiff which indicates failed
(non-equivalent) states between the tenant and the provider
perspectives. In the tenant view, A and B have bidirectional
connectivity, whereas in deployment connectivity is broken.
netdiff correctly captures the error in the reverse packet
run and successfully identifies the offending rule.
No firewall enforcement on ICMP Type/Code. Security
group support for ICMP filtering was not implemented for
older versions of Neutron 6. netdiff showed how ICMP
traffic that is meant to be blocked is allowed in the dataplane.

Filtering with security groups. Security groups are collec-
tions of ACL rules that apply to all VMs part of that group.
When specifying connectivity outside the group, tenants can
use prefixes or remote security groups to specify the exter-
nal source of traffic. There was a bug in the implementation
of filtering when remote security groups where used. In our
setup, we had two groups called green and blue and a rule
that all traffic from the green group should reach the blue
group 7. We instantiated three VMs: A in the blue group, B
in the red group, and C in both. At runtime, C could not be
reached by neither A or B, violating the tenant configuration.
Inconsistent connections in the tracker. This bug appears
when connectivity is repeatedly enabled and disabled for the
same host-pair. We ran our test with VMs A and B, and the
tenant allows traffic from A to B. In Neutron, all ACL rules
are directional, and they are implemented using the connec-
tion tracker. In this case, A can initiate connections to B and
B can respond, but B cannot initiate a connection to A.

After instantiation, A starts a connection to B which cre-
ates per-connection state in the conntrack module. Immedi-
ately afterwards, the tenant disallows traffic from A and B,
which marks the connection in the conntracker as “dead” but
does not delete the conntrack entry. When packets of the
same connection reach conntrack, they will be dropped as
expected. The problem appears when the tenant re-enables
traffic from A to B: the flow entry mark is not cleared, and all
subsequent packets are incorrectly dropped. 8 We catch this
bug by using symbolic conntrack state. The incorrect behav-
ior is captured and reported, highlighting the offending rule
and the conntrack conditions which trigger the behaviour.
netdiff captures the bug in less than 2 minutes in our

simple deployment, but larger scale experiments indicate that
using symbolic state variables signficantly increase execu-
tion time. This is why we typically use an initially empty
conntrack state for all servers in the topology.
A network isolation bug was discovered solely using
netdiff and was reported as a Neutron bug 9. In this setup,
we have two machines running on the same host as in Fig-
ure 3, each connected to distinct VLANs. Assume that B is
completely isolated from the rest of the network. Then, the
expected behavior at tenant level is that no traffic from B can
ever reach A. Next, assume host A is part of a permissive
security group whereby ingress HTTP traffic is allowed; fur-
ther assume that B knows A’s MAC and IP addresses. Then,
HTTP traffic from B will reach A, breaking isolation. This
bug exists even when B belongs to a different tenant.
netdiff successfully detects the erroneous behavior, pro-

viding a packet from B that can reach A. To validate the bug,
we successfully reproduced the behavior in the deployment.
We note that the bug is difficult to catch with standard test-
ing because ARP traffic was correctly blocked, and a simple
http-ping from B to A would fail. Because netdiff uses
symbolic packets, it finds a valid packet which will reach B.
Old Linux Kernel. This is a configuration bug that we stum-

bled upon when deploying Openstack in our testbed. Neu-
tron’s OVS adapter needs kernel support to access the Net-
filter’s conntrack module; support exists since version 4.3.

In our deployment, we had a compute node with kernel
version 4.2. We deployed two VMs with security groups to
allow all traffic between them. However, since there is no
kernel support for connection tracking (as required by the
firewall module), the insertion of security rules silently fails,
and all traffic is dropped. netdiff caught this behavior by
reporting successful execution at tenant level while the same
input packet was dropped in the deployed dataplane.
Tunnel endpoint listening on localhost. The issue arises
when Puppet, a provisioning tool, erroneously binds a tunnel
endpoint on a compute node to the localhost address. The ef-
fect is that the VMs hosted on the affected compute node will
not be able to communicate with VMs running on different
compute nodes when in principle they should.
Hosts behind a NAT reachable from the outside. This is-
sue was highlighted solely by running netdiff in a public-
private network scenario. Tenant A creates a private virtual
network and connects it to a public network via a virtual
router, configuring source NAT on the external gateway of
the router. He then deploys some virtual machines within
his own private network and enrolls them in a permissive se-
curity groups allowing all ingress traffic. Tenant B also cre-
ates a virtual machine that he plugs directly into the public
network and manages to find the IP address of the router’s
external gateway and the VM’s private address.

Because the router is configured in SNAT mode, A would
expect that no traffic from outside his network can initiate
connections to any of his machines. However, Neutron vir-
tual routers perform routing between the external and the in-
ternal network regardless and thus B can reach both A’s VMs.
ARP spoofing. Assume a VM responds to an ARP request
by stating that the queried IP address can be found at a differ-
ent MAC than the one defined on the VM’s interface. Neu-
tron’s network abstraction asserts that no spoofing should
be possible. Spoofing prevention is implemented by having
the integration bridges 10 perform port-based checking on
ARP replies to ensure that IPv4 addresses cannot be modi-
fied (ARP SPA field) and all L2 frames coming from the VM
have expected L2 source addresses.

However, no explicit check is performed to ensure that
the advertised L2 address (ARP SHA) is the expected one.
Thus, a malicious or corrupt ARP implementation in a VM
may successfully transmit spoofed ARP pairs.
Unexpected interactions with libvirt. The following con-
figuration bug arises when deploying libvirt-based NAT net-
working alongside Neutron’s iptables-based security groups
mechanism. The libvirt toolset automatically creates
a default virtual network with some prefix P (usually
192.168.122.0/24) and installs a series of iptables rules in
the NAT table, POSTROUTING chain in order to perform

address translation for outgoing VM traffic. This issue was
discovered in one of the production settings we evaluated.

Say a tenant creates a virtual network with prefix P, then
all outgoing traffic from a VM in this network to other net-
works will be dropped. netdiff quickly discovers a non-
equivalence whenever the IP source address is in P and the
destination address is not in P. We reproduced the bug, val-
idated the model in our testbed and discovered that indeed
packets issued from network A were being NAT-ed due to
the unwanted interference with the rules generated by libvirt.
Troubleshooting VM connectivity. A common configura-
tion issue confirmed in production settings appears in tenant
networks with many security groups. The tenant wishes to
enable communication between two of its VMs but mistak-
enly adds them to different security groups (the groups may
have similar names). By default, security groups are con-
figured such that they allow ingress traffic from machines
belonging to the same group, but not from other security
groups. After deployment, the user notices that no traffic
flows between its VMs.

Troubleshooting connectivity problems is difficult for ten-
ants, as it requires manually checking the ports of a given
VM, and the security groups which they belong to. With
netdiff, the administrator is able to quickly assess that the
tenant and provider perspectives are identical. Thus, there
must be a misconfiguration at tenant level which does not
meet the user’s expectation. Symbolic execution of the ten-
ant topology indicates that all failed outcomes are due to an
ingress security group which is not matched at B’s level.
Iptables optimizations. Llorente et al. [28] aim at short-
ening packet processing pipelines in order to enhance per-
formance of Neutron’s iptables driver. We set out to check
whether the optimization algorithm works correctly on a few
inputs, i.e. it preserves the same packet processing behavior.

To achieve this, we deploy a one-node OpenStack deploy-
ment with 9 running VMs connected to 9 different security
groups. Since all iptables optimizations are localized within
the VM access Linux bridges, we only test equivalence at
this component level. netdiff takes an average of 9.4s per
VM to show that the optimization algorithm doesn’t break
any of the underlying logic. The result shows little perfor-
mance degradation with respect to normal symbolic execu-
tion of the same deployment using Symnet (7.3s).

6.2 Checking a large Neutron deployment
In order to test netdiff’s scalability and discover novel
bugs, we used a snapshot from our department’s Openstack
deployment. It consists of 87 compute nodes, running a to-
tal of 243 virtual machines. The deployment contains 14960
iptables and 11375 openflow rules which implement the 17
tenant-administered virtual networks and 2 public networks.

In the previous section, netdiff caught Neutron bugs
in seconds by checking equivalence of tenant-level and

Network # ports in network
1 3 26 57 164

Virtual (s) 0.03 0.03 0.04 0.02 0.02
Physical (s) 0.23 0.14 0.14 1.2 3.2
netdiff (s) 2.1 1.65 2.28 12.8 31.8

Figure 4: Neutron L2 reachability

Security
group

rules in security group ACL
2 6 12 13 19

Virtual (s) 0.08 0.08 0.09 0.08 0.09
Physical (s) 0.12 1.09 1.51 2.48 1.57
netdiff (s) 0.24 1.74 6.87 8.51 2.47

Figure 5: Ingress security groups
Rewriter

Ingress	
Router	

Egress	
Router	

Copy-‐to-‐CPU	

CPU	

W
AN

	

LA
N
	

Figure 6: A modular P4 NAT

provider-level network models. In the departmental deploy-
ment this approach is not feasible. For instance, when testing
L3 unicast reachability, netdiff failed to finish processing
due to exponential state explosion, a common issue of sym-
bolic execution. First of all, the generated SEFL code was
introducing a lot of useless branching in lookup tables - such
as ARP tables. We used a state-merging technique to miti-
gate this issue [24]; the results show a significant decrease in
processing time in some scenarios, but increases in others -
whenever the number of elements in the table is small.

To further tame the complexity we used a compositional
approach: we test equivalence between corresponding parts
of the two dataplanes instead. For Neutron we tested three
equivalence checkpoints detailed below. As the size of each
component is small, the time to check equivalence is reduced
to seconds or tens of seconds. Since our implementation
is compositional by design, identifying distinct components
and running netdiff against them entailed a small amount
of extra work - cca. 200LOC.

L2 reachability equivalence can be checked by using a
symbolic ARP request in both the tenant and provider net-
work. In table 4, we show average execution times to check
equivalence for layer 2 reachability using ARP broadcast
probes, contrasted with plain symbolic execution in either
network. As the number of paths to be explored grows with
the number of ports size of the virtual network, equivalence
checking time goes up from 2.1 seconds to around 30 sec-
onds. To put the results in perspective, parsing all the con-
figuration files and code generation take around 15s each.

Security group compliance. For each VM in the deploy-
ment we test if its implementation is compliant to the secu-
rity groups (both ingress and egress) defined by the tenant.
netdiff checks egress security groups quickly (200ms on
average), and takes longer for ingress security groups (table
5) because tenants tend to use default-on egress policies.

Virtual routers must behave correctly with respect to their
expected functionality including routing, floating IPs and
source NAT. The physical implementation of a layer 3 router
is well delimited within the boundaries of a Linux network
namespace, so we can simply clog outgoing corresponding
interfaces in both virtual and physical topologies and inject
packets at input interfaces. Depending on the number of
router interfaces, as well as on the number of floating IPs
defined therein, the time for equivalence checking goes up to
80s for a router with 48 floating IPs.

6.3 P4 equivalence
P4 [5] is a high level language that enables programming
dataplanes and can also be efficiently implemented in hard-
ware. Despite its apparent simplicity, coding P4 programs
is tricky: unexpected behaviors may be accidentally intro-
duced during the design or runtime phase. In this section
we show how netdiff can be used to determine behavioral
equivalence between different P4 programs with seemingly
identical dataplane configuration and functionality.
Monolithic NAT vs modular NAT. One of the simplest P4
tutorials is a NAT that includes three distinct pieces of func-
tionality: a NAT rewriter, which simply sets packet fields
to given mappings, two routers, one for the LAN and one
for the WAN, each of which performs longest prefix match-
ing, assigns next hop address and selects the proper output
port and a CPU redirector, which encapsulates a packet and
sends it to a control-plane application if no NAT mapping is
found. Even for a simple set of table rules, understanding the
interactions between these different pieces is difficult.

To check whether the functionality of our P4 NAT works
correctly, we wish to compare it to a modular design that
runs different functionality in separate P4 programs which
are connected. We still prefer the monolithic approach for
deployment because it is cheaper to implement and performs
better at runtime than our modular design that serializes and
de-serializes packets between the interconnected boxes.

In Figure 6 we show how the modular NAT works. We
used Vera [40] to generate models for both NATs and used
netdiff to check whether they are equivalent. In around
5s, netdiff shows that the implementation of the mono-
lithic NAT is not equivalent to the modular implementation.
In the monolithic implementation, it is possible to translate
a packet intended for the LAN and then send it on the LAN
interface. The same behavior is not possible with the mod-
ular NAT because the routing tables corresponding to LAN
and WAN networks are split into 2 distinct routers - one for
ingress and one for egress.
Which is the correct order of table application? In our
next example, we take the simple router P4 tutorial and we
enhance it to enable ACL processing. Assume that the P4
programmer initially instructs the ingress pipeline to first
route packets and then apply ACL. In a subsequent run, the
programmer decides to reverse the order in which the two ta-
bles are applied in order to avoid routing packets that would
be dropped by the ACL; this approach seems more efficient.
In our program, the ACL table has two actions: one that
drops packets and one that passes them through (see Fig. 7).

When we compare the two programs with netdiff, it is

ACL table:
table acl {

reads { ipv4.srcAddr : exact; }
actions { _drop; _nop; }

}

Entry:
table_add acl 10.0.0.3 _drop

Attempt 1:
apply(ipv4_lpm);
apply(acl);

Attempt 2:
apply(acl);
apply(ipv4_lpm);

Figure 7: Ways of adding an ACL to a P4 router.

surprising to find they are different. The first version matches
our expectation that unwanted packets (10.0.0.3) are indeed
dropped. The second version surprisingly allows all packets
through. This is because the packet is not actually dropped
in the ACL table. The P4 spec states that a drop action within
the ingress pipeline only marks the packet for rejection and
continues execution from that point on. When the dropped
packet hits the ipv4 lpm table, the default action sets the
egress spec to that of a valid interface, reviving the packet.
Trimming switch.p4 to size Recent work on verifying P4
programs [27, 40, 32, 10] highlights the difficulty of pro-
gramming correct P4 programs. Instead of writing software
from scratch. network operators can use existing catch-all
implementations and adjust them to their needs. An example
is switch.p4 [45] which provides a full implementation of
production-ready ToR switch. switch.p4 contains 131 tables
and a total of 6KLOC; deploying this program is wasteful
when one does not need all the functionality therein. If fewer
tables are synthesized, they can hold more match-action rules
allowing scope for specialization.

We used netdiff to help us trim switch.p4 while main-
taining equivalence for IPv4 processing. We began with a
working configuration of switch.p4, including concrete table
entries for all entries. We then iterated by (1) removing func-
tionality irrelevant for basic IPv4 routing and (2) generating
the SEFL model for the resulting program using Vera’s trans-
lator [40] (3) checking equivalence to the full program. In all
our tests, equivalence testing took between between one and
two minutes, depending on the number of table entries.

We confirmed that much processing was not needed for
the correct functioning of v4 routing and can be safely re-
moved: IP sourceguard, QOS processing, sFlow, Integrated
services, Storm control, MPLS, etc. Removing these from
the source code significantly reduces the total size of the ta-
bles (e.g. only sourceguard had space saved for 1500 en-
tries, and INT processing makes up for 10% of the LOC in
switch.p4). On the other hand, setting ingress port mappings,
validating the outer header, handling VLANs, as well as the
obvious IPv4 processing (longest prefix match, reverse path
forwarding checks, etc.) are needed for correct functioning.

6.4 Monitoring FIBs in a production network
For the last six months we have been using netdiff to mon-
itor routing in our university’s network. For each of the 9
routers that make up the network core, we have have taken
a FIB snapshot every 6 hours, and then checked the equiva-
lence between FIB snapshots from the same router. We aim

 0.001
 0.01

 0.1
 1

 10
 100

 1000
 10000

 0 10 20 30 40 50 60 70

Eq
ui

va
le

nc
e

tim
e

(s
)

prefixes in FIB (thousands)

netdiff
NoD

Figure 8: Router equivalence checking: netdiff vs. NOD

to help our admin understand how routing changes over time.
The snapshots vary in size from about 700 entries up to 20K
entries for the core router. Equivalence takes 100ms to com-
pare the smallest FIBs, and up to 50s for the largest ones.

Only in rare cases (about 5%) two snapshots of the same
router FIB are equivalent. However, most of the time, the
differences were due to churn in directly connected hosts
(92%). netdiff did uncover interesting differences: a few
routers had empty FIBs after recovering from a failure (1%)
or were missing certain routes due to link-failures (2%).

6.5 Is my datacenter network one big switch?

Fat-trees [2] are the de-facto standard datacenter network,
and they aim to provide a big-switch abstraction to end-hosts.
We use netdiff to check whether the myriad of intercon-
nected switches is equivalent to a single switch to which end-
hosts are directly connected. We used Batfish [8] to generate
the data planes for a fat-tree network with 125 switches (50
edge, 50 aggregation and 25 core switches). The question
we asked is whether every port of every edge device behaves
as if it was a port of the corresponding big-switch.

The verification procedure generates SEFL models for
both the fat-tree and the big switch from the FIBs given by
Batfish. We then run equivalence by injecting a packet with
symbolic destination address into equivalent server-facing
switch ports in the two topologies; the check takes around
4 minutes.
netdiff found that the two models are not equivalent:

every edge switch had at least one /32 prefix which wasn’t
advertised to the core (due to the configured routing policy),
rendering the prefix unreachable from different edges. This
contradicts the big switch assumption.

6.6 Scalability
Our experiments so far have highlighted the usefulness of
netdiff, which works well in practice despite its poor the-
oretical complexity (§4) given by the exponential nature of
symbolic execution. To better understand netdiff’s perfor-
mance, we compare it against Network Optimized Datalog
[29] when testing equivalence of two routers with small to
medium-sized routing tables.

We generate NOD rules from router FIBs and measure
the total equivalence checking time. We run tests involving
reachability analysis and tests involving input, port and func-
tional equivalence. Functional equivalence tests with NOD
ran out of memory, even for small inputs.

Figure 8 shows the runtime of both tools against the num-
ber of entries in the FIB. Note that the NOD line corre-
sponds to input and port equivalence; the netdiff line cor-
responds to full equivalence checking (Definition 2.1). As
expected, the runtime grows exponentially for both NOD and
netdiff. For unicast reachability, NOD proves cca. an or-
der of magnitude faster than netdiff, but the difference di-
minishes for larger inputs; for the largest FIB netdiff is
faster than NOD. Overall,these results show that netdiff’s
more powerful equivalence comes at modest runtime costs.
Overhead breakdown. We also measured the time taken by
each of netdiff’s components: we measured separately the
symbolic execution for M1 and M2, their sieving (algorithm
2), and finally the equivalence testing time (Algorithm 3).
The results show that M2 symbex time grows linearly with
the number of output path conditions from M1. However,
M2 sieving time is constant, due to the fact that the number
of feasible outcomes from M2 is constant - most often equal
to one in case when M1 and M2 are very similar. Finally,
equivalence testing time is negligible.

We also noticed that for broadcast packets, our sieving al-
gorithm is faster since the number of solver queries is linear
in the number of output packets in the network. To reduce
the sieving time, we disable it for unicast packets.

7 Related work

Our observation that equivalence checking is a simple form
of specification is not novel: it has been used previously for
program regression verification [44, 36] and to check com-
piler correctness [23, 12], among other applications.

Note that, in contrast to compiler verification, which at-
tempts to show that compilation preserves semantic equiv-
alence on all possible source programs, netdiff limits its
scope to only showing equivalence between concrete data-
plane snapshots - i.e. a single source program.

There exist a wide range of specification languages and
verification tools for network dataplanes; we discuss here
the ones not covered in section 2. Margrave is a tool that
checks firewall configurations against user-specified policies
in first-order logic [31]. Anteater [30] translates networks
and reachability queries to SAT formulae, while NetPlumber
[18] takes as input a graph and network boxes modeled
as bitwise transfer functions, and uses HSA [19] to check
for compliance. Finally, NetCheck [35] takes specifications
written in CTL and uses symbolic execution with Symnet
to check them. All these tools have merits, yet one of their
biggest problems is the difficulty of specifying what the net-
work is meant to do. In many cases, the spec underspecifies

the behavior, meaning that potential problems are missed.
Another line of work focuses on more rigorous specifi-

cations which are first proven correct and then translated to
dataplane rules. Examples here include Kinetic [21] which
takes Finite State Machine descriptions of network function-
ality, FatTire [37] that takes regular expressions specifying
paths to be taken by packets, and Cocoon [38] which en-
ables iterative design and specification for networks. All
of these tools offer much stronger correctness properties,
but this comes at the expense of usability by non-experts.
netdiff is complementary to the above in that it may serve
as an extra validation step.

In programming languages, equivalence testing is not a
novel concept. DECKARD [14], CCFinder [17] and [25] P-
Miner look for syntactically similar pieces of code that are
equivalent. EQMINER [15] detects functionally equivalent
code via random testing but does not offer guarantees that
two programs are equivalent because it does not cover all
possible test cases. Another work that aims to achieve the
same goal with symbolic execution, targets functional equiv-
alence for simple arithmetic functions, in code that has no
branches [13]. Neither tool is exhaustive, so they do not of-
fer correctness guarantees. Our work aims to decide whether
two network dataplane models process the packet in the same
way, a much stronger definition of equivalence in the limited
context of programmable dataplanes.

8 Conclusions

Checking equivalence of programmable dataplanes is a sim-
ple way to check program correctness or verify policy. We
have presented netdiff, an algorithm that checks two net-
work dataplanes for equivalence using symbolic execution.
netdiff will be open-sourced soon.

We have used netdiff to uncover three previously-
unknown Openstack Neutron bugs and four configuration
errors. netdiff can be used to check P4 programs too:
we have found bugs even in simple P4 programs, and have
shown how netdiff can be used to help trim large P4 pro-
grams while preserving desired functionality. Overall, we
find that while equivalence checking is more expensive than
individual symbolic execution of the two programs, it scales
well enough for most use-cases; compositional equivalence
can be used to scale to large Neutron deployments.

In future work, we intend to further explore the applica-
bility of netdiff. One particularly interesting avenue of
research is to check the equivalence between SEFL models
and the actual dataplane (in C), which requires integrating
different symbolic execution engines (Symnet and Klee).

Acknowledgements

This work was funded by CORNET H2020, a research grant
of European Research Council (no. 758815).

References
[1] Symnet Source Code Repository. https://github.com/

nets-cs-pub-ro/Symnet/.

[2] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scalable, com-
modity data center network architecture. In Proceedings of ACM SIG-
COMM 2008.

[3] ANDERSON, C. J., FOSTER, N., GUHA, A., JEANNIN, J.-B.,
KOZEN, D., SCHLESINGER, C., AND WALKER, D. Netkat: Seman-
tic foundations for networks. In POPL’14.

[4] BECKETT, R., GUPTA, A., MAHAJAN, R., AND WALKER, D. A
general approach to network configuration verification. In SIGCOMM
(2017).

[5] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,
N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT, A.,
VARGHESE, G., AND WALKER, D. P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun. Rev.
44, 3 (July 2014).

[6] DE MOURA, L., AND BJØRNER, N. Z3: An efficient smt solver. In
Proc. TACAS’08.

[7] DOBRESCU, M., AND ARGYRAKI, K. Software dataplane verifica-
tion. In Proc. NSDI’14, NSDI’14.

[8] FOGEL, A., FUNG, S., PEDROSA, L., WALRAED-SULLIVAN, M.,
GOVINDAN, R., MAHAJAN, R., AND MILLSTEIN, T. A general ap-
proach to network configuration analysis. In NSDI (2015).

[9] FOSTER, N., KOZEN, D., MILANO, M., SILVA, A., AND THOMP-
SON, L. A coalgebraic decision procedure for netkat. In Proceedings
of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (New York, NY, USA, 2015), POPL
’15, ACM, pp. 343–355.

[10] FREIRE, L., NEVES, M., LEAL, L., LEVCHENKO, K., SCHAEFFER-
FILHO, A., AND BARCELLOS, M. Uncovering bugs in p4 programs
with assertion-based verification. In Proceedings of the Symposium
on SDN Research (New York, NY, USA, 2018), SOSR ’18, ACM,
pp. 4:1–4:7.

[11] GEMBER-JACOBSON, A., VISWANATHAN, R., AKELLA, A., AND
MAHAJAN, R. Fast control plane analysis using an abstract represen-
tation. In SIGCOMM (2016).

[12] GUO, S.-Y., AND PALSBERG, J. The essence of compiling with
traces. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (New York,
NY, USA, 2011), POPL ’11, ACM, pp. 563–574.

[13] HIETALA, K. Detecting Behaviorally Equivalent Functions via Sym-
bolic Execution, 2016.

[14] JIANG, L., MISHERGHI, G., SU, Z., AND GLONDU, S. Deckard:
Scalable and accurate tree-based detection of code clones. In Proceed-
ings of the 29th International Conference on Software Engineering
(Washington, DC, USA, 2007), ICSE ’07, IEEE Computer Society,
pp. 96–105.

[15] JIANG, L., AND SU, Z. Automatic mining of functionally equivalent
code fragments via random testing. In Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis (2009), IS-
STA ’09.

[16] JOSE, L., YAN, L., VARGHESE, G., AND MCKEOWN, N. Com-
piling packet programs to reconfigurable switches. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15) (Oakland, CA, 2015), USENIX Association, pp. 103–115.

[17] KAMIYA, T., KUSUMOTO, S., AND INOUE, K. Ccfinder: A multilin-
guistic token-based code clone detection system for large scale source
code. IEEE Trans. Softw. Eng. 28, 7 (July 2002).

[18] KAZEMIAN, P., CHANG, M., ZENG, H., VARGHESE, G., MCKE-
OWN, N., AND WHYTE, S. Real time network policy checking using
header space analysis. In Proc. NSDI’13.

[19] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header space
analysis: Static checking for networks. In Proc. NSDI’12.

[20] KHURSHID, A., ZOU, X., ZHOU, W., CAESAR, M., AND GOD-
FREY, P. B. Veriflow: Verifying network-wide invariants in real time.
In Proc. NSDI’13.

[21] KIM, H., REICH, J., GUPTA, A., SHAHBAZ, M., FEAMSTER, N.,
AND CLARK, R. Kinetic: Verifiable dynamic network control. In 12th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 15) (Oakland, CA, 2015), USENIX Association, pp. 59–
72.

[22] KING, J. C. Symbolic execution and program testing. Commun. ACM
19, 7 (July 1976), 385–394.

[23] KUNDU, S., TATLOCK, Z., AND LERNER, S. Proving optimizations
correct using parameterized program equivalence. In Proceedings of
the 30th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (New York, NY, USA, 2009), PLDI ’09,
ACM, pp. 327–337.

[24] KUZNETSOV, V., KINDER, J., BUCUR, S., AND CANDEA, G. Ef-
ficient state merging in symbolic execution. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation (New York, NY, USA, 2012), PLDI ’12, ACM,
pp. 193–204.

[25] LI, Z., LU, S., MYAGMAR, S., AND ZHOU, Y. Cp-miner: A tool for
finding copy-paste and related bugs in operating system code. In Pro-
ceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6 (2004), OSDI’04.

[26] LIU, H. H., ZHU, Y., PADHYE, J., CAO, J., TALLAPRAGADA, S.,
LOPES, N. P., RYBALCHENKO, A., LU, G., AND YUAN, L. Crys-
talnet: Faithfully emulating large production networks. In Proc. of the
26th Symposium on Operating Systems Principles (SOSP).

[27] LIU, J., HALLAHAN, W., SCHLESINGER, C., SHARIF, M., LEE, J.,
SOULÉ, R., WANG, H., CAŞCAVAL, C., MCKEOWN, N., AND FOS-
TER, N. P4v: Practical verification for programmable data planes.
In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication (New York, NY, USA, 2018), SIG-
COMM ’18, ACM, pp. 490–503.

[28] LLORENTE, J., AND MAEL, K. Neutron firewall
optimizations. https://github.com/jllorente/

neutron-firewall-optimization.

[29] LOPES, N. P., BJØRNER, N., GODEFROID, P., JAYARAMAN, K.,
AND VARGHESE, G. Checking beliefs in dynamic networks. In Proc.
NSDI’15.

[30] MAI, H., KHURSHID, A., AGARWAL, R., CAESAR, M., GODFREY,
P. B., AND KING, S. T. Debugging the data plane with anteater. In
Sigcomm (2011).

[31] NELSON, T., BARRATT, C., DOUGHERTY, D. J., FISLER, K., AND
KRISHNAMURTHI, S. The margrave tool for firewall analysis. In
Proceedings of the 24th International Conference on Large Instal-
lation System Administration (Berkeley, CA, USA, 2010), LISA’10,
USENIX Association, pp. 1–8.

[32] NÖTZLI, A., KHAN, J., FINGERHUT, A., BARRETT, C., AND
ATHANAS, P. P4pktgen: Automated test case generation for p4 pro-
grams. In Proceedings of the Symposium on SDN Research (New
York, NY, USA, 2018), SOSR ’18, ACM, pp. 5:1–5:7.

[33] PFAFF, B., PETTIT, J., KOPONEN, T., JACKSON, E., ZHOU, A., RA-
JAHALME, J., GROSS, J., WANG, A., STRINGER, J., SHELAR, P.,
AMIDON, K., AND CASADO, M. The design and implementation of
open vswitch. In 12th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 15) (Oakland, CA, 2015), USENIX
Association, pp. 117–130.

[34] PONTARELLI, S., BIFULCO, R., BONOLA, M., CASCONE, C.,
SPAZIANI, M., BRUSCHI, V., SANVITO, D., SIRACUSANO, G.,

https://github.com/nets-cs-pub-ro/Symnet/
https://github.com/nets-cs-pub-ro/Symnet/
https://github.com/jllorente/neutron-firewall-optimization
https://github.com/jllorente/neutron-firewall-optimization

CAPONE, A., HONDA, M., HUICI, F., , AND BIANCHI, G. Flow-
blaze: Stateful packet processing in hardware. In 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19)
(2019), USENIX Association.

[35] POPOVICI, M. Verifying large-scale networks using netcheck. In
2017 European Conference on Networks and Communications (Eu-
CNC) (June 2017), pp. 1–5.

[36] RAMOS, D. A., AND ENGLER, D. Under-constrained symbolic ex-
ecution: Correctness checking for real code. In 24th USENIX Se-
curity Symposium (USENIX Security 15) (Washington, D.C., 2015),
USENIX Association, pp. 49–64.

[37] REITBLATT, M., CANINI, M., GUHA, A., AND FOSTER, N. Fattire:
Declarative fault tolerance for software-defined networks. In Proceed-
ings of the Second ACM SIGCOMM Workshop on Hot Topics in Soft-
ware Defined Networking (2013), HotSDN ’13.

[38] RYZHYK, L., BJØRNER, N., CANINI, M., JEANNIN, J.-B.,
SCHLESINGER, C., TERRY, D. B., AND VARGHESE, G. Correct
by construction networks using stepwise refinement. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17) (Boston, MA, 2017), USENIX Association, pp. 683–698.

[39] SIVARAMAN, A., CHEUNG, A., BUDIU, M., KIM, C., ALIZADEH,
M., BALAKRISHNAN, H., VARGHESE, G., MCKEOWN, N., AND
LICKING, S. Packet transactions: High-level programming for line-
rate switches. In Proceedings of the 2016 ACM SIGCOMM Confer-
ence (New York, NY, USA, 2016), SIGCOMM ’16, ACM, pp. 15–28.

[40] STOENESCU, R., DUMITRESCU, D., POPOVICI, M., NEGREANU,
L., AND RAICIU, C. Debugging p4 programs with vera. In Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on
Data Communication (New York, NY, USA, 2018), SIGCOMM ’18,
ACM, pp. 518–532.

[41] STOENESCU, R., DUMITRESCU, D., AND RAICIU, C. Openstack
networking for humans: Symbolic execution to the rescue. In 2016
IEEE International Symposium on Local and Metropolitan Area Net-
works (LANMAN) (June 2016), pp. 1–6.

[42] STOENESCU, R., POPOVICI, M., NEGREANU, L., AND RAICIU, C.
SymNet: scalable symbolic execution for modern networks. In SIG-
COMM (2016).

[43] STOENESCU, R., POPOVICI, M., NEGREANU, L., AND RAICIU, C.
Tech report: Debugging p4 programs with vera. Tech. rep., June 2018.

[44] STRICHMAN, O., AND GODLIN, B. Regression Verification - A Prac-
tical Way to Verify Programs. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2008, pp. 496–501.

[45] THE P4 CONSORTIUM. A p4 implementation of a tor
switch. https://github.com/p4lang/switch/blob/master/

p4src/switch.p4, 2018.

[46] ZAOSTROVNYKH, A., PIRELLI, S., PEDROSA, L., ARGYRAKI, K.,
AND CANDEA, G. A formally verified nat. In Proceedings of the Con-
ference of the ACM Special Interest Group on Data Communication
(New York, NY, USA, 2017), SIGCOMM ’17, ACM, pp. 141–154.

A Correctness of netdiff

Note the following useful properties of symbolic execution:

∀(pi,πi) ∈ DataplaneSymbex(M,k, p),S(pi)⊆ S(p) (1)

∀(pi,πi),(p j,π j) ∈ DataplaneSymbex(M,k, p)i 6= j,
S(pi)∩S(p j) = /0

(2)

⋃
(pi,πi)∈DataplaneSymbex(M,k,p)

S(pi) = S(p) (3)

The notation (p,π) denotes a pathset, where p is a predi-
cate - which we refer as path condition, describing a subset
in the input packet space, and π is a set of paths with the
same path condition. S(p) is the set of packets described by
predicate p.

Lemma 1 The set of pathsets computed by algorithm 2 sat-
isfies the symbolic execution properties 1, 2, 3.

Proof: Property 1 is satisfied by the design of symbolic exe-
cution. We need to prove that the set of pathsets built by the
algorithm 2 satisfies properties 2 and 3. Line 2 of the algo-
rithm creates the set Q that contains all the pathsets obtained
by running symbolic execution with the symbolic packet de-
scribed by predicate p0, not necessarily obeying property 2.
To reinforce this property, we build a new set L, that will con-
tain only the pathsets with disjoint path conditions. We will
prove the following invariant holds each time the algorithm
reaches line 14: the set L satisfies 2 and 3.

We iterate through all the pathsets (q,π) in Q and (l,s)
in L, lines 4 and 5, and check for overlapping path con-
ditions. We replace the overlapping pathset in (l,s) in L
with two pathsets: one that adds the union of paths s and
π with the overlapping path condition (q∧ l) and one that
keeps the pathset (l,s) with the non-overlapping path condi-
tion (l∧¬q), lines 7 and 8. Based on set theory, these opera-
tions keep the invariant for the local iteration. Line 9 guaran-
tees that the invariant is satisfied for all iterations through L,
by updating the pathset (q,π) to (q∧¬l,π). If after iterating
through all pathsets in L the path condition q is non empty
then we add it to L, line 13, reinforcing property 3. �

Theorem A.1 EQUIVALENCE(M1,M2, i1, i2, p0) is true iff
M1, M2 are equivalent w.r.t. Q = {x ∈ Packet|p0(x) = true}
and input ports i1, i2.

Proof: We show that when EQUIVALENCE(M1,M2, i1, i2, p0)
is true, there is a bijection χ mapping each successful located
packet produced by M1 to one produced by M2, c.f. Def. 2.2.

In order to determine if such a bijection can be built, we
symbolically execute the program M1 for the input port i1
and a symbolic packet specified by predicate p0. p0 de-
scribes the set of packets Q for which we decide the equiva-
lence of programs c.f. Def. 2.2. The result is a set of pathsets
(qi1, πi1). According to the symbolic execution properties
listed above, each path condition qi1 implies the initial path
condition p0 (Property 1), the sets of packets described by
the path conditions are disjoint (Property 2) and their union
over all path conditions is the set of packets specified by p0
(Property 3). For each pair (qi1, πi1) of M1 we symbolically
execute program M2 with path condition qi1 and decide on
the equivalence of paths.

https://github.com/p4lang/switch/blob/master/p4src/switch.p4
https://github.com/p4lang/switch/blob/master/p4src/switch.p4

For a path condition M1 there might be several pathsets
(q j2, π j2) of M2. The main point is that the symbolic execu-
tion property 3 holds, therefore the set of packets described
by condition qi1 is the union of the sets of packets described
by conditions q j2 over all j. Consequently, equivalence must
hold between (qi1, πi1) and each pathset (qi j2, πi j2) over all j,
under the constraints imposed by R and ω . To decide their
equivalence we must look into the pathset definition.

The above essentially means that ∀p ∈
S(p0).∃!qi j2 s.t. p ∈ S(qi j2) (because of property 2).
Thus, if the bijection condition holds true for all qi j2,
then it holds for their union. But due to property 3,⋃
(i, j)

S(qi j2) = S(p0), which implies that the bijection can be

found on all input packets.
A pathset is a set of input packets and located output pack-

ets. Two pathsets are equivalent if (i) they have the same
cardinality, (ii) the ports are in correspondence c.f. relation
R and (iii) the packet headers on the corresponding ports
satisfy the relation ω c.f. Def. 2.2 in the context of the cur-
rent path condition. Our approach consists in reducing the
equivalence decision problem to that of the maximum bipar-
tite matching (MBM). The conditions of the MBM define a
bijection between workers and jobs, which maps to a bijec-
tion χ between programs’ outcomes in our case. We need to
prove that our equivalence algorithm implements the condi-
tions of the MBM problem, therefore deciding on the exis-
tence of the bijection.

The first condition is satisfied since the ports are differ-
ent being defined in the namespace of each program. The
second condition reinforces the equality of the cardinalities
of the sets of workers and jobs, O1 and O2 in our case. We
verify it in the line 3 of the algorithm 3. The next condi-
tion imposes that worker i is qualified for job j, meaning that
we can create the edge representing the equivalence between
outcomes described as pairs of (port, packet). The associa-
tion between ports is checked in line 5 of algorithm 4. Line
7 insures that the relation between packets in the context of
the current path condition hold. The existence of the bijec-
tive association between programs’ outcomes is checked by
the algorithm MaxBipartiteMatching. The outcome of the
MBM is true iff the two path are equivalent. �

B Notes on equivalence

An equivalence relation is a binary relation satisfying the re-
flexivity, symmetry and transitivity conditions. The core of
our definition of equivalence 2.2 is the bijection between sets
of packet and output port pairs, meaning that equivalence
conditions are satisfied. The algorithm netdiff determines
if a bijection can be computed, therefore verifying the equiv-
alence. It is worth mentioning that two dataplane programs
written in SEFL have their own name spaces therefore the
algorithm netdiff can be applied to check equivalence be-

tween a program and itself.

C Notes on complexity of netdiff

The complexity of netdiff depends strongly on the com-
plexity and number of pathsets output by DataplaneSymbex.
First of all, we take into account the time of the symbolic
execution of the first program (line 2 in Alg. 1). Assume
that the number of pathsets produced as a result is n. Simi-
larly, the number of pathsets produced by executing line 5 is
m. Therefore, the complexity is C(DataplaneSymbex1)+n ·
(C(DataplaneSymbex2)+m ·C(EQP))

Now, we turn our attention to computing the complexity of
EQP. The dominating operation is represented by computing
the adjacency matrix of the correspondence graph. This in-
volves at most p2 calls to the SMT solver, where p is the
maximum number of paths in each pathset.

The total complexity of EQP is: C(DataplaneSymbex1)+
n ·
(
C(DataplaneSymbex2)+m · p2 ·C(SMT)

)
Since path conditions are usually simple and path length

through the network is not large, we assume the complex-
ity of invoking the SMT solver for one path condition to be
constant in the size of the network.

Notice that even though the networks under equivalence
test may be of similar size, the complexity of the first sym-
bolic execution is considered significantly larger, especially
when networks exhibit a high degree of similarity. This is
because the path conditions coming out of the first symbolic
execution reduce state explosion in the second. Even though
in theory both n and m are exponential in the size of the net-
work analyzed, we claim that in practice m << n. Therefore,
we need to stress that the complexity of EQP is strongly
dominated by the complexity of the symbolic execution of
M1 and the number of outcomes thereof.

Packet cloning is not widely used in the network data-
planes we have examined, which means that p is one or a
small integer. Even when cloning is used, for instance in L2
processing, the specifics of the network forwarding fabric
constrain p to be smaller than the number of terminals con-
nected to the L2 segment - which is evidently much smaller
than the size of the entire network.

Notes
1After taking pains to actively test it.
2it requires enumerating all possible values in the field range
3a join between all possible input packets and output packets is used to

model a router
4https://bugs.launchpad.net/neutron/+bug/1626010
5https://bugs.launchpad.net/neutron/+bug/1697593
6https://bugs.launchpad.net/neutron/+bug/1708358
7https://bugs.launchpad.net/neutron/+bug/1708092
8https://bugs.launchpad.net/neutron/+bug/1715789
9https://bugs.launchpad.net/neutron/+bug/1736739

10which aggregate traffic from all machines on a compute node

	Introduction
	Goals
	Approaches to checking equivalence
	Existing solutions fall short

	Dataplane equivalence with netdiff
	Dataplane symbolic execution
	Equivalence between pathsets
	Correctness and complexity

	Implementation
	OpenStack Neutron Integration

	Evaluation
	Neutron bugs
	Checking a large Neutron deployment
	P4 equivalence
	Monitoring FIBs in a production network
	Is my datacenter network one big switch?
	Scalability

	Related work
	Conclusions
	Correctness of netdiff
	Notes on equivalence
	Notes on complexity of netdiff

