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Abstract
Unikernels gained an increasing interest in the recent years

because they provide efficient resource allocation and high

performance for cloud services by bundling the application

with a minimal set of OS services in a guest VM. Although a

unikernel is by design small and lightweight, fleets of uniker-

nels based on the same image are not necessarily more ef-

ficient than containers because the latter can rely upon OS

primitives for sharing memory. Futhermore, porting POSIX

applications on top of unikernels brings a new challenge:

what does fork() mean in the world of unikernels where

there is memory isolation within a VM? Lacking fork() sup-
port significantly reduces the applicability of unikernels in

popular cloud applications.

In this paper we address these shortcomings and show

that cloning unikernels makes way to further improvements

and enables full functionality of popular cloud applications,

such as NGINX and Redis. Our solution, Nephele, extends

the Xen virtualization platform and provides autoscaling ca-

pabilities to unikernel based VMs. Nephele provides 8x faster

instantiation times and can run 3x more active unikernel

VMs on the same hardware compared to booting separate

unikernels.

CCS Concepts • Software and its engineering → Vir-
tual machines; Operating systems;
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1 Introduction
Virtualization is the key enabler of cloud computing as it

securely shares hardware between untrusted tenants. Mech-

anisms such as paravirtualization together with hardware

support for virtualization (e.g., EPT for memory manage-

ment) have enabled the compute and I/O performance of

virtual machines to near those of bare-metal deployments,

further boosting cloud adoption.

Since most VMs run one or few applications, there is an

ongoing trend to specialize such VMs for their target ap-

plication, with two goals: increasing performance and re-

ducing resource consumption (RAM, storage, CPU cycles)

and thus cloud costs. Such specialization spans a range of

options, from using minimalistic Linux distributions (such

as Alpine) to using unikernels ([33, 36]), and offers massive

resource reductions: VM images and runtime memory usage

of a few megabytes and boot times on the order of tens of

milliseconds. However, porting existing applications to run

as unikernels depends on the set of system services those ap-

plications use and today there is no support for the popular

fork() call. Fork-based cloning not only helps portability,

but can significantly lower resource consumption when mul-

tiple VMs are run using the same base image.

To understand why this matters let’s consider a top-three

cloud provider that keeps a fairly large idle pool of running

VMs for Function as a Service workloads to handle new re-

quests, simply because booting a new VM on demand would
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take too long. This solution however wastes significant re-

sources to achieve its goals. Althoughmemory sharing mech-

anisms such as Copy-on-Write (COW) do offer benefits for

efficient memory within a VM, little support exists in the

case of inter-VM resource sharing.

Existing solutions for memory deduplication [7, 12] used

for merging pages with identical content between VMs of

different tenants were proved to be vulnerable when the at-

tacker VM can guess the contents of victim VMpages [55, 62].

However, this can be overcome by controlling the set of VMs

that are subject to same memory sharing, i.e., by removing

the eventuality of an attacker VM. One example following

this security constraint is allowing memory sharing only

between the clones of a trusted VM, all of them belonging to

the same tenant, similarly to related processes on traditional

OSes.

Porting POSIX applications on top of unikernels gives rise

to a new challenge: how should the fork() call behave inside
a unikernel? The first and main result of the call, creating

a new process, is in total opposition with the definition of

unikernels which outline that unikernels are single-process

OSes [41]. For this reason, porting popular cloud applications

that make use of fork() did not yet enable the full potential
of those applications. NGINX, a popular web server, relies

on fork() to scale up its throughput with every worker

process it creates, while Redis, a similarly popular key-value

store, depends on fork() for fault tolerance bymaking COW

snapshots of its in-memory database which are further saved

on persistent storage.

In this paper we propose a solution for cloning unikernel-

based VMs that addresses these problems. We aim to follow

the minimalistic principles that cover the design of uniker-

nels and enable cloning with minimal changes to guests code

base, without imposing any programming model. Another

goal we aim to achieve is to remain true to the definitions

of both unikernels and process-related POSIX primitives,

such as process creation functions and inter-process commu-

nication mechanisms, and to reconcile and integrate them

in order to close the gap towards full POSIX compatibility.

Our solution keeps the transparency of the fork() call for
guests by leaving most of the work for the virtualization

environment.

Nephele extends the hypervisor interface only with a sin-

gle new hypercall that handles cloning related operations,

leaving configuration options to be controlled only by the

toolstack. Nephele extends I/O paravirtualization to enable

multiplexing of physical devices and enables shares of both

system and application memory regions, bringing unikernel

memory consumption to be lower than with containers.

Our evaluation shows that Nephele provides 8x faster

instantiation times and can run 3x more VMs on the same

hardware compared to booting separate unikernels.

2 Problem statement
Unikernels are guest virtual machines that bundle a single

application and the OS services required to support it in a

single address space, removing the traditional user space

and kernel space separation used in mainstream operating

systems; this enables a performance boost and the ability to

simply remove unused OS code, which is typically linked

statically against the application [36]. Applications running

in unikernels can use threads but cannot spawn new pro-

cesses.

This means running applications that use multiple pro-

cesses in a unikernel is currently difficult; simply spawning

multiple threads is insufficient as they do not provide mem-

ory isolation and other process semantics (such as copy-on-

write) that applications need. NGINX and Redis, for instance,

are very popular cloud applications that rely on fork() to
do their job.

In this paper we add cloning support for unikernel VMs,

thus enabling the implementation of fork() alongside other
compelling use-cases that we discuss in §7. We first note

that implementing cloning for generic virtual machines has

been explored in some depth (e.g., see Snowflock [38]), but it

hasn’t gained much popularity in production mostly because

its main use case was cross-machine scaling; in this con-

text, datacenter-scale load balancers coupled with identical

backends proved to be the winning solution [22, 46, 48].

Lightweight applications do need multiple address spaces

for a myriad of reasons, and the solution is not to retrofit

processes in unikernels [40] as it adds increased complexity

and reduces performance. Instead, we can exploit the fact

that unikernels are guest VMs each in their own address

space; to support multiple address spaces we can simply

clone the existing unikernel, much like fork() replicates

the calling process, resulting in a new VM that is identical

to the existing one and runs on the same physical machine.

In Unix operating systems, starting a new process requires

running fork() to create a process and then replacing the

image of this process via an exec() call. For unikernels, we

can already boot a newVMusing the virtualization toolstack,

thus we focus only on supporting cloning in this paper.

The main requirements for our solution are:

• Improve performance: cloning should be faster than
booting new VMs.

• Transparent operation: both parent and child VMs

(or domains) should continue to work seamlessly af-

ter the completion of the cloning operation, without

requiring any code changes; in other words, cloning

should behave similarly to calling fork().
• I/O cloning: cloning should go beyond duplicating

address spaces and copy-on-write to enable storage

and network I/O to function seamlessly after cloning.

• Inter-VM communication: in many cases, related

processes communicate via IPC such as pipes or shared



memory. The same primitives should be supported

transparently for cloned unikernels.

To preserve overall system security, the new cloning in-

terfaces exposed by the hypervisor are kept to the absolutely

minimum required. The virtualization toolstack must assist

in carrying out security checks when creating the parent

domain to keep the behaviour of cloning domains under

control.

Previous work, ranging from solutions targeting classical

multiprocess VM cloning to unikernel replication, addressed

some of the properties stated above, but none addressed them

all. Solutions that addressed introducing process abstraction

back to unikernels either broke the unikernel definition by

adding multiprocess support inside the VM [40] or, when

using multiple unikernel instances, needed coordination be-

tween the toolstack and the guest requesting replication

[34, 65], thus breaking the transparency property. Moreover,

the approach based on coordination takes an unavoidable

major toll on performance when the child domain is also

involved [65]. The challenging matter of I/O cloning was

either not addressed at all [40, 65] or addressed for a specific

use case (e.g., networking for load balancing [34]).

The VM fork abstractionwas first introduced by Snowflock

[38] which addressed multiprocess HVM guests on Xen. The

replication is triggered by the toolstack which also assists in

replicating virtual CPU and memory states. This approach

brings its own performance hits, but on the other hand it

has the advantage of bringing little requirements to the hy-

pervisor which only adds support for memory sharing. This

feature is used by the toolstack to change the ownership of

pages previously owned by the parent guest and to mark

those pages for COW. It was recently revived for the use case

of Linux-based VMs fuzzing [39] and we extended further

for memory cloning support in Nephele.

Just like in the case of unikernel-based VM cloning, I/O

cloning is also a tough challenge formultiprocess VM cloning.

Previous solutions either need some rewriting of internal

I/O-related guest state (e.g., network interface addresses [38])

or they target very specific use cases [49, 53].

We focus our solution on the Xen hypervisor [13], but

implementation would be similar for KVM or other virtu-

alization solutions relying on paravirtualization. We now

provide sufficient background for the Xen hypervisor and

then go into detail in the following subsections discussing the

overall architecture and the implementation of our solution.

3 Xen Background
The Xen [13] hypervisor has pioneered paravirtualization

where guest virtual machines are aware they are running in

a virtualized environment and can use efficient hypercalls

(the equivalent of system calls in a virtualized context) to

implement functionality otherwise very expensive to emu-

late, for instance access to I/O devices. To understand how

cloning can be efficiently supported in a paravirtualization

system such as Xen, we provide an overview of the guest

instantiation.

The VM instantiation steps are managed by the toolstack,

which comprises the xl command line interface and its li-

braries: libxl, a library that includes most of the toolstack

functionality and which provides the API that is used by all

the Xen toolstack implementations, and libxc, an essential

library for accessing hypervisor services in an OS agnostic

manner. The toolstack resides inside a privileged VM called

Domain 0 (Dom0), or host domain, which is automatically

instantiated on system boot; all other domains (called DomU)

are explicitly created by the toolstack.

The hypervisor manages only the minimum critical set

of resources, namely CPU, memory, timers and interrupts,

while the access to other hardware devices is controlled by

Dom0, which already contains the device drivers required to

support those devices. This approach enables Xen to leverage

the full hardware compatibility provided by Dom0 and to

make use of it by means of multiplexing services. In the case

of paravirtualized devices, Xen introduces the split-device
model: each device is split into a frontend residing inside

the guest and a backend device typically residing in Dom0.

The drivers communicate during both initialization and data

transmission by using the primitives provided by Xen: grant
references for sharing memory and events channels as notifi-
cation mechanisms. Hardware devices are multiplexed for

different backends by using software switches (e.g., bridges

for network devices) in Dom0.

On VM instantiation, the toolstack initiates requests to

the hypervisor for allocating guest virtual CPUs (vCPUs)

and memory. The Xenstore key-value store, a device reg-

istry with notifications support for store updates, is used

during the creation of devices. In the first stage of device

initialization, backend and frontend drivers negotiate via

Xenstore the device capabilities and the means they will use

for communication (i.e., grants and event channels). If the

negotiation succeeds, both drivers are marked as connected

and a virtual device is created on each end, making way for

the second stage which mainly includes the Dom0 user space

operations that are required to enable device multiplexing

(e.g., adding the newly created virtual network interface to a

software bridge).

4 Nephele: cloning unikernels efficiently
Nephele implements cloning support for the Xen hypervisor.

However, the architectural overview and the insights we

cover in this section also apply for porting Nephele on other

platforms that rely on paravirtualization at least for device

virtualization. From a high-level perspective, Nephele adds

copy-semantics for each of the components involved in the

instantiation process and performs most of the work in the

virtualization platform, keeping guest changes to a minimum.



Figure 1. Nephele: unikernel cloning solution overview

Nephele adds minimal extensions to the hypervisor interface

and implements needed operations in the host domain via

changes to the virtualization toolstack. Considering that a

clone can also be the parent of another clone, we define a

family to be the set of domains that are related, i.e., two

domains are members of the same family if and only if they

do have some common ancestor domain or one of them is

the ancestor of the other.

The operation of Nephele is shown in figure 1. Using the

cloning interface from inside a guest is as easy as calling

fork() from a process: the VM does not get involved in extra

coordination for completing the cloning operation, it only

waits for Nephele to take care of everything.

4.1 First stage: Hypervisor operation
When a unikernel VM requests cloning, Nephele creates one

or more address spaces which have the same contents as the

calling VM; each address space is mapped to an (almost) iden-

tical unikernel VM. This is the first stage of the cloning pro-

cess, and is executed by the hypervisor. The operations per-

formed by the hypervisor mirror the operations performed

during instantiation, thus being restricted to cloning vCPU

state, interrupt state, memory and primitives that enable

memory sharing and inter-domain notifications.

Similarly to fork(), memory cloning for unikernels in-

volves sharing the same physical memory between parent

and children, with a number of exceptions. Memory pages

that are writable prior to cloning are marked as read-only

and will be copied-on-write (COWed) when one of the family

instances will attempt to write data into it.

The memory that is domain specific, which we will call

private memory, is excepted from sharing and needs to be

identified before starting the cloning process. Depending

on how they are used, the private memory pages are ei-

ther duplicated or rewritten. Examples of data that needs to

be rewritten include the parent domain ID references and

frames that reference private memory. The ratio shared-to-

private of guest memory determines the memory density

on a machine, the higher the ratio the higher the density.

Statically linked unikernels tend to have high binary sizes,

with a significant proportion of the memory containing text

sections, making them great candidates for increasing the

memory density by means of cloning.

The memory pages used for building the child page table

are a first example of private memory. As proved by prior

work [66], child instantiation is dominated by the cloning of

the page table when the total memory size of the parent VM

is at least in the order of tens of megabytes. The same con-

clusion applies for cloning, as our microbenchmarks show in

section 6.2. Another example of private memory are the re-

gions used for I/O data transfer, e.g., the shared rings used for

communication between the frontend and backend drivers

of paravirtualized devices.

4.2 Second stage: Host domain operation
Nephele handles the cloning of the I/O state during the sec-
ond stage of cloning in a seamless manner, without affecting

performance. The second stage of cloning is coordinated

by xencloned, a new toolstack component running on the

host and which performs the userspace operations that are

required for completing the state of a clone. xencloned adds
the child domains to the host registry of instance manage-

ment and clones the backend and frontend registry informa-

tion, which in turn triggers the backend drivers to perform

their own cloning operations. Each supported backend driver

is minimally modified to reuse the logic involved in guest

device initialization during regular instantiation.

Finding a suitable solution to clone I/O seamlessly is chal-

lenging: we need a generic and easy to extend approach in

order to support an extensible list of device types, while

the behavior and state information may differ significantly

from one device type to another. To achieve this, changes

are needed to each of the components of the split-driver

model (e.g., backend and frontend drivers, shared rings), to-

gether with userspace operations that finalize the I/O setup,

as described in the implementation details of 5.2.1.

Frontend drivers exchange informationwith their backend

counterparts using shared rings. To clone the rings we have

two options: either the frontends of parent and clones share

the same ring or a new ring is created for each clone frontend.

Sharing the ring is not a viable solution in this case because

the states of frontends evolve independently and they would

need extra coordination for concurrent access. Nevertheless,

creating a new ring for a cloned device is not a straight-

forward solution either because consideration must be taken

regarding how rings are used in the case of each device

type. For example, in the case of network devices we chose

to copy the rings because their contents are tightly linked

to the internal states of the guests: packets in the TX ring

are created based on some pending requests that need to

be serviced in both parent and child domains, while the

RX packets might contain the waited responses. Another



reason backing the copying of the entire RX rings comes

from the fact that the entries in the RX ring are preallocated

by the guest and may contain allocator metadata, as happens

with the netfront implementation of the Unikraft unikernel.

However, for the console device, we decided to not copy the

ring because duplicating the parent console output for the

child would hinder debugging.

4.3 Inter-process communication vs Inter-domain
communication

After successfully calling fork() on multiprocess OSes, the

parent process must be able to communicate with the child

process by means of inter-process communication (IPC).

Likewise, we introduce inter-domain communication (IDC)

as the set of primitives and mechanisms used for commu-

nication between the parent and child domains. We show

that IPC mechanisms can be replicated as IDC based on the

primitives provided by the virtualization platform.

Our solution does not impose any restrictions on how

the IDC mechanisms are designed or implemented on guest

unikernels. For our current implementation, we designed an

internal API for Unikraft which provides memory sharing

and notification support that are specialized for IDC by lever-

aging the cloning extensions of the hypervisor interface (see

5.2.2). We used the API to implement anonymous pipes and

socket pairs, the IPC mechanisms used by the applications

we targetted for our evaluation.

5 Implementation details
While implementing Nephele we add copy-semantics to the

virtualization components that handle domain creation (boot-

ing), and this enables us to reuse much of the code involved

in booting. However, the copy operations are optimized and

bypass the steps needed only in booting. In the current sec-

tion we dive into the Nephele implementation, starting with

an overview outlining the Xen specifics during the cloning

process.

Nephele Operation Overview. The hypervisor runs the

first stage of the cloning process which begins with initializ-

ing the internal structures of the child domain (e.g., struct
domain) by copying and editing the data structures of the

parent. Next, it clones the vCPUs states, memory, event chan-

nels and the grant table (step 1.1 in fig. 1); these steps are

detailed in §5.2.

Once this stage is completed, the hypervisor fills a new en-

try in the notification ring buffer and sends a notification via

a new virtual interrupt (i.e., VIRQ_CLONED) to the xencloned
daemon (step 1.2). The completion of second stage is signaled

back by xencloned to the hypervisor via the CLONEOP hy-

percall (step 2.4). The notification acts also as backpressure,

slowing down the first stage of the cloning process when

the notification ring is full.

On receiving the notification, xencloned first introduces

the new domain to xenstored daemon. Next it writes all the

Xenstore entries of the clone based on the parent entries:

backend and frontend entries for devices (e.g., console, net-

work, 9pfs filesystem), grant reference and event port for

communication with the Xenstore daemon, etc. (step 2.1).

On Xen, the backend drivers that are subscribed to Xen-

store changes receive notifications once a new update is

made. For example, the network backend is notified once a

new virtual network interface (vif) is written in the Xenstore

registry and it proceeds with creating the actual interface. On

interface creation, udev [35] events are generated and sent

to userspace where they are handled by xencloned (step

2.3), which in turn carries on with the userspace operations

required for the completion of the device initializations (e.g.,

adding the newly created vif to a bridge).

The rest of the backend drivers are instantiated explicitly

by the toolstack. For example, on booting, xl launches the
9pfs filesystem backend as a process for each new guest that

uses 9pfs filesystems. On cloning, xencloned sends a request
to the 9pfs backend process (which was launched previously

on the creation of the parent domain) to clone the parent

9pfs state (step 2.2).

The parent domain is paused until the completion of sec-

ond stage in order to keep its state consistent for all its clones.

On completion xencloned notifies the hypervisor and the

parent is resumed. The child domains are either resumed or

left in paused state, depending on how they are configured.

5.1 New interfaces for cloning
Following our goal of keeping the new interfaces to a mini-

mum, we introduce a single hypercall called CLONEOP for all

the cloning operations exposed by the hypervisor to both

toolstack and guests, each operation being implemented as a

subcommand of the hypercall. Our current implementation

includes subcommands that enable cloning globally and for

each guest, initiate cloning and notify the hypervisor of the

completion of I/O cloning.

Guest-hypervisor interface.The first stage of cloning starts
when a guest calls the clone subcommand of the CLONEOP
hypercall to clone itself. The call specifies the machine ad-

dress of the start_info page (an essential Xen specific page

which acts as a directory for critical information like page

table base address, special I/O frame numbers, etc. ), the num-

ber of clones to be created and an array to be filled by the

hypervisor with the domain IDs of the clones. The guest is

paused until the clone operation finishes for all the required

children. Similarly to calling fork(), the clone operation is

transparent and on its completion both the parent and child

domains can continue their execution without any additional

steps. The clone subcommand can also be called from Dom0

when cloning is triggered from outside the VM (e.g., for VM



boo l x s _ c l one ( s t ruc t xs_hand l e ∗ h , x s _ t r a n s a c t i o n _ t t , unsigned int parent_domid ,

unsigned int ch i ld_domid , enum xs_c l one_op op ,

const char ∗ pa ren t_pa th , const char ∗ c h i l d _ p a t h ) ;

Figure 2. The Xenstore client library API is extended with the xs_clone function which clones the entries in parent_path
to the new child_path directory. Depending on op parameter, it either runs a regular in-depth directory copy or it uses

heuristics to adapt the entries if they describe a device.

xs_clone_op_basic Normal copying

xs_clone_op_dev_console Console device cloning

xs_clone_op_dev_vif Network device cloning

xs_clone_op_dev_9pfs 9pfs device cloning

Figure 3. xs_clone_op enumeration values

fuzzing); in this case the domain ID of the guest being cloned

is explicitly passed as a parameter of the hypercall.

The interfaces of the primitives provided by Xen for shar-

ing memory between domains and for exchanging notifica-

tions were modified to enable IDC. We extended the grant

references API with the DOMID_CHILD wildcard value for

indicating the domain being granted with memory access

because, unlike regular granting where the domain being

granted is specified explicitly, sharing memory to clones

can be initiated before knowing the domain ID of any of

them. Likewise, when creating event channels for inter-

domain communication between parent and clones, the same

DOMID_CHILD wildcard value is used instead of setting an

actual domain ID to specify the domain at the other end of

the channel.

Toolstack-hypervisor interface. A guest can be cloned

only if its xl configuration file specifies a non-zero value for

the maximum number of clones. We extended the domain

control interface (domctl) to enable and disable cloning for

a given domain and to configure the maximum number of

clones. The xencloned daemon is responsible for enabling

cloning operations globally.

The xencloned also submits the memory address of the

shared ring that is used to receive cloning notifications from

the hypervisor. A notification contains only the minimum

required information for xencloned to proceed with the

second stage, e.g., the domain IDs and the frame numbers of

start_info pages of both parent and child. We also added

a new virtual interrupt, VIRQ_CLONED, for notifying cloning

events. After adding an entry to the cloning notifications

ring, the hypervisor triggers a VIRQ_CLONED interrupt to

wake the xencloned daemon.

On second stage completion, xencloned notifies the hy-
pervisor that all the required userspace operations are com-

pleted by calling the clone_completion subcommand of the

CLONEOP hypercall. Completion events occur asynchronously

and out-of-order considering that guests running on the

same machine can have different I/O configurations, with

different types of devices.

5.2 Breakdown analysis of the cloning process
Given the complexity of the cloning process, in this section

we detail the steps iterated in the operation overview, how

abstractions are cloned and how resources are reused.

vCPUs. The CPU affinity and the user registers are repli-

cated, excepting the rax register which saves the hypercall

return value; on success it is zero for the parent and one

for any child. On return from the CLONEOP hypercall, the

parent can access the children domain IDs using the array

it provided when invoking the hypercall and which is filled

by the hypervisor. The child domain can retrieve its own

domain ID using the standard ways (e.g., via Xenstore).

Memory.We reused and extended the page sharing mech-

anism, which was introduced by Snowflock [38] for HVM

guests, to support paravirtualized guests as well. On shar-

ing a page, its ownership is transferred from their original

domain owner to a special domain called dom_cow, while its
reference counter is incremented for each domain that uses

it. Once the reference counter reaches one, meaning a single

owner, on the next page fault the ownership is transferred

from dom_cow to the domain generating the fault, which may

be different from the original owner domain.

Private memory that is specific to Xen and had to be

recreated for the child domain includes the console page,

the Xenstore interface page, the start_info page and the

physical-to-machine (p2m) mapping. On Xen, page tables of

paravirtualized guests map guest virtual addresses directly

to machine physical addresses, an approach known as direct-
paging [13]. This is a Xen optimization which combines two

stages of translation, from guest virtual to guest physical

addresses and from guest physical to machine physical ad-

dresses, directly into a single stage. However, we also need

a mapping for guest physical addresses to machine physical

addresses, the p2m mapping, in order to migrate the guest

to a different machine. p2m is used on the target machine to

rebuild the domain page table, after which is updated with

the new machine frame numbers. Likewise, it is used and

updated on cloning when building the child page table.



5.2.1 Cloning I/O devices
Xen uses Xenstore as a registry for device discovery, there-

fore extending it for cloning is vital to support I/O.Whenever

a new domain is created, xl introduces it to the Xenstore

daemon. With cloning, the domain introduction is initiated

by xencloned, the introduction request being augmented

with an additional parameter indicating the parent ID. Next,

xencloned triggers the cloning of each parent device by writ-
ing the new Xenstore entries for the frontend and backend

drivers. When the new entries are created, the backend dri-

vers are notified to create internal states for the new devices.

On regular instantiation, successful initialization of a par-

avirtualized device implies a negotiation carried between the

frontend and backend drivers, with each end going through

several states until they agree on connecting. On cloning,

the negotiation is skipped and the two ends are created con-

nected from the start.

Both backend and frontend driver information is identified

in the Xenstore registry by a unique key which references

the owning guest ID. For clones, such keys (and values refer-

encing them) must be rewritten to reference the new clone

ID. With most device types, this is the only kind of Xenstore

information that has to be rewritten on cloning. Based on

this observation, we introduced a new type of Xenstore re-

quest, xs_clone (fig. 2 and 3), which aims to optimize the

cloning of Xenstore directories that contain device informa-

tion. The backend and frontend keys are rewritten by the

Xenstore daemon; as a result the number of write requests

to Xenstore is significantly reduced and, consequently, the

I/O cloning duration much improved as our evaluation in

section 6.1 shows.

Nephele adds support for cloning Xenstore console de-

vices, critical for logging and debugging, network and 9pfs

devices, each device type bringing its particular challenges.

We continue by detailing the solutions for each of the sup-

ported device types.

Console devices. Cloning console devices involves only

creating the Xenstore entries for the child domain console.

The Qemu process that manages the console backends is

notified by Xenstore on the writing of the new entries and

internally creates the state associated with the clone, without

needing any changes in its code base.

Network devices. Our design goals for network devices are

(1) to clone transparently and seamlessly and (2) to keep the

performance of each clone device on par with the original

device. Our first goal implies that the clone devices have the

same MAC and IP addresses as the original device.

We explore two off-the-shelf solutions to achieve our goals.

First solution is based on Linux bond [18], an interface ag-

gregation mechanism that is provided by the Linux kernel

and that features load balancing for virtual interfaces with

identical MAC and IP addresses. We configure load balancing

with the XOR policy as running mode to enable choosing

clone interfaces by hashing IP and port values. Therefore,

this approach does not keep any state regarding the aggre-

gated interfaces and the only overhead it brings is originated

in computing the hashing when selecting a clone interface.

Second solution uses Open vSwitch (OVS) groups [5] and

addresses the scenarios when more information is needed

to select the clone interfaces for forwarding. Although the

vanilla version of OVS selects clone interfaces by hashing, it

can be easily extended for more complex selection criteria

that can leverage the state information it keeps regarding

the incoming flows.

The network device cloning process starts with thewriting

of the clone Xenstore entries. Consequently, the network

backend is notified and proceeds with creating the clone

device state, bypasses the negotiation with the frontend by

marking the backend state as connected and triggers the

udev events delivered to xencloned which continues with

the userspace operations (e.g., adding the clone network

interface either to a Linux bond or to an OVS group). Nephele

enables cloning support in the Linux netback driver by only

adding 14 lines of code which shortcut the control flow to

directly connect the backend and the frontend.

9pfs filesystem. The 9pfs filesystem [2] is an NFS-like re-

mote filesystemwhich allows multiple guests to use the same

root filesystem and for which Unikraft [36] showed lower la-

tency in comparison to Linux. It also brings a new challenge:

unlike the network backend driver that runs in the kernel,

the 9pfs backend runs as a Qemu process in Dom0. The 9pfs

backend keeps a table with file descriptors, called file IDs

(fids), associated to all open files, similarly to the file descrip-

tors table maintained by the Linux kernel for each process.

For cloning the fids table we had two options. The first

option launches a new backend process for each clone and

propagates the fids table of the parent to the child backend

process. This approach stresses the limits of the host system

when reaching a high density of clones, turning Dom0 in

a major bottleneck. The second option, which is adopted

by Nephele, uses the same backend process for the parent

and all its clones. We also extended QEMU Machine Proto-

col (QMP), a protocol used for management messages, to

support transmitting cloning requests from the xencloned
daemon.

5.2.2 Inter-domain communication
We added a new API in Unikraft that manages memory areas

shared between parent and clones based on grant references;

internally, the parent domain uses the DOMID_CHILDwildcard
when granting access to some memory area to specify that

is used in IDC with its child domains. A clone is granted

permission to all the IDC pages that originally belonged to

its parent domain; on the hypervisor level, the ownership

of these pages is transferred to dom_cow, just like for any
shared page.



The API also manages IDC notifications; similarly to mark-

ing file descriptors as ready whenever an on-going I/O op-

eration is completed on Linux, we leverage event channels

to notify the completion of such operations to the domain

waiting at the other end. Again, the parent domain sets the

DOMID_CHILD wildcard on IDC event channels to specify

they are connected to child domains. On creation, a clone is

implicitly bound to all the IDC event channels of its parent.

Unlike multiprocess VMs where all the processes share the

grant references and event channels that are assigned by the

hypervisor, on unikernels the same number of resources is

entirely used by a single “process”, unlocking a wider space

of possible solutions for implementing IDC mechanisms.

5.3 New use cases with Nephele
We designed Nephele as a solution that can be extended

further to address new use cases. We identified the following

extension scenarios:

• Implementations of new IDCmechanisms in Uni-
kraft would use the internal API we implemented for

Nephele, closely following the implementations of the

mechanisms supported currently, since they all rely

on shared memory and notifications.

• Supportingnewguests requires adding changes only
for using the cloning interface exposed by the hyper-

visor and for implementing IDC.

• Supporting new device types requires changes only
in the implementations of xencloned and of their

backend drivers. While xencloned needs to be ex-

tended with new functionality mainly for cloning the

Xenstore entries, the changes for the backend driver

should focus on reusing as much code as possible.

• Porting to new platforms would follow the design,

operation and guidelines we outline in section 4, with

slight variations given that some platforms would al-

ready provide some of the needed features. In par-

ticular, KVM already supports page sharing between

parent and child domains, but it needs hypervisor

interface extensions (for both clone operations and

IDC) and I/O cloning support (a central daemon like

xencloned for coordination and backend drivers mod-

ifications).

6 Microbenchmarks
In this section we evaluate the performance of Nephele by

running microbenchmarks. Our implementation is based on

Xen 4.16 and has 17.5 KLOC, with 5670 lines added to the

hypervisor, 9200 added to xencloned and 2700 to the rest

of the Xen toolstack. We run experiments on a server with

an Intel Xeon E5-1620 v2 CPU at 3.70 GHz with 4 cores and

16 GB of DDR3 RAM. Dom0 runs Alpine Linux 3.13.0 and

Linux kernel 5.9.0, with the root filesystem entirely stored

on a ramdisk to reduce the overheads related to the storage

medium.

6.1 Instantiation
To evaluate instantiation times we use a simple UDP server

running on top of Mini-OS [3] and we iteratively start new

VMs, measuring the completion time of each instantiation

(same methodology as LightVM [42]). Each VM is configured

to use only 4 MB of memory and a single vif interface. Once

the UDP server is ready it sends a UDP packet to notify the

host. After that, the VM waits for interrupts.

Figure 4 shows the results where the VM instantiation

baseline time ranges from 160 ms up to 300 ms in the case

of the 1000th booted VM. The figure also shows the time

needed to restore a VM from a previously saved image; the

experiment runs for 1000 iterations - on each iteration, a new

instance is created, saved to a new image and next restored

from the image. The values shown in figure 4 represent the

durations between launching the restore command and the

time when the UDP server running on Mini-OS is ready. The

values are slightly higher than in the case of booting, ranging

from 180 ms to 330 ms, the difference occurring because

the entire allocated VM memory is copied back from the

image into the machine memory, regardless of the amount

of memory that is actually used by the VM.

To evaluate cloning, we boot a single instance of the same

UDP server which then clones itself 1000 times by calling

fork() immediately after sending the UDP boot notification

to the host. We use a stateless switching solution to connect

the clones to the host; each clone has an identical MAC and

IP address pair. We configured a Linux bond interface with

balance-xor load balancing policy and layer3+4 transmit

hash policy, i.e., the slave virtual interfaces are picked by the

bond driver by using a hash of IP addresses and port values.

To avoid collisions we had to pick a specific IP address and

assign a unique port number to each UDP server running on

clones so that there were no two different <address, port>

tuples mapping to the same slave interface.

Figure 4 shows the durations of the fork() call, from the

start time that is saved by the parent VM before calling the

function to the completion time that is saved by each child

VM. The values show how long it takes for each instance to

reach the same state as the parent using the cloning support

as alternative to regular booting.

On average, cloning takes from 20 ms to 30 ms, with a lin-

ear growth much lower than in the case of booting because

of fewer interactions with the Xenstore daemon, an effect of

using the xs_clone request (see §5.2.1). In order to illustrate

this, we also ran the experiment without using xs_clone:
xencloned uses a deep-copy approach for cloning the Xen-

store key-value entries by sending a write request for each

entry, similarly to how the Xenstore entries are created on

regular instantiation. In this case, the values range from 40

ms up to 130 ms.
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Figure 6. Fork and cloning duration de-

pending on used memory size.

The spikes in the figure are generated by the rotation of ac-

cess logs files in which Xenstore logs every incoming request,

just as reported by LightVM. Disabling the access logging

has no effect whatsoever on the value ranges for each exper-

iment. In our experiment, when using xs_clone requests,

access logging also drops significantly and the number of

spikes drops to only 2.

The cloning duration is dominated by the second stage of

the cloning process, while on average the first stage which

runs entirely inside the hypervisor takes only 1 ms for the

application used in this experiment. Increasing the config-

ured memory size also increases the first stage duration as

we show in Section 6.2.

When launching a new VM, vanilla xl checks whether

the name provided in the configuration file is unique in the

system by iterating through the names of all the running

VMs, this behaviour generating a superlinear growth of the

instantiation time with the number of instances. On cloning,

xencloned generates and sets the name of a clone, therefore

the toolstack guarantees the uniqueness of the name and no

check is required. In order to make a fair comparison, we

disabled the name validation performed by xl for our base-
line boot numbers, given that VM names were automatically

generated by us and thus unique. Otherwise we would have

had the same superlinear growth shown by LightVM [42].

6.2 Memory cloning
One advantage of cloning is the efficient usage of memory:

memory pages that are only read by clones are not dupli-

cated anymore. However, there are some concerns regarding

the costs of these benefits. Sharing memory that has hith-

erto been private brings an overhead on clone instantiation

times, while creating copies of memory pages on write oper-

ations generate an overhead on the operations themselves.

In this subsection we analyze both the gains and losses re-

garding the memory usage when cloning unikernel-based

applications.

Memory density. The COW mechanisms allow running

more VM instances on the same physical machine, similarly

to creating processes on traditional OSes. Memory regions

such as text pages, read-only pages or writable pages that

are written only at the application initialization are shared

between all related VMs, i.e., parent and clones. Therefore, a

higher percentage of memory, out of the total, that is shared

yields a higher density of clones that can be created.

When running thousands of instances, special care should

be taken with how the total machine memory is split be-

tween Dom0 and the rest of the VMs, a special consideration

being required also about the memory that is needed by

the hypervisor for its own internal bookkeeping. The Dom0

memory should accommodate all the memory needs of the

driver backends and of the Xenstore daemon for its key-value

store (e.g., on our setup oxenstored needed up to 350 MB

of resident memory). For our experiment, we split the total

memory of 16 GB into 4 GB for Dom0 and 12 GB for the

hypervisor.

For the results shown in figure 5, we use the same VM

image we used for evaluation of instantiation times. With

regular booting we get 2800 instances, while with cloning

we get 8900 instances. The 3x increase of instances number

shows that each clone consumes 1.6 MB of memory (out

of which 1 MB is used for the RX network ring alone), in

contrast to the 4 MB consumed by each booted instance. In

the end we saved a total of 21 GB, much more than the total

machine memory. As expected, the available memory on

Dom0 decreases with the same rate for both booting and

cloning given that the Xenstore entries and the backends

data are duplicated for each clone.

Effects on instantiation time. Previous work [66] proved

that process forking duration is dominated by the copying of

the page tables when the used memory size starts reaching

hundreds of megabytes. In this experiment, we focus on

how allocated memory size determines the fork and cloning

durations and compare the results for the same application,

built for Linux and run as a process and built for Unikraft

[36] and run as a VM, respectively. The application allocates

a chunk of memory that must be resident. On Unikraft we

use the tinyalloc [50] memory allocator which yields the
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best results from all the supported allocators [36]. Once the

required memory is allocated, the application starts a simple

TCP server that receives requests for forking/cloning. For

the cloning numbers, we skip cloning the I/O devices and

keep only the mandatory operations of the second stage, e.g.,

introducing the child VM to the Xen toolstack.

Given that on the first call of fork() of a process, the

entire address space is marked as COW, the second call

takes less time than the first; the same behaviour applies

to cloning as well. Unlike Linux, on Xen, each page has an

owner domain; for this reason sharing a page also involves

changing the owner of that page from the parent domain to

the dom_cow domain. Figure 6 shows the results for the first

and second fork/clone duration of each application variant.

For each allocation size we show the average numbers we

get after running 10 repetitions each. The cloning duration is

constant for small allocation sizes because of the mandatory

limit of minimum 4 MB of memory that Xen imposes on

any domain. The gap between second fork and second clone

numbers decreases from 5757% (0.07 msec for process and

4.1 msec for unikernel) to 21% (65.2 msec for process and

79.2 msec for unikernel).

The numbers for cloning also include the time spent by

Dom0 userspace operations, such as introducing the new

domain to the Xenstored daemon and setting the domain

name and console. The userspace operations take on average

3 ms for the first cloning and 1.9 ms for the second cloning,

regardless the memory allocation size. The difference occurs

because on first cloning the parent Xenstore information is

read and cached by xencloned to speed up future invoca-

tions by skipping several Xenstore read operations.

7 Use Cases
We now explore real-world use cases that outline the neces-

sity of unikernel cloning support when porting applications

to unikernels. Our first two use cases show that cloning

support helps in closing the gap towards full POSIX compat-

ibility by running NGINX and Redis with cloning. Next we

show how cloning can be leveraged for fuzzing unikernels.

Finally, we show the gains that cloning brings to Function as

a Service frameworks, enabling superior security and similar

or better performance to using containers, which is the state

of the art.

7.1 Towards full POSIX Compatiblity
Unikernels proved their potential as a middle ground solu-

tion that brings together stronger isolation than containers

and better performance than multiprocess VMs. However,

porting POSIX applications on top of unikernels raises a

new challenge: how should we deal with the cases when

applications make use of the POSIX fork() primitive?

Many such applications depend on fork() to enhance

their performance or for complementary functionality, but

in the case of unikernels these requirements have not been

met yet. We target NGINX and Redis, two of the most popu-

lar cloud applications, and highlight their behaviour when

running with VM cloning. In both use cases, we build the

same application source code to create a Linux binary or a

Unikraft VM and compare the results.

NGINX HTTP throughput. Our first use focuses on NG-

INX, a popular web browser for cloud applications [59]. NG-

INX uses fork() to launch worker processes for scaling up

request throughput. One recommended configuration [23]

runs each worker on a different CPU core to increase the

throughput linearly with the number of workers. On Linux,

every worker process uses the same IP address and port com-

bination when listening for new incoming TCP connections,

a feature known as socket sharding [30], which is configured

by setting the SO_REUSEPORT option on the listening socket.

The load balancing of the incoming connections across the



listeners is then carried out by the kernel [32]. When using

unikernel clones as workers, the virtual interfaces of the

parent and the clones are aggregated using a Linux bond in-

terface, thus the load balancing of new incoming connections

is carried out outside the VMs, by the Linux bond driver in

Dom0, removing the need to support socket sharding inside

the unikernel.

Figure 7 shows the HTTP thoughput for NGINX work-

ers running as Linux processes and as Unikraft clones, re-

spectively, confirming the expected linear growth with the

number of workers. To measure request throughput we use

wrk [24], an HTTP benchmarking tool. In our experiment,

wrk keeps 400 open HTTP connections with each worker

in order to saturate the virtual link for a total duration of 5

seconds, and we repeat the test 30 times. The results show

that using Unikraft clones yields higher and less variable

throughput because each CPU core is used exclusively by its

pinned worker clone and because it avoids switches between

user and kernel space.

Redis in-memory database serialization. Redis relies on
fork() to create processes for saving the in-memory data-

base to storage. fork() in this case is used to snapshot the

process memory, a behavior that cannot be replicated by

replacing processes with threads. Therefore having fork()
support is mandatory for running Redis in production.

There are 3 ways to initiate database saving on Redis: peri-

odically, when some number of database updates is reached,

and when requested explicitly by using the Redis client tool.

In this experiment we measure how the number of database

updates affects the fork() call durations and we compare

the database saving times to check for the overheads that

may arise after cloning the required I/O state. As Unikraft

supports only 9pfs at the moment [36], for the baseline we

run Redis as process inside an Alpine Linux VM and save

the database to a 9pfs share mounted in the VM. We use a

ramdisk for the entire Dom0 root filesystem.

When we issue two consecutive calls of fork() right after
the initialization of the parent process, the first call always

takes longer because the entire process memory is marked

for COW. In figure 8 we thus report the values of the sec-

ond fork() call (and how that is affected by the number of

database updates) together with the time needed to save the

snapshot. We compare the performance when running a Re-

dis process in a Linux VM versus a Unikraft instance. Once

Redis starts, we send a save command which triggers the

first fork() call. Next we use mass insertion to populate the

in-memory database, after which we send a second database

saving command.

For the cloning values, figure 8 also shows the time spent

for userspace operations when cloning the I/O state of Uni-

kraft clones, which include toolstack introduction and 9pfs

cloning. The figure shows that the constant cost of I/O cloning

is amortized for larger database updates, leading to save
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Figure 9. Cloning increases the fuzzing throughput for Uni-
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fuzzing averages at 590 executions/sec.

times that are comparable for VM cloning and process fork.

In our experiment, the I/O cloning is optimized to clone only

the devices that are needed by the clones. In particular, we

skip cloning network devices because the Redis clones do

not need any network support.

7.2 VM fuzzing
Fuzzing is a powerful tool for bug finding in both applications

and OS kernels [26, 51, 52, 57]; it is particularly useful in

experimental OSes, such as unikernels, which aim to provide

support for as many applications as possible.

The Kernel Fuzzer for Xen Project (KFX) [39] is based on

the AFL fuzzer [63] and leverages VM forks to fuzz HVM

guests running on Xen. VM forks were initially introduced

in Xen for Snowflock [38] and later revisited and revived for

KFX. We extended KFX to support fuzzing paravirtualized

guests and to use the API provided by the cloning support as

a replacement to legacy VM forks. KFX does coverage-guided

fuzzing and therefore it needs to instrument the VM code

in order to step through the binary code of targeted guest.

To achieve this, KFX clones the targetted VM and does the

actual instrumentation on the clone domain. Instrumentation

involves breakpoint insertion for the instructions that change

the control flow (e.g., branch instructions). We extended the

CLONEOP hypercall with the clone_cow operation to trigger

COW explicitly for the pages where the breakpoints need to

be inserted by KFX in the code regions of clones.

A fuzzing session is split into iterations. On each iteration

the clone domain receives an input that is generated by AFL.

At the end of the iteration, KFX restores the instrumented

memory of the clone so that each iteration starts with the

same memory state. For paravirtualized guests, the memory

restore is performed by the clone_reset operation of the

hypercall.

For our experiment we chose to fuzz the system call sup-

port in Unikraft and we measure the fuzzing throughput

as reported by AFL, in executions/second. We devised an

application that runs an adapter that interprets the input
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generated by AFL as system calls and which is built and run

both as a native Linux process and as a Unikraft application.

The fuzzing of the native Linux process is performed only

with AFL (i.e., without KFX) and it shows a superior baseline

given that there is no code coverage involved.

For Unikraft we studywhether cloning improves the fuzzing

throughput when compared with fuzzing without cloning

support. For the latter case, we start a new VM instance for

each AFL input because it is the only way of reaching the

same state at the beginning of each iteration.

Figure 9 shows the fuzzing throughput for each of our

experiment runs. Fuzzing Unikraft without cloning averages

at only 2 executions/sec because the VM is recreated for each

input. The syscall subsystem is not fully supported for the

Unikraft tree version we used in the experiment and this

can generate considerable variations in the fuzzing through-

put. For this reason, we also picked a simple syscall, namely

getppid, to use it as the baseline throughput when a fully

supported syscall is fuzzed, both for Unikraft (with and with-

out cloning) and for the Linux process as well. Enabling

cloning support raises the throughput average at 470 execu-

tions/sec, lower only by 18.6% than the 590 executions/sec

average for fuzzing the native Linux process.

We also compare the results we got for Unikraft and

cloning support with the results for fuzzing a Linux VM

kernel module. We followed the sample KFX demo and used

a simple self-contained code snippet that does not make any

library calls. The throughput we got averages at 320 execu-

tions/sec, which is 31.9% lower than Unikraft and cloning

support. Although the fuzzed module code changes less data,

the memory reset for the Linux VM takes on average 250

usec, double than for Unikraft memory reset, having a higher

state to restore and more dirty pages (a consistent average

of 8 pages for Linux in comparison to an average of 3 pages

for Unikraft).

7.3 Function as a Service
Function as a Service (FaaS) platforms rely on containers to

launch high-level language interpreters which in turn run

the functions provided by users. Prior work [42] showed that

using containers to run a single application is expensive and
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unikernels are more suitable for such use cases. We push

this conclusion even further and show that resources can

be even more efficiently used when adding cloning support

to unikernels as a replacement of containers in FaaS frame-

works, while benefitting from the added security provided

by unikernels.

To cope with variable load without increasing request la-

tency, FaaS frameworks can be configured to keep a number

of instances ready for warm starts. However, when these

instances do not suffice, new ones are created until the la-

tencies get back to the accepted values. We expect that in

both cases, using unikernels with cloning should result in

lower resources consumption and lower latency.

We chose OpenFaaS 0.23.0 [8], an open-source framework

with auto-scaling support, designed to run functions in mul-

tiple programming languages. To scale functions, OpenFaaS

runs queries periodically to check the load per instance, with

new instances being launched whenever the load value gets

above a preconfigured threshold. For the autoscaling config-

uration, we kept the default query interval of 30 seconds, we

set the requests-per-second (RPS) scaling mode (i.e., the load

is the RPS value for each instance) with the default thresh-

old of 10 RPS [9] and we configured to launch a single new

instance whenever the threshold is exceeded.

For our experiments we used two setups: a vanilla setup

with OpenFaaS instantiating containers for baseline num-

bers and our modified setup running unikernels instead of

containers. In both cases, we deployed a simple Python func-

tion returning a “Hello World” string. To deploy functions on

top of unikernels, we used KubeKraft [31], a closed-source

solution for packaging, instantiating and inspecting Unikraft-

based VM images as containers for orchestration frameworks

like Kubernetes. The resulting Docker image wraps a 6 MB

binary image linking together Unikraft with the Python 3.7.4

interpreter and its library dependencies (e.g., newlib [4] libc

implementation and lwip network stack [21]). The Python

runtime is shared between all unikernel instances via a 9pfs

root file system. We used the Apache Benchmark 2.3 (ab)
tool [6] to generate requests and to measure the requests

throughput, for each session running 8 workers to generate

a total of 500K requests. For each of our experiments we used

two identical machines running Intel(R) Xeon(R) CPU E5-

2650L v2 at 1.70 GHz CPUs with 10 cores, one machine for



running the setup and another for generating the requests.

On the unikernel setup we allocated 4 of the cores for the

VMs and the rest for Dom0.

Our first experiment measures the memory used in each

of the two setups. For the vanilla setup we used free to

measure the memory occupied in total by both containers

and services, while in the case of the unikernel-based setup

we used free to measure the memory occupied by the ser-

vices in Dom0 (Xen toolchain, Kubernetes and OpenFaaS

services) and xl info to measure the memory consumed by

the VMs. Figure 10 shows the memory consumption num-

bers and the times when a new instance is ready, as reported

by Kubernetes, with unikernel clones being ready on average

5 seconds sooner than the containers. Although the occu-

pied memory sizes for the first instances are similar in both

setups, with 85 MB for the first unikernel (out of which 64

MB are consumed by the VM and 21 MB by the services in

Dom0) and 90 MB for the first container, the evolution of

occupied memory sizes for the consequent instances favors

the unikernels which require tens of megabytes (35 MB on

average) as opposed to hundreds of megabytes (220 MB on

average) for containers.

The second experiment shows in figure 11 how fast each of

the environments reacts to increasing demand. Even though

the native Linux stack yields better requests throughput in

comparison to Unikraft’s lwip stack (600 requests/sec as

opposite to 300 requests/sec), the newly instantiated uniker-

nel clones get to service the incoming requests much faster,

being able to track request load closely.

8 Related work
Nephele is the first complete solution for unikernel cloning

that offers POSIX compatibility, I/O cloning and performance.

Nephele builds upon extensive prior work in the area of

cloning virtual machines and processes, as we discuss below.

Unikernel cloning. There are several recent solutions for
unikernel cloning, each of them addressing only a subset of

our goals. Kylinx [65] is a Xen based solution that adds sup-

port for calling fork(), but handles only CPU and memory

cloning and no I/O support. The fork() call is based on a co-

ordination between the parent domain, the child domain and

the toolstack which adds significant overhead from all the

required domain crossings. The IPC subsystem is initialized

asynchronously after the fork() call returns in both parent

and child domains, while with our solution IPC is already

established when the call ends. Fractal [34] is a self-scaling

solution that uses multi-host replication. Although it only

presents the evaluation of a self-scaling website and focuses

only on replicating the networking state, the approach based

on Open vSwitch groups was a starting point to provide

cloning support for networking in our solution.

Iso-UniK [40] breaks the unikernel definition by adding

multiprocess support inside the OSv unikernel [33] and

bringing back the separation between user and kernel modes.

While it does advocate for generality, it omits addressing I/O

cloning.

Unikernels and processes. Making unikernels similar to

processes and adding support for related abstractions was

also the subject of prior work [37, 40, 60]. [60] argues that

unikernels can be run as processes, without any underlying

virtual hardware abstraction, while still keeping their iso-

lation properties. Lupine [37] states that some applications

have a non-unikernel character, meaning that they are mul-

tiprocess, and proposes a solution that tailors Linux towards

achieving a unikernel behaviour through specialization and

system call elimination by running applications in kernel

mode.

VM Replication. VM replication is mainly used for live

migration of VMs, typically across hosts [16, 64], with tech-

niques such as pre-copy [17, 44], post-copy [27, 28] or a

combination of both [29], replicating either a single instance

or multiple instances [11] at once, and addressing either

generic applications or specialized ones ranging from virtual

middleboxes to HPC systems, for achieving elasticity [49] or

for improving failure recovery [43, 53]. Multi-host replica-

tion is out of scope for our solution since moving unikernel

clones on different machines would break the page sharing

potential and would add complexity to the application logic.

We believe that previous solutions for transparently migrat-

ing processes [19, 47, 54] can be adapted to clone unikernels

to other hosts.

Fork abstraction support. For all thewide adoption through
its long history [45], the fork() function was also subject

to critics [14]. While it was argued [14] that in combination

with exec() it makes a cumbersome approach for creating

processes from scratch, previous research showed that the

fork abstraction is suited for creating clones, including on

virtualization environments. Snowflock [38], a Xen based

solution that stood the test of time [1], introduced the VM

fork abstraction for replicating generic HVM guests across

multiple hosts. It was also shown that the fork abstraction

can be used to speed up instantiation in serverless comput-

ing systems [10, 20]. Such optimizations can be enhanced

even more following recent findings. ON-DEMAND-FORK

[66] proved that the fork() call duration is dominated by

the page table cloning when the process memory size starts

taking hundreds of megabytes and proposed the solution of

applying COW for pages of the page tables as well.

Memory deduplication. Research addressing duplicated

memory in virtualization environments covered two main

directions. First one leverages COW and was adapted from

traditional OSes starting with Potemkin [56] for single host

page sharing and was later extended by Snowflock [38] for

multi-host setups. Second option uses content-based page

sharing and was introduced by VMware ESX [58] for same



host memory deduplication and later extended for multi-host

setups [61] and subpage sharing [25, 61]. The Linux kernel

implementation, called KSM [12] and initially designed for

KVM, is currently used for bare-metal Linux as well. Content-

based page sharing was shown to introduce vulnerabilities

for either inter-process [15] or inter-VM [55, 62] memory

sharing when an attacker process or VM, respectively, is

allowed on the same host. Nephele prevents this vulnerability

by controlling the set of VMs that can share memory to

family-related unikernel-based guests belonging to the same

tenant.

9 Conclusions
We have presented Nephele, a complete cloning solution for

unikernel VMs that offers memory and I/O device cloning.

Our implementation in Xen adds a single hypercall to the

hypervisor and does most of the heavy lifting in the host do-

main via xencloned, supporting cloning for paravirtualized

guests.

Evaluation shows that cloning a VM is 8 times faster than

booting it, and that it seamlessly supports fork-dependent

applications such as NGINX and Redis with performance

comparable to process forking. We have further showed that

cloning enables more efficient fuzzing and Function as a

Service frameworks, hinting that unikernel cloning should

become a viable option in future virtualization systems.

In future work we intend to port Nephele to KVM and to

understand how it is best to configure host environments

for the high density workloads enabled by unikernel cloning.

Cloning can also be used to side-step other limitations of

existing unikernels, for instance lack of SMP support can be

mitigated by running clones on different CPUs.
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A Artifact Appendix
A.1 Abstract
This appendix provides information about how to access the

Nephele source code and how to build and deploy both the

platform and the unikernel-based VMs.

A.2 Description & Requirements
A.2.1 How to access
The artifact is available at https://doi.org/10.5281/zenodo.
7732935 and contains all the resources needed for building

and running Nephele. Considering that the Nephele envi-

ronment is made of a significant number of components,

we chose to separate the repositories needed for the virtual-

ization infrastructure, available at https://github.com/orgs/
nephele-vm/repositories, from the repositories related to Uni-

kraft, available at https://github.com/orgs/nephele-unikraft/
repositories. The latter contain not only the changes for

cloning support, but also missing functionality that was ei-

ther already upstreamed or on its way to be upstreamed. The

overview repository containing scripts, configuration files

and instructions on how to create the Nephele environment

and the VMs is available at https://github.com/nephele-vm/
experiments.

A.2.2 Hardware dependencies
Nephele can be deployed on any commodity x86_64 server

with minimum 4 CPUs and 16 GB RAM.

A.2.3 Software dependencies
The Nephele environment is self-contained, therefore all

the software dependencies are available in the repositories.

An Alpine 3.13 root filesystem containing all the packages

needed for building the Nephele virtualization platform is

available, together with information about how to use it, at

https://github.com/nephele-vm/alpine.

A.3 Set-up
The provided root filesystem can be deployed to run the

Xen hypervisor and Dom0 with Nephele support as is. How-

ever, the tools needed for Nephele are not included and they

need to be built. The build/build.sh script in the experi-

ments repository downloads and builds all the components

for Nephele. More details about the setup are described in

the README.md file of the experiments repository.
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