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ABSTRACT

The latest large-scale data centers offer higher aggregatbwidth
and robustness by creating multiple paths in the core of &te n
work. To utilize this bandwidth requires different flows ¢adtiffer-
ent paths, which poses a challenge. In short, a single-pathgort
seems ill-suited to such networks.

We propose using Multipath TCP as a replacement for TCP in
such data centers, as it can effectively and seamlesslyvasie a
able bandwidth, giving improved throughput and bettemnfaséis on
many topologies. We investigate what causes these bemedising
apart the contribution of each of the mechanisms used by MPTC

Using MPTCP lets us rethink data center networks, with adiff
ent mindset as to the relationship between transport potstpout-
ing and topology. MPTCP enables topologies that single paiR
cannot utilize. As a proof-of-concept, we present a duahéad
variant of the FatTree topology. With MPTCP, this outperier
FatTree for a wide range of workloads, but costs the same.

In existing data centers, MPTCP is readily deployable kegizg

Topologies like these have started to be deployed; Amazatgst
EC2 data center has such a redundant structure - betweamcert
pairs of hosts there are many alternative paths. Typicalliches
run a variant of ECMP routing, randomly hashing flows to equal
cost paths to balance load across the topology. Howeveér,matst
such topologies it takes many simultaneous TCP connecfiens
host to generate sufficient flows to come close to balancaftjdr
With more typical load levels, using ECMP on these multgsta
topologies causes flows to collide on at least one link witghhi
probability. In traffic patterns that should be able to fié tietwork,

we have observed flows that only manage 10% of the throughput
they might expect and total network utilization below 50%.

In this paper we examine the use of Multipath TCP [4] within
large data centers. Our intuition is that by exploring nplétipaths
simultaneously and by linking the congestion response lfl@aus
on different paths to move traffic away from congestion, MAPTC
will lead to both higher network utilization and fairer atttion of
capacity to flows.

widely deployed technologies such as ECMP. We have run MPTCP Frgm a high-level peli.spectiv;a]., there .are four main compisnen
on Amazon EC2 and found that it outperforms TCP by a factor of [© & data center networking architecture:

three when there is path diversity. But the biggest benefills w
come when data centers are designed for multipath trarssport

Categories and Subject Descriptors
C.2.2[Computer-Comms Net$: Network Protocols

General Terms Algorithms, Design, Performance
1. INTRODUCTION

During the last decade, data centers have risen to dominate t
computing landscape. Today’s largest data centers hawdréum
of thousands of servers, and run distributed applicatioasspread
computation and storage across many thousands of machiifitis.
so many hosts, it is impractical to manually manage the afion
of tasks to machines. While applications may be written ke ta
advantage of locality within the data center, large distiel com-
putations inevitably are spread across many racks of meshivith
the result that the network can often be the bottleneck.

[ ]
The research literature has proposed a number of data center

topologies|[1, 6, 7, 2] that attempt to remedy this bottléri@ecpro-
viding a dense interconnect structure such as those shawig.if.
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e Physical topology

e Routing over the topology

e Selection between multiple paths supplied by routing
e Congestion control of traffic on the selected paths

These are not independent; the performance of one will depen
on the choices made by those preceding it in the list, andrimeso
cases by those after it in the list. The insight that we evelim
this paper is that MPTCP’s ability to balance load spans path
selection and congestion control, and fundamentally chsnge
dynamics of data center traffic management. Further, byoexpl
ing many paths and only utilizing the effective ones, it daslhe
use of network topologies that would be inefficient with $&pgath
TCP. Thus we set out to answer two key questions:

e MPTCP can greatly improve performancetaday’sdata cen-
ters. Under which circumstances does it do so, how big are the
benefits, and on what do they depend?

If MPTCP were deployed, how might we design data centers
differently in the futureto take advantage of its capabilities?

We have examined many topologies and traffic patterns, and in
almost all of them MPTCP provided significant advantages ove
regular single-path TCP. Where there was no benefit, flows wer
limited at the sending or receiving host. We found no caser&vhe
MPTCP performed significantly worse than single-path TCP.

We also looked at new network topologies designed to take ad-
vantage of MPTCP'’s end-host load-balancing mechanisms. Fo
example, a dual-homed FatTree running MPTCP can, for the sam
cost, provide twice the throughput of a single-homed Fat Tum-
ning MPTCP for a wide range of likely workloads. Without MPPC
such a topology makes little sense, as the capacity is rasalgle.



(a) FatTree
Fig. 1: Two proposed data center topologies. The bold lines showipteipaths between the source and destination.

Finally we have validated the results on Amazon’s EC2 cloud
using our Linux implementation. We observed that in the E&2d
center, the?/53 of flows that have access to multiple paths achieve
approximately three times the throughput using MPTCP thiéim w
regular TCP. As MPTCP is no more aggressive than TCP, this in-
dicates that MPTCP is very effective at finding unused capaci

2. DATA CENTER NETWORKING

Before examining how MPTCP changes things, we will briefly
discuss the components that comprise the data centeremtiné.

2.1 Topology

Traditionally data centers have been built using hieraadtibpolo-
gies: racks of hosts connect to a top-of-rack switch; thestelses
connect to aggregation switches; in turn these are corohécta
core switch. Such topologies make sense if most of the tfédfics
into or out of the data center. However, if most of the trafiimira-
data center, as is increasingly the trend, then there isyaweven
distribution of bandwidth. Unless traffic is localized taka, the
higher levels of the topology become a serious bottleneck.

Recent proposals address these limitations. VL2[6] an@rEat
(Fig. 1(a)) are Clos[3] topologies that use multiple coréches to
provide full bandwidth between any pair of hosts in the nekwo
They differ in that FatTree uses larger quantities of lowsees
(1Gb/s) links between switches, whereas VL2 uses feweerfast
(10Gh/s) links. In contrast, BCube[7] abandons the hiéraiin
favor of a hypercube-like topology, using hosts themseloeslay
traffic (Fig. 1(b)).

All three proposals solve the traffic concentration probérthe
physical level — there is enough capacity for every host tatile
to transmit flat-out to another randomly chosen host. Howthe
denseness of interconnection they provide poses its owrigms
when it comes to determining how traffic should be routed.

2.2 Routing

Dense interconnection topologies provide many possibiaipa
paths between each pair of hosts. We cannot expect the belét it
to know which of these paths is the least loaded, so the m@utin
system must spread traffic across these paths. The simplesbs
is to use randomized load balancing, where each flow is asgign
random path from the set of possible paths.

In practice there are multiple ways to implement randomized
load balancing in today’s switches. For example, if eachicwi
uses a link-state routing protocol to provide ECMP forwagdhen,
based on a hash of the five-tuple in each packet, flows will be sp
roughly equally across equal length paths. VL2 providesgush
a mechanism over a virtual layer 2 infrastructure.

However, in topologies such as BCube, paths vary in lengith, a
simple ECMP cannot access many of these paths because it onl
hashes between the shortest paths. A simple alternativeuset
multiple static VLANSs to provide multiple paths that expa@dkthe
underlying network paths[9]. Either the host or the first kagtch
can then hash the five-tuple to determine which path is used.

) . switch
PAANN ] host machine
| src or dst
® O] relaying host

(b) BCube

2.3 Path Selection

Solutions such as ECMP or multiple VLANSs provide the basis
for randomized load balancing as the default path seleatiecha-
nism. However, as others [2] have shown, randomized loahbal
ing cannot achieve the full bisectional bandwidth in mogioto-
gies, nor is it especially fair. The problem, quite simply,that
often a random selection causes hot-spots to develop, @hara-
lucky combination of random path selections cause a fevslink
be overloaded and links elsewhere to have little or no load.

To address these issues, the use of a centralized flow sehnedul
has been proposed. Large flows are assigned to lightly |logatbd
and existing flows may be reassigned to maximize overallidine
put[2]. The scheduler does a good job if flows are networltéd)
with exponentially distributed sizes and Poisson arrivassshown
in Hedera [2]. The intuition is that if we only schedule the bi
flows we can fully utilize all the bandwidth, and yet have a Bma
scheduling cost, as dictated by the small number of flows.

However, data center traffic analysis shows that flow digtrib
tions are not Pareto distributed [6]. In such cases, thedstbehas
to run frequently (100ms or faster) to keep up with the flovivats.
Yet, the scheduler is fundamentally limited in its reactione as it
has to retrieve statistics, compute placements and instarhem,
all in this scheduling period. We show later through simaolat
that a scheduler running every 500ms has similar performnémc
randomized load balancing when these assumptions do it hol

2.4 Congestion Control

Most applications use single path TCP, and inherit TCP’s con
gestion control mechanism which does a fair job of matchifig o
fered load to available capacity on whichever path was ssdec

In proposing the use of MPTCP, we change how the problem is
partitioned. MPTCP can establish multiple subflows on dife
paths between the same pair of endpofotsa single TCP con-
nection The key point is that by linking the congestion control
dynamics on these multiple subflows, MPTCP can explicitlweno
traffic off more congested paths and place it on less congestes.

Our hypothesis is that given sufficiently many randomly cho-
sen paths, MPTCP will find at least one good unloaded path, and
move most of its traffic that way. In so doing it will relieverages-
tion on links that got more than their fair share of ECMP baégh
flows. This in turn will allow those competing flows to achidleir
full potential, maximizing the bisectional bandwidth oéthetwork
and also improving fairness. Fairness is not an abstractegirior
many distributed applications; for example, when a seapghi-a
cation is distributed across many machines, the overalptetion
time is determined by the slowest machine. Hence worstpase
formance matters significantly.

y3-  MULTIPATH TCP IN SUMMARY

Multipath TCP[4] extends TCP so that a single connectiorbean
striped across multiple network paths. MPTCP support idtieg
ated in the initial SYN exchange and the client learns anytiahl
IP addresses the server may have. Additional subflows carbine



opened. An additional subflow can be between the same pd#r of |
addresses as the first subflow, but using different port$.caniuse
any additional IP addresses the client or server may havéheln

former case, MPTCP relies on ECMP routing to hash subflows to

different paths; in the latter the paths are implicitly itiéed by the

source and destination IP addresses. Both techniques mesele

depending on the routing scheme used in a particular datarcen
Once multiple subflows have been established, the sendsi ho

TCP stack stripes data across the subflows. Additional TGP op

tions allow the receiver to reconstruct the received datherorig-

inal order. There is no requirement for an application to\ware

In this section we examine the extent to which these potdndia-
efits can be realized. As we will see, the benefits depend on:

e The congestion control scheme used.
e The physical topology.
e The traffic matrix generated by the applications.

e The level of load in the network.

Although we cannot predict what future data center apptioat
will look like, we can at least map out broad areas where MPTCP
gives considerable benefits and other areas where thersatkiés

that MPTCP is being used in place of TCP - in our experiments g|sewhere and MPTCP cannot help.

we have used unmodified applications running on our MPTCP-

capable Linux kernel. However enhanced applications memth
selves wish to use an extended sockets API to influence whlzh s

4.1 A Note on Simulation
In section 6, we give results from running our Linux MPTCP

flows are set up and how data is striped between them (the full jniementation on a small cluster in our lab, and on Amazo@.EC

MPTCP protocol is described in [4]).

But most of the results in this paper come from simulationtfay

Each MPTCP subflow has its own sequence space and main-ga50ns. First, we do not have access to a large enough dita ce

tains its own congestion window so that it can adapt to camuit
along the path. Although each subflow performs TCP-liketags
increase on acks and multiplicative decrease on losses, P T
links the behaviour of subflows by adapting the additive éase
constant. The algorithm is:

e For each ACK on subflow, increase the windoww, by
min(a/wotal, 1/wr ).

e Each loss on subflow, decrease the window, by w, /2.

wiotal IS the sum of the windows on all subflows.determines the
aggressiveness of all the subflows; it is calculated as itbestin
the IETF draft specification[12].
Broadly speaking, there are two key parts to this algoritRirst,
by making the window increase depend on the total window, size
subflows that have large windows increase faster than subflow
with small windows. This actively moves traffic from more eon
gested paths to less congested ones, load-balancing therket
Second, by adapting, MPTCP can compensate for different
RTTs and can ensure that if all the subflows of a connectimetsa
the same bottleneck, they will compete fairly with a regul&P
flow. However, if the subflows encounter multiple unloadethpa
one connection can fill them all. The design of the algorittas h
been detailed in [14].

4. MPTCP IN DATA CENTERS

It seems there might be three main benefits from deploying IPT
in today’s redundant data center networks:

e Better aggregate throughput, as exploring more paths @t lo
balancing them properly should reduce the number of underut
lized and idle links.

e Better fairness; the throughputs of different MPTCP connec

to examine issues of scale. But perhaps more importantiylar
tion lets us tease apart the causes of complex behaviors.

For this paper, we wrote two simulators. The filggim is a full
packet level simulator that models TCP and MPTCP in simiar d
tail to ns2, but which is optimized for large scale and highesjs.
Even with this simulator, there are limits to what we can nhioEer
example, simulating the 576-node Dual-homed FatTree iti@ec
5 with 100Mb/s links requires simulating 46,000 MPTCP sukflo
generating 115 Gh/s of traffic. Even a fairly small data cetaigol-
ogy stresses the limits of simulation.

Today'’s larger data centers don’t have hundreds of hostey Th
have tens of thousantsTo examine these scales we must sacrifice
some accuracy and the ability to model flow arrivals, andrteso
to flow-level simulation. Our second simulator models TCH an
MPTCP throughput as a function of loss rate, and uses ativiera
approach to find the equilibrium traffic pattern for a fixed skt
arbitrary duration flows.

Comparing the two approaches on the same topology shows the
flow-level simulator is a fairly good predictor of packet« per-
formance for long flows. Its main limitation is at high congies
levels, where it fails to model timeouts, and so predictié@igon-
gestion levels than we see in reality. We mostly use packedt|
simulation, but resort to flow-level to extrapolate to largeales.

4.2 Examples of Benefits

Throughput Fig. 2 shows the aggregate throughput achieved by
long-lived TCP and MPTCP in a FatTree network. The left his-
togram shows throughput in a FatTree with 128 hosts, 80 eight
port switches, and 100Mb/s links. The grey bars are from a de-
tailed packet-level simulation, and the black bars are fitoerflow-
level simulator. The right histogram scales up the topolmg192
hosts, and shows only flow-level results. The traffic patisra
permutation matrix; every host sends to one other host chase

tions should be closer than if TCP were used, as congestion onrandom, but with the constraint that no host receives mame tme

network core links should be more evenly distributed.

e Better robustness. If a link or switch fails, routing willute
around it, even without MPTCP, but this takes time. MPTCP

uses many paths; if one fails the others can continue without
pausing. Worse are failures that are not bad enough to trigge

re-routing, but which cause link autonegotiation to faltkhao

a low link speed, or which cause very high packet loss rates.
Single-path TCP has no choice but to trickle data through the

slow path; MPTCP can simply avoid sending traffic on a very
congested path.

flow. This is a simple randomized traffic pattern that has titeip-

tial to saturate the FatTree. Of the multiple shortest paths is
chosen at random for each subflow, simulating flow-based ECMP
routing.

The bars show the number of MPTCP subflows used, or in the
case of single subflow, shows the behavior with regular shpgith
TCP. The figure illustrates several points. Single-path per
forms rather poorly, achieving less then half of the avédaapac-

Microsoft's Chicago data center reputedly has the potktatizold
as many as 300,000 hosts
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Fig. 3: Distribution of throughput in FatTree

ity. The reason is simple - the full capacity is only avai@atlno
two flows share the same link. #f flows share a link, each only
achievesl /n of the capacity it should achieve. ECMP’s random
hashing of a flow onto a path results in sufficiently many sals
that total throughput is less than 50% of the full bisectidrand-
width, while many links go idle.

MPTCP explores more paths. With the same ECMP hashing,
fewer links go idle, and so total throughput increases.résténgly,
it takes around eight subflows per MPTCP connection to phpper
utilize the network.

Comparing the left and right histograms, we see the behavior
largely scale-invariant. In this and other experiments we that
increasing the network size by two orders of magnitude #ligh
reduces the overall performance for both TCP and MPTCP.

Comparing the grey and black histograms, we see that thepack
and flow level simulations are in agreement about the pedooa
benefits and the number of subflows required. The flow-levelisi
lator slightly underestimates throughput in the singléa@aCP and
two-subflow cases.

Fairness Fig. 3 shows the throughput of individual connections
from the 128 host packet level simulation and the 8,192 hosi-fl
level simulation in Fig. 2, comparing the single-path TCBecaith

the eight subflow MPTCP case. Every host’s throughput is show
ranked in order of increasing throughput. Is is clear thatamdy

did the utilization improve with MPTCP, but also the fairaés-
proved. With single-path TCP, some flows perform very walk, b
many perform poorly, and some get less than 10% of the patenti
throughput. With eight subflows, most MPTCP flows get at least

get a little more throughput than they should. These flows the
degrade the performance of competing flows that do not tsaver
multiple congested links, so reducing overall performamééle.

4.3 Analysis

The permutation traffic matrix used above is rather artifitiat
it serves to demonstrate that MPTCP can provide substayatias
over single-path TCP in today’s data centers that are eaggdeto
provide high bisectional bandwidth using commodity tedbgp
such as cheap gigabit switches. We will investigate wheeseth
gains come from, under which circumstances MPTCP provides
large gains, and when it does not. In particular:

e How does the topology influence the performance of single-
path vs MPTCP?

How does the traffic matrix and load affect performance?

How many subflows does MPTCP require? On what does this
depend?

Can these same benefits be provided using an application that
simply opens multiple regular TCP flows?

4.3.1 Influence of Topology

We start by examining the effect that the network topology ha
on performance. The research literature proposes a nurhdér o
ferent topologies for data centers, with the aim of prowdimgh
bisectional bandwidth. Two that are particularly enligtitg are
VL2[6] and BCube[7].

Like FatTree, VL2 is a Clos[3] topology - essentially a multi
routed tree using multiple core switches to provide full daiath
between any pair of hosts in the network. Unlike FatTree wher
every link is cheap gigabit ethernet, VL2 uses ten times fdinks
in the upper layers, but uses 10-gigabit ethernet for thenith W
current prices, a VL2 network costs more than a FatTree ¢agyol

We also examined a future version of VL2 that might be built
when 10 gigabit ethernet becomes cheap enough to be uset by al
hosts. The core links in this VL2-40 network are then upgdaite
run at 40Gb/s.

The BCube topology shown in Fig. 1(b) is completely diffaren
instead of using ethernet switches to perform all the switghit
uses a hybrid of host switching and hardware switching. Tiero
between nodes on the same ethernet switch, a direct swipaibd
is used, but to route between nodes that do not share an ethern
switch, an intermediate host relays the traffic. This presid very
large number of possible paths between any two hosts, but sdm
the host’s resources are used for packet forwarding.

Fig. 4 shows the throughput of VL2, VL2-40 and BCube, us-
ing the permutation traffic matrix for single-path TCP andyva
ing numbers of MPTCP flows. BCube shows similar performance
gains to FatTree when using MPTCP, and also requires a large
number of subflows to realize these gains. With VL2, the perfo
mance gains are smaller, and most of the gains are achiewkd wi
only two subflows.

Intuitively, BCube suffers from the same problem with cgitins
that FatTree does - whenflows share a link, each achieves approx-
imately 1/n of the capacity (unless it is constrained elsewhere).

90% of the available capacity, and none get less than 50%. ForWith the permutation traffic matrix, the mean number of flomsao

applications that farm work out to many workers and finish avhe
the last worker finishes, such fairness can greatly improesadl
performance.

The subtle difference between packet-level and flow-lewelis
lation is also visible in these curves. The flow-level simoda@oes
not model timeouts, so flows that traverse multiple congkkitgs

core VL2 link should be 10. However, when ECMP randomly puts
n flows on such a VL2 core link, each of those flows either aclsieve
1 Gb/sifn < 10, or 10/n Gb/s ifn > 10 (unless the flow is con-
tained elsewhere). Thus the impact of uneven flow allocation
links is smoothed out across many more flows, and few links are
severely underutilized. The result is that while FatTreedseeight
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multipath flows are not limited to a single interface.

MPTCP subflows to achieve 90% throughput, on VL2 only two 15 w

subflows are needed per MPTCP connection. In VL2-40, the 4:1 _ o4 ! kg;‘%zég%g E§§§ e 8

ratio between core and host linkspeeds increases the effegtii- S limit as k->inf: 1/m H

sions compared to VL2; single path TCP throughput is arod 7 3 08T 1 2

of optimal, and we need 4 subflows to utilize 90% of the network § 04 1 E

The aggregate throughput does not tell the whole story. Fig. =, | I

shows the rates achieved by individual flows, comparinglsing R = 3 M"Eﬁ;;.‘;;{ﬁ"{’g’; ,,,,,,,,

path TCP with MPTCP. Although the total VL2 throughput isfai e 2 4 6 B w1 0 2 @ o % i

high using single-path TCP, the fairness is relatively loithvap- Number of Subflows Percentage of local flows

proximately 25% of flows achieving less than 60% of what they . . . . . .

should be able to achieve. While two MPTCP subflows bring most Fig. 6'. Analytical model Fig. 7 Perfgrmance with

of the throughput gains, adding more subflows continues to im for variance of load on a locality, 4.1 oversub-
’ link. scribed 512-node FatTree.

prove fairness. VL2-40 gives less fairer throughputs caeghao
VL2; here too adding more subflows here significantly incesas ) )
fairness. With BCube the distribution is similar to FatTrercept 4.3.3 Oversubscribed Topologies

that as each BCube host has more than one interface, so hests a Al the topologies above all aim to provide full bisectioteind-

not limited to the interface speed. width; the goal is that every host should be able to transtrthe
full interface speed, regardless of the location of theidagon.
4.3.2 Number of Subflows This would allow applications to be deployed across any et o
When we first started to examine MPTCP on FatTree, we were nodes without regard to the limitations of the network togyl We
surprised that eight subflows were needed to achieve 90%ghro have seen that even with such topologies, it is hard to dgtusé
put. Why eight, and on what does this depend? A simple agalyti 5| the network capacity with single-path transport protegouted
model casts some light on the issue. using flow-based ECMP routing. But in fact the goal itself may
In m-way multipath on &-ary FatTree, let each path contribute  pe misleading. Such topologies are expensive, and no datarce
weight 1/m. Assume a permutation traffic matrix, with random  application we know of sends at its full interface rate cany.
(independent) routing. The total weight on an access liakigys In a large data center, running many simultaneous appicsitit
1. To calculate the expected number of flows on intra-podslink s extremely unlikely that all will burst simultaneouslyhds these
and pod-core links, we need to factor in that some flows stegllo  topologies seem to be overkill for the task at hand - they arehm
to the rack and some stay local to the pod. The total weight on a more expensive than is necessary.
within-pod link is random, with an expected valfig and variance We must therefore consider topologies that oversubsctibe t
Vp. Similarly, E. and V. for the pod-core links: network core (at least in terms of potential load, not nealys

na n1 actual load). To do this, we created a Clos-style netwonkiso¥zer-
Ep=1- 1 Ee=1- 0 subscribed the capacity of the uplinks from the top-of-mekches
m—1 1 1 ng —1 by 4:1 (for every four Gb/s from the hosts in the rack, one BGb/
Vp = Ep << o + E) + <1 - E) (1 "o = 1) - Ep) uplink capacity is provided). Again we use a permutationrinais
m_1 1 1 S a baseline, but now we also need to examine what happens when
Ve = Ee (( + —) + <1 - —) (1 - ) - Ec) the oversubscribed network is overloaded (and underlgaded
) mnLm m no—1 Fig. 8(a) shows what happens as we increase the number of con-
no = %37 ny = %27 ny = g nections per host; the y-axis shows the total throughpueset by

MPTCP connections using four subflows, as a multiple of tke to

Fig. 6 shows how varianck, changes as we add subflows for throughput achieved by single-path TCP using the samedyit
varying sizes of networkV/, is very similar. Aimostindependent of ~ t€rn. At very low load, the few flows that exist almost neveargh

the size of the network, the variance settles down above sigh a link with another flow, so they saturate the host NIC withhbot
flows. Although this model is too simplistic to predict thghyput TCP and MPTCP. At very high load levels, the core is severely
(it cannot factor in how congestion on one path can free dgpac congested with high packet loss, and there are sufficiensflow
another), it captures the dominant effect that determioesthany ~ Saturate all the links in the core, irrespective of whethé? \CP
subflows are required, at least for the permutation traffitrima is used. For a very wide range of load in between, MPTCP pro-

vides significant improvements in throughput, with the maxin
improvement occuring at 0.25 connections per host, whighes
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Fig. 8: Relative MPTCP performance as a function of load when runRiermutation or Random traffic matrices for differing tapol
gies. Mean performance and the performance of the slowestegof flows are shown.

minimum load level to fill a 4:1 oversubscribed topology. Ewe
erage throughput improvement depends on the topology tised,;
maximum for oversubscribed Fat-Tree is 65%, while VL2-4@ an
VL2 improve by 15% and 11% respectively.

It is also instructive to look at the speeds of the slower flows
these experiments, as these dictate when jobs finish. Thageve
improvement again depends on topology and load, but the ga@
bigger: MPTCP improves throughput for the slowest flows Bx1.
to 3x for medium to moderately high load levels.

There is one exception for a highly loaded VL2 where the siowe
flows have lower throughput with MPTCP. On closer inspegtion
in turns out that the slow flows have very small windows on each
of their subflows, which leads to repeated timeouts and estluc
throughput for those flows; this is despite total networlotiyghput
being higher for MPTCP compared to TCP. For VL2-40 and Fat
Tree the same effect does not apply, as there is more heteribge
in the speeds of the individual subflows; at least one or a few o
these have a big enough window to avoid timeouts. A very mpl
heuristic can be applied to avoid VL2 throughput degradatay
small flows: if the stack has many subflows with small windoivs,
will close some of them to reduce until the remaining wind@nes
big enough to avoid timeouts.

Irrespective of whether MPTCP is used, we believe data cente
designers will be likely to attempt to engineer their netkgxso that
the core is neither underloaded nor overloaded. An oveeldadre
is a performance bottleneck; an underloaded core costsyntbae
would have been better spent elsewhere. So it appears tikaly
the sweet-spot for MPTCP is close to the load level for whigh t
data center designer would provision.

4.3.4 Influence of the Traffic Matrix

The permutation traffic matrix is useful as a baseline forgam
ison because itis easy to reason about how much throughpuidsh
be available from the network. With a topology that provifigs
bisectional bandwidth, the load is just sufficient to fulbad the
network. It is however, not terribly realistic.

ments come from MPTCP’s ability to simultaneously use mpidti
interfaces for the same flow.

Full-bisection VL2 and VL2-40 showed no improvement, which
was puzzling. To understand this effect, say we randombcate
n flows ton hosts. The probability that a host sends no flow is:

1\" 1

p[no flow] = <1 n) — =

The number of hosts that do not send are thethis bounds the
total throughput. In fact the throughput is lower. For exémpf
the hosts that send only one flow, many of these will be reddiye
a host receiving more than one flow, so the sender will be enabl
to send at its full speed. Numerical analysis shows that vthisn
is taken into account, the maximum achievable throughpuaryy
load-balancing algorithm with random traffic is limited bgllad-
ing flows on the sending and receiving hosts to less %mrﬁ the
bisectional bandwidth.

With such a workload, none of VL2’s 10Gb/s core links is ever
saturated, so it makes no difference if TCP or MPTCP is used.

Locality of Traffic The random and permutation traffic matri-
ces provide no locality of traffic. With a full bisection tdpgy,
it should in principle not be necessary for applicationsdcal-
ize traffic, although as we have seen, this is only really tnder
very light or heavy loads, or when multipath transport usé§-s
ciently many paths. However, with oversubscribed topasgap-
plications can always get better performance if they caaline
traffic to the rack, because that part of the topology is nerswb-
scribed. MPTCP provides no performance improvement witrén
rack, because such flows are limited by their link to the tbpack
switch. Just how good does application-based traffic leatiin
have to be for the advantages of MPTCP to be nullified?

We simulated a 4:1 oversubscribed FatTree and generated a ra
dom traffic matrix, with the constraint that a fraction of thews
were destined for a random host with the sender’s rack, whéde
rest were destined for an unconstrained random host. Exasty h

A random traffic matrix chooses randomly the sources and des- sends one flow, so without locality this corresponds to the-fl

tinations, allowing traffic concentrations on access linBecause
of this, traffic flowing through the core is much less than irea-p
mutation TM for the same number of flows.

per-host data point from Fig. 8(a) - a rather heavily loadettivork.
Fig. 7 shows the aggregate throughput as locality is ineakadn-
surprisingly, as traffic moves from the oversubscribed torthe

Fig. 8(c) shows average throughput improvement with MPTCP non-oversubscribed local hosts, aggregate performarnceases.

vs. TCP in the Fat Tree, VL2 and VL2-40 4:1 oversubscribed
topologies. The results are very similar to the permutatibh but
the relative improvements are slightly smaller; this is ¢ffect of
access link collisions. Fig. 8(d) shows the throughput mepment
for the slowest 25% of flows; MPTCP increases their througbpu
average by 1.3 to 1.8 times, for a wide range of loads.

We ran the same experiments with full-bisection topologies-
Tree improved by maximum of 30%, while BCube improved by

150% to 300%, depending on the load level. The BCube improve-

However, MPTCP continues to provide approximately the same
performance benefits until around 75% of the flows are racétlo
Above this point the network core is lightly loaded, and ai\f are
limited by the sending or receiving hosts, so MPTCP proviates
improvement. We see similar benefit with a localized pertmta
traffic matrix, though the absolute throughput values agééri.
Finally, we examined many-to-one traffic patterns; theeeab-
cess links are heavily congested, no alternative pathsvaikable,
and so MPTCP and TCP behave similarly.
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4.3.5 Influence of Congestion Control
Do we need all of MPTCP’s mechanisms to get the performance
and fairness benefits above? MPTCP establishes multipflogish
per connection, and links the congestion control behavithese
subflows to achieve two goals:
e ltis fair to single-path TCP flows, even when multiple subBow
of a connection traverse the same bottleneck.

e |t explicitly moves traffic from the more congested subflows t
the less congested subflows.

To understand what is going on, we must tease apart the mecha-

nisms. We compare MPTCP with these algorithms:

Uncoupled TCP. Each subflow behaves independently, exactly as

ferent algorithms

T

MPTCP
EWTCP
UNCOUPLED
Packet Scatter
Single-path TCP ——--

p(t)

Short Flow Completion Time (ms)

Fig. 12: The effect of short flows competing with different
multipath congestion controllers

if an application had opened multiple TCP connections and given by RcKETSCATTER, which spreads over all possible paths,

striped data across them. AmidoupLEDflow will be un-
fair to regular TCP; if it has subflows through a bottleneck,
it will achieve approximatelyn times the throughput of a
competing TCP.

Equally-Weighted TCP (EWTCP). Each subflow runs TCP’s ad-
ditive increase, multiplicative decrease algorithm, betin-

crease constant is decreased depending on the number of ac-

tive subflows. An EWTCP flow will be fair to regular TCP

but as we shall see, this result is fragile and only appliesvig-
provisioned networks with no hot spots.

Itis clear that many of the performance benefits seen so éar ar
the results of spreading load over many paths. Given thigtres
is there any reason to deploy MPTCP, as opposed to multipath-
capable applications running over regular TCP?
To understand the differences between these algorithmisaves
to look more closely. Fig. 10 shows the loss rates for all thiesl

at a bottleneck, even if all the EWTCP subflows traverse that ©f the FatTree topology used in Fig. 9. We show core links sepa

bottleneck. However, it will not actively move traffic away
from congested paths.

A rather different multipath solution would be to deploy per
packetECMP multipath routing, spreading the packets of a single
flow across multiple paths, as opposed to fi@w ECMP which
hashes the five-tuple to maintain a consistent path for eaoh fl
For this to work, a single-path TCP endpoint must be modifted t
avoid unintentionally treating reordering as an indicatbpacket
loss. Thus we also tested:

PACKET SCATTER. The switches perform per-packet load bal-

rately from access links because congesting the core igafixadly
different from self-congestion at the host’s own NIC.

UNCOUPLEDTCP is clearly much more aggressive than single-
path TCP, resulting in much higher packet loss rates, bothen
core and access links. Although this does not directly ihpac
formance for long-running NcoupPLEDflows, it does affect com-
peting traffic.

MPTCP, EWTCP and Single-path TCP are equally aggressive
overall, and so congest the access links equally. In the btPS CP
performs as expected, and moves traffic from the more coedjé&st
the less congested paths, relieving congestion at hot. 4pd{3 CP

ancing across all the available alternative paths. The TCP lacks this active load redistribution, so although it doesincrease
sender runs a more robust fast-retransmit algorithm, but re 10Ss at hot spots, it doesn't effectively relieve it eithERVTCP is
tains a single congestion window as it is unaware of the mul- IS0 not as aggressive as MPTCP on the less loaded paths, so it

tiple paths.

Fig. 9 shows the throughputs of individual connections fwhe
algorithm. This is a packet-level simulation with 128 nodes
a FatTree topology, running a permutation traffic matrix afd
flows. The result sugegsts that it does not matter whetherpath
transport is performed within TCP, or at the applicatioreleand
that the load balancing aspects of MPTCP’s linked congestn-
trol do not greatly affect throughput. In fact the best perfance is

misses sending opportunities and gets slightly lower thinput.

With per-packet round-robin ECMPABKETSCATTER cannot
congest the core links; consequently the losses requireshistrain
its transmit rate are concentrated on access links.

Short Flows Fig. 12 examines how the algorithms affect com-
peting short flows. The topology is the 4:1 oversubscribed Fa
Tree; each host sends to one other host; 33% send a continuous
flow using either TCP or one of the multipath algorithms, jdev



ing enough traffic to congest the core. The remaining hostd se
one 70 Kbyte file on average every 200ms (poisson arrivalajjus

single-path TCP (ECMP sends each via a new path), and we mea-

sure how long these flows take to complete. The averagesse the
experiments are:

Algorithm Short Flow Finish Network Core
Time (mean/stdev)  Utilization

SINGLE-PATHTCP  78+108 ms 25%

PACKETSCATTER 42+ 63 ms 30%

EWTCP 80+ 89 ms 57%

MPTCP 97+ 106 ms 62%

UNCOUPLED 1524 158 ms 65%

It is clear that WicoupLEDSsignificantly hurts the short flows.
Single-path TCP fails to spread load within the core, soeuvmiany
short flows complete faster, some encounter more congestion
finish slower. MPTCP fills the core, but isn't overly aggressi
having much less impact thanNdoupPLED. Compared to TCP,

MPTCP increases mean completion time by 25% but decreases
the finish time of the slowest short flows by 10%. EWTCP has less

impact on short flows than MPTCP, which should not be surpris-
ing - while it does use multiple paths, it does not load-be¢aas
effectively as MPTCP, failing to use capacity quickly whéres
available.

PACKETSCATTER lets short flows finish quickest, but gets very
low network utilization, close to what TCP provides. Thisis-

Throughput (% of max)

0
ECMP 1s 500ms100ms 10ms MTCP
First Fit Scheduler

First-fit scheduling compared to flow ECMP and

Fig. 13:
MPTCP

distributed file systems store the data on hosts close inetveonk,

to allow higher throughput writes. In our experiment eaclstho
reads from 12 other hosts, chosen to be the host’s neighbthg i
three levels in BCube(4,3). The per-host total read thrputghare:

SINGLE-PATH 297 Mb/s
EWTCP 229 Mb/s
MPTCP 272 Mb/s

PACKETSCATTER 115 Mb/s

Due to the locality, single-path TCP can saturate all thifdbe
host’s 100 Mb/s NICs, and achieves maximum throughput. E\WTC
uses multiple paths and long paths congest short ones. MBTCP
linked congestion control mechanism moves almost all otride
fic onto the shortest path, avoiding paths that traverseiphaitton-
gested links, and so greatly reduces the self-congestion.

cause long flows back off on all paths as soon as one path looks  packEeTScATTERSUffers particularly badly in this case. It spreads

congested, despite congestion being transient due to Sbaxs.
MPTCP achieves almost all of the performance thatlduPLED
can manage, but its lower aggressiveness and better |oaalcired
greatly reduce impact on competing traffic.

Robustness What happens when there is a hot spot in the net-
work? We drop a single link in the core network from 1Gb/s to
100Mb/s. Such afailure is quite common: Gigabit etherngires
two copper pairs in a Cat-5e cable; if one RJ45 conductos fail
seat properly, it can fall back to 100Mb/s which only regsieesin-

gle pair. Similar results would be seen if a single unresperftow
saturated one link (e.g. a FCoE or UDP flow).

Results, shown in Fig. 11, show that MPTCP does what it de-
signed to do, moving traffic off the hot link onto alternatpaths;
other flows then move some of their traffic off these altexeati
paths, and so on, so the effect of the failure is negligibM/ TEC P
and UWNcoupLEDdo not shift traffic away from congestion, giv-
ing less throughput to the flows that pass through the bettlen
PACKETSCATTERbehaves worst: it has no way to separate the bad
link from the good ones. It just observes a high loss rate bao#s
off. Every single connection that has any available patbugh the
bad link achieves about 10% of the throughput it should aehie

Network Efficiency The example below shows another difference
between EWTCP and MPTCP, and is taken from [14]. If there are
multiple different length paths to a destination, pathatabtraf-

fic matrices are possible where the network resources aredvas
MPTCP will explicitly move traffic off the paths that travermul-
tiple congested links, avoiding such pathologies. Suctmgkes

do not occur in FatTree-style topologies, but they can oeathr
BCube.

S

-

>

To illustrate the issue, consider a many-to-one traffic maés
in a distributed file system read from many servers. Typjcide

traffic across both short and longer paths, and with thisleegraf-
fic matrix it actually succeeds in equalizing the loss ratess all
paths. However, most of the traffic takes multi-hop pathegithe
network very inefficiently. If we wish to take advantage ofltiu
path in the cases where it benefits flows and also avoid thimsice
and that of Fig. 11, it seems inevitable that each subflow itmast
its own sequence space and congestion window[11]. Theseasho
dictate the core design of MPTCP.

4.4 Scheduling and Dynamic Flow Arrivals

With single-path TCP is it clear that ECMP’s randomized load
balancing does not perform sufficiently well unless the togp
has been specifically tailored for it, as with VL2. Even with2/
MPTCP can increase fairness and performance significantly.

ECMP however is not the only single path selection algorjthm
Hedera proposes using a centralized scheduler to supplearen
dom load balancing, with the goal of explicitly allocatinarde
flows to paths. Specifically, Hedera flows start off using ECMP
but are measured by the centralized scheduler. If, durictedsil-
ing period, a flow’s average throughput is greater than 10%hef
interface speed, it is explicitly scheduled. How well doeB™MCP
compare with centralized scheduling?

This evaluation is more difficult; the performance of a salied
can depend on lag in flow measurement, path configuration, and
TCP’s response to path reconfiguration. Similarly the perfoce
of MPTCP can depend on how quickly new subflows can slowstart.

We use a 128-host FatTree running a permutation traffic ma-
trix with closed loop flow arrivals (one flow finishes, anotloere
starts). Flow sizes come from the VL2 dataset. We measuvaghr
puts for single-path TCP with ECMP, MPTCP (8 subflows), and a
centralized scheduler using the First Fit heuristic He¢@ra

The total throughput is shown in Fig. 13. Again, MPTCP out-
performs TCP over ECMP. Centralized scheduler performdeee
pends on how frequently it is run. In [2] it is run every 5 sec-

2First Fitis much faster than Simulated Annealing; execusipeed
is essential to get benefits with centralized scheduling.



onds. Our results show it needs to run every 100ms to apptbach
performance of MPTCP; even if it runs every 500ms there 4s lit
tle benefit because in high bandwidth data center even lavgs fl
complete in around a second.

Host-limited Flows Hedera’s flow scheduling algorithm is based
on the assumption that it only needs to schedule long-liveassfl
because they contribute most of the bytes. Other flows aaéetie
as background noise. It also assumes that a flow it schedotes o
an unused link is capable of increasing to fill that link.

Both assumptions can be violated by flows which are end-host
limited and so cannot increase their rate. For example, ar&tw
bandwidth can exceed disk performance for many workloadst-H
limited flows can be long lived and transfer a great deal cd dat
never exceed the scheduling threshold. These flows areeid oy
the scheduler and can collide with scheduled flows. Perhapsey
a host-limited flow might just exceed the threshold for sctied,
be assigned to an empty path, and be unable to fill it, wastipge
ity. We ran simulations using a permutation matrix wherendaust
sends two flows; one is host-limited and the other is not. Wthen
host-limited flows have throughput just below the 10% schirgdu
threshold, Hedera’s throughput drops 20%. When the same flow
are just above the threshold for scheduling it costs Hed&¥a 1

Scheduling App Limited Flows
Threshold  Over-Threshold  Under-Threshold
5% -21% -22%
10% -17% -21%
20% -22% -23%
50% -51% -45%

The table shows the 10% threshold is a sweet spot; changing it
either caused too few flows to be scheduled, or wasted cgpacit
when a scheduled flow cannot expand to fill the path. In conptras
MPTCP makes no such assumptions. It responds correctlynte co
peting host-limited flows, consistently obtaining highahghput.

5. EVOLVING TOPOLOGIES WITH MPTCP

Our previous experiments showed that only a few workloads
saturate the core of full-bisection topologies; these Voartts are
somewhat artificial. To justify full-bisection topologiesquires:

e There is no locality to the traffic.
e There are times when all hosts wish to send flat-out.
e There is no concentration of traffic on any access link.

In practice, none of these assumptions seem valid, so hgildi
topology that provides full bisectional bandwidth seemdéoa
waste of money.

In section 4.3.3, we examined an oversubscribed FatTree: on
where for the same core network we connected four times ag man
hosts. This seems a more likely topology, and hits a bettenba
between being bottlenecked on the core and being bottledemk
host access links. It also takes advantage of any localayiged
by the application. For example, HDFS places two out of three
replicas in the same rack, and map jobs in MapReduce arenasisig
to servers in the same rack as the data. For such topologi&ECA
cannot help much with the local traffic, but it does ensurectire
is used to maximal effect.

Fig. 14: Dual-homing in the Fat Tree Topology

and the top-of-rack (ToR) switches. These cases can onlynbe i
proved by adding more capacity, but moving to 10Gb/s etliésne
expensive. With single-path TCP, there is limited benefibrfrad-
ditional 1Gb/s ethernet links to the ToR switches, becausiagie
flow cannot utilize more than one path. MPTCP does not hage thi
limitation. Almost all current servers ship with dual gigadther-
net onboard, so an obvious solution is to dual-home host®k T
switches, as shown in Fig.14. Whether to overprovision tire ¢
is then an additional question a data center operator muastiaer,
based on predicted workload.

For our experiments, we wish to keep the cost of the network
constant, so we can directly compare new and existing tojEso
To do so, we impose the artificial constraint that the number o
switch ports remains constant, but that we can move porta fro
one place in the topology to anotfer

Consider the following two topologies:

Perfect Switch . FatTree and VL2 both try to emulate a single
huge non-blocking switch. VL2 comes closer to succeeding
than FatTree does, but a perfect switch serves as a good con-
trol experiment, giving an upper bound on what any network
core might provide using single links to the hosts.

Dual-homed FatTree (DHFT) . A full FatTree requires five switch
ports per host; one is to the host and four connect the links
between the two layers of switches. If we remove one port
per host from the core and use it to connect the second inter-
face on each server, the network requires the same number
of switch ports.

To produce a regular DHFT topology with this ratio of core-to
access capacity, we start withkgport FatTree topology. We leave
the upper-pod switches and aggregation switches the samde, a
replace each top-of-rack switch with twidk/12 port switches.
With FatTree, each ToR switch had2 uplinks and connectekd/2
hosts. With DHFT, each pair of DHFT ToR switches still g
uplinks, but havelk /3 downlinks, supportin@k /3 hosts between
them. In total, there are still five switch ports per host.

For sensible values @f, we cannot produce fully regular DHFT
and FatTree networks with the same number of ports per host.
For this reason we compare DHFT with the Perfect Switch, vhic
should underestimate the benefits of DHFT.

5.1 Analysis

Effects of Locality It is not our aim to show that DHFT is in any
sense optimal; we cannot define optimality without knowihg t
workload and which metrics are most important. Rather, wwetai
show that MPTCP creates new options for data center topesogi
DHFT is a simple example of such a topology.

DHFT presents opportunities single path TCP can'’t explHit.

If we now take a leap and assume all hosts in the data centerthe networkis underutilized, any pair of communicatingtessiould

support MPTCP, then we should also ask whether differeritep
gies enabled by MPTCP would perform even better. The obvious
place to start is to consider cases where the workloads we hav
examined are bottlenecked on the access links between #te ho

be able to utilize both their NICs, reaching a throughput®bz.

3In a real network, the ports per switch would be fixed, and the
number of hosts and switches varied, but this does not albowa f
fair comparison, independent of the prices of hosts ancchest
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We wish to tease apart the effects of the topology from thecedf
of running MPTCP over the topology. We compare:

e TCP over the Perfect Switch.This is the control experiment,
and is an upper bound on what TCP can do in any single-homed ! ! -
topology. As there are no parallel paths, MPTCP cannot help 20 connections per host MPTCP will again start to get moiautdjin-

on a Perfect Switch. Locality also has no effect on the result

e Single-path TCP over DHFT. Although DHFT is not ideal for
TCP, this provides a baseline for comparison.

e MPTCP over DHFT. We wish to understand when MPTCP
over DHFT outperforms any single-homed topology, and see
how much of this is due to MPTCP.

Our first experiment shown in Fig. 15 is a packet-level simula
tion of the permutation traffic matrix, using long-lived flswvith
varying degrees of intra-ToR traffic locality. The DHFT netw
has k=12, giving 576 hosts, and 100Mb/s links, giving a maxmm
throughput of 43 Gb/s if no traffic is local, and 115 Gb/s ifthk
traffic is local to the rack and both links from each host ardus
The dark grey region shows throughputs that are feasiblecasity
changes. If only one of the two interfaces on each host is, sed
is the case with single-path TCP, then the light grey regloows

the possible throughputs.

Our baseline for comparison is a perfect switch directlynemt-
ing all 576 hosts via 100Mb/s links. This provides an uppearrtab
on what a regular FatTree with the same number of switch jaarts
the DHFT could achieve with perfect traffic scheduling.

MPTCP using eight subflows achieves close to the theoretical
maximum for all degrees of locality. In contrast, due to flogl-c
lisions on core links, single-path TCP does not even congedio
the theoretical single-path limits until most of the trafSmot us-
ing the core. If the traffic resembles a permutation trafficrina
building a DHFT topology without MPTCP makes little sense.

If no traffic is local, MPTCP on DHFT is outperformed by the
Perfect Switch. But to achieve no locality requires efforven
with a random traffic, some flows stay local to the rack. In fica¢
applications often adaptively arrange for processingke tvan-
tage of locality. MPTCP on DHFT outperforms the Perfect Stvit
when at least 12% of traffic is local, and costs the same inchwit
ports as a FatTree that is strictly worse than a Perfect Bwitc

Effects of Load With a random traffic matrix, throughput can be
limited by access links collisions. For single-path TCP, ldF>
can reduce this bottleneck, improving performance. Qoliis in
the DHFT core remain an issue though. The benefits are muchg, EXPERIMENTAL VALIDATION
greater for MPTCP, as it can utilize both access links evearwh
there are no collisions. Fig. 16 shows how performance digpen

on load. At light-to-medium load, MPTCP achieves nearlycevi

the performance of the perfect switch. At high load, the DHBile

is the bottleneck, and the Perfect Switch core has highetvaialth.
Interestingly, if we keep adding connections, we expedtahaund

put than the perfect switch as more hosts gain at least okdaeal
connection. In the extreme, an all-to-all traffic matrix hveithieve
twice the throughput of the perfect switch, with most tralfang
rack-local flows. Such extreme workloads push the limits af o
packet-level simulator, and have no practical relevance.

5.2 Discussion

DHFT costs the same as a Fat Tree (same port count), but has
more links in the access. It provides benefits for traffic grat
with hotspots, and those where the network core is undizeil
Compared to an idealized Fat Tree (i.e. perfect switch), DblIF
worst case performance is 75% and best case is around 200%. If
all traffic matrices we analyzed are equally likely to appagrac-
tice, DHFT trades a bit of worst-case performance for sutbistia
average-case gains.

Beyond performance, DHFT improves robustness: any lower-
pod switch failure does not cut-off an entire rack of servets
most racks have dual power supplies, switch redundancyreltes
the biggest single cause for correlated node failures. rim, tinis
will likely increase application locality; for instance HI3 could
choose to store all three replicas of each block in the saoke ra

DHFT is not optimal by any measure, but it shows that we can
create topologies with better performanteve assume MPTCP is
the transport protocol. DHFT makes little sense with TCFnast
of the benefits vanish either due to collisions in the core ©P
inability to use multiple interfaces for a single connentio

With MPTCP as transport, a wider range of topologies are-cost
effective. Multipath TCP allows us to linearly scale bisectand-
width for the same increase in cost. For instance, to creipa-
ogy with 2Gb/s full bisection bandwidth, we could usk-port Fat
Tree with%® /8 dual-homed hosts. Transport flows would need to
be split across different host interfaces to reach 2Gbfgyl€path
TCP can't effectively utilize such a topology.

For really large data centers with hundreds of thousandesith
Fat Tree may not be feasible to deploy. We expect there wilsbe
lands of Fat Trees, connected to a super core with 10Gb/skspli

Simulation is only as good as our ability to predict whichggro
erties of the environment we are modeling will turn out to tve i
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Fig. 19: Robustness
locality in the DHFT testbed

the DHFT testbed

portant. Ideally we would cross-validate results agaimsttll im-
plementation. We had two opportinities to do this.

First, we built several small FatTree-like topologies i tab,
with 12 hosts and 7 switches. Although this is too small to see
various statistical multiplexing effects, it does provaleontrolled
enviroment for experimentation. We primarily use this foi- m
crobenchmarks to validate aspects that cannot be acguratel-
eled in simulation.

Our second opportunity was to rent virtual machines on Ama-
zon’s Elastic Compute Cloud (EC2). This is a real largeespab-
duction data center, but we can only infer topology and wanotn
control or even measure competing traffic.

6.1 Microbenchmarks

Our Linux implementation is still research-grade codeas hot
been optimized and mature code should perform better. All th
same, it is important to verify that the implementation ipatale of
the performance indicated in the simulations. In particufaight
subflows per connection are needed, can the implementaijmefc
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The histogram above shows host CPU load as the client sends t
the server saturating a Gigabit link. Both machines are 20866
with 2.2GHz single-core Opteron CPUs. Even on old machines,
growing beyond two subflows only increases CPU load by 10%.

Should MPTCP be enabled for all TCP connections in a data
center? We connected two dual-interface machines to a igigab
switch, and measured the time to setup a connection anddrans

a short file. TCP can only use one interface; MPTCP can also use

the second, but only after the first subflow has negotiatedisiee

of MPTCP and the second subflow has been established. Figure 1
shows that TCP is quicker for files of less than about 10 packet
but much slower thereafter. To avoid penalizing short floths,
code just needs to wait two RTTs after data transmissiotssfair
until the window of the first subflow is big enough) and onlyrthe
start a second subflow.

6.2 DHFT Testbed Experiments

We built a small DHFT network with 12 hosts in two racks. Each
host connects to the two ToR switches in its rack, which aad du
homed to two aggregation switches, giving four static-edytaths

Time (s)

0
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Flow Rank

Fig. 20: 12 hours of throughput, all
paths between forty EC2 nodes.

to Link Failures in

between hosts in different racks. The switches are softched
running Linux on PCs. ToR-to-core links are oversubscrided

Our aim is to validate some of the simulations, and to see how
well our Linux MPTCP implementation behaves with multipkhs.
To compare with Fig. 15 we ran the permutation locality tcaffi
matrix, varying the fraction of rack-local connections. waffic
pattern quite similar to this is generated by HDFS writesergh
73 of the traffic is rack-local. The throughput curve, shown in
Fig. 18, is close to the theoretical value; if 15% of traffidas
cal, DHFT equals the throughput of a perfect switch; with enor
local traffic, the improvements are bigger. Aggregate thhgmut
levels off at 21Gb/s; although MPTCP could send more, thentin
soft-switches are saturated.

To validate MPTCP'’s robustness to link failures we ran the ex
periment from Fig. 11, downgrading a core link’s speed fraai/s
to 100Mb/s. Single-path TCP cannot avoid this link as sudila f
ure will not trigger re-routing. We ran a zero-locality peration
matrix to maximally load the core. Fig. 19 shows a time sevies
flow throughputs. Approximately 4 minutes into the expermite
we downgrade one of the core switches’ links to 100Mb/s. MPTC
copes well: its congestion control fairly distributes tleenaining
core capacity between the flows. When the link returns to 4Gb/
MPTCP flows increase to fill the capacity.

6.3 EC2

Amazon’s EC2 compute cloud allows us to run real-world ex-
periments on a production data center. Amazon has seveml da
centers; their older ones do not appear to be have redurajzoibt

(O

gies, but their latest data centers (us-east-1c and ustdpsise a
topology that provides many parallel paths between mamg [odi
virtual machines.

We do not know the precise topology of the US East data cen-
ter. Compared to our simulations, itis complicated sligh#cause
each instance is a virtual machine, sharing the physicalwee
with other users. Background traffic levels are also unkntowns,
and may vary between experiments.

To understand the variability of the environment and the po-
tential for MPTCP to improve performance, we ran our MPTCP-
capable Linux kernel on forty EC2 instances, and for 12 hours
sequentially measured throughput with iperf between eaahgb
hosts, using MPTCP with 2 and 4 subflows and TCP as transport
protocols. The resultant dataset totals 3,000 measursrf@rgach
configuration, and samples across both time and topdlogy.

Fig. 20 shows the results ordered by throughput for eachgonfi
uration. Traceroute shows that a third of paths have no sityeof

“We also ran the same experiment for 24h with ten machines; re-
sults are qualitatively similar.



these paths 60% are local to the switch (2 IP hops), whiletthers
have four IP hops. They roughly correspond to the right-rzijd
of the flows in the figure; they achieve high throughput, areirth
bottleneck is most likely the shared host NIC. MPTCP caned h
these flows; in fact some of these flows show a very slight roluc
in throughput; this is likely due to additional system oweatls of
MPTCP.

The remaining paths are four IP hops, and the number of avail-
able paths varies between two (50% of paths), three (25%p up t
nine. Traceroute shows all of them implement load balanaangss
a redundant topology. MPTCP with four subflows achievesethre
times the throughput of a single-path TCP for almost eveiy pa
across the entire 12-hour period.

7. RELATED WORK

Multipath TCP spans routing, path selection and congeston
trol, offering a general solution to flow scheduling in datnter
networks. Our design of the MPTCP congestion controller was
presented in [14]; there we also briefly analyzed the aphilica
ity of MPTCP to current data centers, and the effect of dffier
congestion controllers. This paper provides a much morailddt
analysis of MPTCP in existing data centers, as well as exgor
new topologies enabled by MPTCP.

There has been much work on scheduling for Clos networks [10,
13, 8]. m = n Clos networks are rearrangeably non-blocking:
there is an assigment of flows to paths such that any soustaaton
traffic pattern can be satisfied at maximum speed. Howeves; ma
ping flows to paths is difficult; random path selection caredess
than 50% of the possible throughput. Many heuristic alpang
have been proposed to utilize Clos networks, but most haae-dr
backs either in convergence time or performance [8]. Moke re
cently, Hedera provided such a solution for data center orédsws-
ing a centralized coordinator and programmable switchgsatce
flows on paths in the Fat Tree topology [1].

VL2[6] sidesteps the scheduling issue by using 10Gb/s links
the core and per-flow Valiant Load Balancing (ECMP). The dpee
difference between core and access links reduces the effeatli-
sions. With BCube [7], sources probe congestion on all ptis
use source routing. Unfortunately congestion varies tapahd
the initial choice may quickly become suboptimal.

Spreading each connection over multiple paths makes tleelath
ing problem tractable. Geoffray [5] proposes striping aslacross
multiple paths, coupled with layer two back-pressure. Timéta-
tions of this solution stem from the limitations of back-gsare: it
is unclear how well this scheme works over multi-hop pathih wi
heterogeneous hardware, as found in todays data centeaddiin
tion to changing the switches, the transport protocol misst be
changed to cope with frequent reordering.

Multipath TCP takes the next logical step, making the enst-ho
aware of the different paths, but not changing the networRTKIP
is topology agnostic, completely distributed, and can treacthe
timescale of a few round trip times to changes in load. MPTCP
finds free capacity in the network, increases fairness anobigst
to congested links or failures. Finally, it can cope with dipmted
flows; network-based solutions struggle here because tnayih-
sufficient information. MPTCP gets these benefits becausanit
bines path selection, scheduling and congestion control.

8. CONCLUSIONS

In this paper we examined how the use of MPTCP could improve
data center performance by performing very short timesdisle
tributed load balancing. This makes effective use of perakths

in modern data center topologies. Our experiments showfdat
any traffic pattern that is bottlenecked on the network cathar
than on the hosts or their access links, MPTCP provides ial p
formance benefits. Due to cost, we expect network cores tudze o
subscribed in real data centers, so these benefits seemtlikiee
common; certainly we observed them in Amazon’s EC2 network.

A surprising result is the need to use as many as eight subflows
for FatTree and BCube to achieve both good throughput amnd fai
ness. Only then is the variance of load between core linkscesdl
sufficiently. The MPTCP protocol and our implementationdian
this without difficulty.

Multipath transport protocols such as MPTCP can change the
way we think about data center design. With the right conges-
tion control, they actively relieve hot spots, with no need dny
form of network scheduling other than simple random ECMR-rou
ing. More importantly, network topologies that make no semnih
TCP can be very effective with MPTCP. Even routing protocols
might benefit. In recent years switch vendors have put a giest
of effort into reducing failure detection and routing regergence
times. But as data centers scale to hundreds of thousandstst h
this becomes increasingly difficult. In topologies with maadun-
dant paths and hosts running MPTCP, perhaps fast routirenyec
vergence after failures is less critical.
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