
Datacenter Scale Load Balancing for Multipath
Transport

Vladimir Olteanu
University Politehnica of Bucharest

Costin Raiciu
University Politehnica of Bucharest

Abstract
Multipath TCP traffic is on the rise with recent deploy-
ments by Apple and Samsung on mobile phones. De-
spite this, MPTCP adoption on servers is falling behind
and the major problem is that Multipath TCP does not
work with existing datacenter load balancers.

In this work we present MPLB, a distributed load bal-
ancer for Multipath TCP traffic. MPLB uses stateless
software multiplexers to direct traffic to backend servers
and is resilient to mux and network failures, as well as
backend server churn. We have implemented and tested
MPLB, finding it can handle 6Mpps per machine with
minimum-sized packets, seamlessly scale-out or in and
gracefully handle mux failures.

1. INTRODUCTION
Load balancing is an indispensable tool in modern

datacenters: Internet traffic must be evenly spread across
the frontend servers that deal with client requests, and
even internal datacenter traffic between different ser-
vices is load balanced to ensure independent scaling and
management of the different services in the datacenter.

Multipath TCP (MPTCP) is a recent extension to
TCP [5] that allows endpoints to utilize multiple paths
through the network in the same transport connection
and is a drop in replacement for TCP. Multipath TCP
adoption is gaining pace. Apple IOS (and OSX) imple-
ments MPTCP, Samsung and LG offer Android versions
with Multipath TCP implementations and several Ko-
rean operators use MPTCP to“bond”LTE and 802.11ac
to achieve gigabit speeds on mobile phones. Current de-
ployments use a proxy to terminate MPTCP and talk
TCP to the servers, but this is only a stop-gap solution.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

HotMIddlebox, August 22-26 2016, Florianopolis , Brazil
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to

ACM. ISBN 978-1-4503-4424-1/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2940147.2940154

The next logical step is for MPTCP to be deployed in
datacenter servers, but load balancer support is missing.

The job of a load balancer is to send the traffic from
a single connection to the same server and is typically
achieved by hashing on the packet five-tuple to decide
the destination server for both TCP and UDP traffic.
There is currently no scalable load balancer solution for
Multipath TCP traffic: an MPTCP connection can have
an arbitrary number of subflows, each of which looks
like an independent TCP connection, and only SYN
packets contain connection-identifying information. Us-
ing a hash of the five-tuple to load balance MPTCP
subflows would result in different subflows arriving at
different servers and breaking the protocol.

In this paper we design, implement and test MPLB, a
scalable load balancer for Multipath TCP traffic. In our
solution, each load balancer acts completely indepen-
dently and holds no per-connection state. This ensures
great scalability: we can add or remove load balancers
very quickly and without any impact on existing connec-
tions, and can seamlessly tolerate failures. To support
stateless load balancing we developed a few novel tech-
niques, including: a) load balancers choose connection
keys instead of servers, b) servers can redirect packets
to other servers to ensure smooth handovers for scale-
out and scale-in and c) each server encodes its identifier
in the least-significant bits of the timestamp option.

We have implemented a prototype of MPLB and ran
it on our local testbed. Our preliminary results show
that each mux can handle around 6Mpps MPTCP SYN
packets or around 26Gbps with Internet MTUs; MPLB
can quickly scale up and down to track demand and is
robust to failures.

2. BACKGROUND
Services in datacenters are assigned public IP ad-

dresses called VIPs (virtual IP). For each VIP, the ad-
ministrator configures a list of private addresses of the
destination servers called DIPs (direct IPs). The job of
the load balancer is to distribute connections destined
to the VIPs across all the DIPs.

Hardware load balancing appliances have long been
around and are still in use in many locations; however
they are difficult to upgrade or modify and rather ex-

http://dx.doi.org/10.1145/2940147.2940154

MUX	
 MUX	
 …	

Server	
 Server	
 Server	
 …	

Border	
 	

router	

ECMP	

VIP	
 VIP	

DIP1	
 DIP2	
 DIP3	

1 C	
 VIP	

srcIP	
 dstIP	

2

3 VIP	
 DIP3	
 C	
 VIP	

payload	

4 VIP	
 C	

C	
 VIP	

Figure 1: Load balancing: traffic to a VIP is spread
across a pool of servers. Return traffic bypasses muxes.

src	
 dst	

IP	

X	
 80	

src	
 dst	
 port	

S	

flags	
 op2ons	

MPC	
 (KA)	

TCP	
 	

B	
 A	

80	
 X	
 S,A	
 MPC	
 (KB)	

X	
 80	

Y	
 80	
 S	
 JOIN(TB)	

80	
 Y	
 S,A	
 JOIN(TA)	

Y	
 80	
 DATA	

DATA	

Cellular	
 	

Interface	

Wifi	

Interface	

B	
 A1	

A1	
 B	

B	
 A1	

B	
 A2	

A2	
 B	

B	
 A2	

Figure 2: MPTCP Operation: only SYN packets iden-
tify the MPTCP connection.

pensive. That is why load balancers based on commod-
ity hardware have been proposed [1–3,6,7,9,11]. There
are two types of software load balancers: type 1, that
terminate the client TCP (or MPTCP) connections and
open new connections to the servers, and type 2, that
do not terminate the connections.

Type 1 load balancers such as HAProxy [1] or Ng-
inx [2] terminate TCP connections and could support
MPTCP by a simple kernel upgrade; unfortunately they
scale poorly since they must process both client-to-server
and server-to-client traffic (ten times larger then client-
to-server traffic) and can only handle a limited number
of active connections (300K is an estimate for HAProxy).

Type 2 load balancers do not terminate TCP con-
nections and can scale to large datacenters, and this
is the focus of this work. At a high level, our solution
uses the same architecture proposed by Ananta [11] and
Maglev [3] and shown in Fig. 1. Load balancing is per-
formed only for client-to-server traffic using a combi-
nation of routing and software muxes running on com-
modity x86 boxes. All muxes speak BGP to the border
datacenter router and announce the VIPs they are in
charge of as accessible in one hop. The border router
then uses equal-cost multipath routing (ECMP) to split
the traffic equally to these muxes. When a packet ar-
rives at a mux, the mux decides by some mechanism
which DIP it should be destined for.

Upon leaving the mux, the original packet is encap-
sulated and sent to the DIP. The server decapsulates
the packet, changes the destination address from VIP
to DIP, and then processes it in its TCP stack. When
the stack generates a reply packet, the source address
is changed from DIP to VIP and the packet is sent di-
rectly to the client, bypassing the mux (this is called
Direct Source Return, or DSR) to reduce its load.

Multipath TCP. Existing load balancer designs do
not support Multipath TCP traffic. To understand the
additional requirements posed by MPTCP, we provide
a brief description of the relevant parts of the protocol.

Consider the example in Fig. 2. To start an MPTCP
connection, mobile A could use its cellular interface to
send to B a TCP SYN segment that has a multipath
capable option (MPC). The option signals to B that A
wishes to use MPTCP for this connection and also con-
veys KA, A’s key for this connection. To use MPTCP,
B will reply with a SYN/ACK segment that also car-
ries an MPC option with its own key, KB . The keys are

used by each endpoint to derive a token for the new con-
nection; this token must be locally unique. The token
is obtained by taking the 32 most significant bits of a
SHA1 hash of the key, i.e. TA = MSB32(SHA1(KA)).

After the initial subflow is setup, A (or B) can now
add subflows to the existing connection. A could use
its Wifi interface to send a SYN/JOIN message, which
tells B that the new subflow is part of an existing con-
nection. The JOIN option carries B’s token, allowing B
to associate the subflow to the correct connection.

When an MPTCP sender wishes to send data, it can
use any of the available subflows. The sender will create
a TCP segment with the appropriate subflow addresses
and ports, together with an option that informs the re-
mote end of the connection level sequence number of
this data (not shown). No connection identifying infor-
mation is carried in data packets.

When load balancing MPTCP traffic, all subflows of
the same connection must be sent to the same DIP. Ex-
isting load balancers such as Ananta will treat MPTCP
subflows as independent TCP connections: a hash on
the five-tuple will decide the DIP for each subflow. In
most cases the different subflows will be sent to different
servers, breaking all subflows except the first one.

3. OVERVIEW OF MPLB
Ideally, muxes should not keep per flow state: the fate

of each packet should be decided independently, without
any mux-specific state. If this were the case, any mux
could load balance any packet, and mux failures would
have no adverse effects on ongoing connections. The
changes needed to ensure fault-tolerance underpin our
whole design, so we present them first.

The statring point of our solution is very simple: in-
stead of hashing the SYN and then remembering the
decision locally (as in Ananta or Maglev), muxes apply
a hash function to each packet and choose the target
server by computing hash(5 − tuple)%N , where N is
the number of DIPs. As long as the set of DIPs doesn’t
change, the load balancing decision will be the same re-
gardless of the mux, and mux failures or additions do
not impact the flow-to-DIP allocations. Unfortunately,
when a single server fails (or is added), most connec-
tions will break because the modulus used changes.

Stable hashing. To avoid this issue, we add a level
of indirection by using “buckets” as follows. First, we
choose a number of buckets B that is strictly larger than

MUX	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

	

A	
 B	
 C	

a)	
 Stable	
 hashing	
 with	
 	

	
 	
 	
 	
 	
 	
 	
 	
 three	
 servers	

b)	
 Server	
 B	
 fails	

Fixed	
 number	

of	
 buckets	

hash	
 MUX	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

	

A	
 B	
 C	
 X	

X	

hash	

A	
 B	
 C	
 A	
 A	
 C	
 C	
 A	

Figure 3: Stable hashing is resilient to server
B failing: only B’s flows are moved.

A	

MUX	

C	
 B	

MUX	

SYN&data	

FIN	
 FIN	

Figure 4: Load balanc-
ing MPTCP statelessly

MUX	
 2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

MUX	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

B	
 A	
 B	

a)	
 Bucket	
 assigned	
 to	
 A	
 b)	
 Bucket	
 moved	
 to	
 B,	

Inconsistent	
 mappings.	

B	
 B	
 A	
 B	
 B	

MUX	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 B	
 B	

MUX	
 2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 B	
 A	
 B	
 B	

A	

A	

Figure 5: Daisy chaining enables scaling
without affecting ongoing flows.

N , the number of servers. Each bucket is“assigned”to a
single server, and one server may have multiple buckets
assigned. The number of buckets and the buckets to
server assignments are known by all muxes, and they
are disseminated via a separate mechanism (see below).
When a packet arrives, muxes hash the connection to
a bucket by computing b = hash(5 − tuple)%B, and
then forward the packet to the server currently assigned
bucket b. As the set of buckets is constant, server churn
does not affect the hashing result: if a server fails, only
the flows it hosted will be affected.

A centralized controller manages the mappings be-
tween buckets and servers. These mappings change in-
frequently: on server failure or explicitly by the admin-
istrator for load-balancing and maintenance purposes.
A discussion of how the mappings are managed is be-
yond the scope of this paper.

We show an example of stable hashing in Figure 3.
When server B fails, the controller will map the bucket
to server C; the mapping is then disseminated to all
muxes. After the mapping is updated, flows initially
going to A or C are unaffected, and flows destined for
B are now sent to C. Only the connections that were
already open on B before the failure are broken.

3.1 Load balancing Multipath TCP
MPTCP load balancing is hard because there is no

discernible relationship between the initial connection
SYN sent by the client and the following subflow SYN
packets, as shown in Fig. 2: the initial SYN contains
A’s key, and the second subflow SYN contains B’s token.

There are two possible types of solutions to solve the
problem. When a new connection is setup, B could in-
form the associated mux of its token (either directly, or
by using a distributed key-value store). Unfortunately,
such solutions either force the mux to store per-flow
state, reducing fault tolerance, or add latency to every
packet because of distributed state lookups.

A better solution is for muxes to load balance JOIN
packets using the token directly: treat the token as a
hash and select a DIP by performing a lookup in the
buckets array (i.e. token%B). For this solution to work
correctly, all connections destined to server B must have
a token (chosen at connection startup) that points to
B. This is not the case for MPTCP: tokens used by B
depend on the randomly generated per-connection key.

A brute force solution is for B to randomly generate
multiple keys instead of just one per connection and

select the first key that generates an appropriate token.
The time complexity of this method depends on the
number of DIPs and is quite high: 2ms per connection
when load balancing across 1000 DIPs.

Instead, we move key generation to the muxes: the
mux will deterministically generate a key for every new
connection, hash it to find the token and the appropri-
ate DIP. The key is then communicated to the DIP in
the encapsulated packet. The DIP does not generate a
new key for the MPTCP connection, and simply uses
the one provided by the mux.

To load balance data packets in a stateless way we
use two separate mechanisms, shown in Figure 4.
1. Redirect traffic. When a new subflow is setup, the
mux computes a hash of the five-tuple and selects the
DIP (say C) that is responsible for the subflow under
plain five-tuple hashing. It communicates this DIP to
B, who in turn, instructs C to forward to B all packets
it receives for that five-tuple. Redirection is enough to
ensure correctness; however it is also inefficient: traffic
will hit two servers instead of one.
2. Embed the token in regular segments. To reduce the
costs of redirection, we change the server stack to em-
bed the token in its outgoing segments and “trick” the
standard MPTCP client to echo these tokens in return
traffic. In particular, our servers embed the token in
least significant bits of the timestamp option carried
by most TCP segments except the FIN. Clients echo
these values sent by the server in its timestamp op-
tions, and the muxes then use the least significant bits
of the TSecr part of the timestamp to properly load
balance the packets. Only packets that do not have
the timestamp options are load balanced using the five-
tuple and thus redirected (FIN packets). More details of
the timestamp implementation, including a discussion
on its correctness and safety, are given below.

The pseudocode of our mux algorithm is in Fig. 6.
This algorithm has very small memory usage as for most
packets in the fast path it does one packet memory ac-
cess to retrieve the token and then indexes in the buck-
ets array called srv, where each entry stores the DIP
address of the server in charge of that bucket. The
packet is then encapsulated and sent to the server. For
SYN(JOIN) packets, the mux does more work: it hashes
the five-tuple and informs the server of the redirection
point. Finally, SYN(MPC) packets are the most expen-
sive, since a key is generated and the token is computed.

if (MP_CAPABLE) {
k = SHA1(fivetuple, client_key, secret);
t = SHA1(k);h = hash(fivetuple);
dip = srv[t % BUCKETS];
redir_dip = srv[h % BUCKETS];
encap(p, k, redir_dip, dip);

} else if (MP_JOIN) {
t = retrieve from JOIN option;
h = hash(fivetuple);
dip = srv[t % BUCKETS];
redir_dip = srv[h % BUCKETS];
encap(p, redir_dip, dip);

} else {
if (timestamp)

t = LSB13(timestamp);
else

t = hash(fivetuple);
dip = srv[t % BUCKETS];
encap(p,dip);

}

Figure 6: Mux load balancing algorithm. No per-flow
state is used to decide the fate of packets.

Daisy-chaining for smooth server handover. There
is a natural amount of churn of servers behind a VIP due
to failures, scaling-out or in or planned maintenance.
To allow smooth handovers, we need a mechanism to
migrate connections from a source server (A) to a tar-
get one (say B). Supporting migration is easy for the
controller: it must simply re-map the A’s buckets to B
and then inform the muxes. The muxes will then start
sending the bucket traffic to B.

For a truly smooth migration, however, there are two
complications that need to be taken in account: existing
connections at A will be broken during the migration
and there may be temporary disagreements amongst
muxes in the buckets-to-servers mappings. To solve
both issues we use daisy chaining, a transitory period
where both the new server and the old one are active
and servicing flows that hit the migrated bucket, as
shown in Fig. 5. We aim to move all new connec-
tions to B, the new server, but allow old connections to
continue by forwarding them to A.

To start daisy chaining, the controller informs both
servers of the bucket migration. When daisy-chaining,
B will: 1) Locally service packets if they are SYN(MPC)
or belong to a local connection. 2) Redirect the packets
to the appropriate server if they match an MPTCP-
redirect rule, and 3) Daisy-chain: send all other packets
to server A. Server A will process traffic as usual until
all of its ongoing connections are closed or have timed-
out. At this point A informs B there is no more need
to do daisy chaining, completing the migration.

Daisy chaining adds robustness to our whole design.
Consider what happens if the two muxes in Fig. 5 tem-
porarily disagree on the server now in charge of the
bucket being moved. Flows that hit mux 1 are load bal-
anced according to the old mapping and will be directed
to A, which processes them as usual (the black flow).
Meanwhile, B will locally service the red connection and
forward the blue connection to A. This robustness re-

moves the need for strict synchronization of all muxes
when buckets are remapped.

Embedding the token in timestamps. We need
to encode the MPTCP token in every packet to allow
muxes to forward MPTCP correctly without costly redi-
rection. To ensure quick datacenter adoption, we seek
a solution that is deployable at the servers and does not
require client or protocol changes.

We rely on TCP timestamps for our purpose. Times-
tamps are present in all packets except the FIN pack-
ets and contain two parts, one set by the sender called
TSval and another called TSecr that contains the value
most recently received from the remote end. In particu-
lar, the server embeds X in the TSval part of the times-
tamp on all its outgoing segments, where X is mono-
tonically increasing in time, and the client will echo the
most recent X it has seen in return packets.

In our solution, the server simply embeds the thirteen
lowest order bits of the MPTCP token in the lowest
order bits of the TSval field as follows:

TSval = 0xFFFFFFFF & (TSval << 13)
TSval |= (token & 0x1FFFF)

The remaining question is whether our change is safe
for the original uses of the timestamp option. The
server’s timestamps are used for two purposes: accu-
rate server RTT measurement and protection against
wrapped sequence numbers at the client.

Protection against wrapped sequence numbers.
RFC 1323 [8] specifies bounds on how quickly or slowly
the timestamp clock can evolve. With our change, the
clock will move 213 times faster than the host clock. Our
implementation is based on Linux, where the timestamp
clock ticks once every millisecond. Our clock will there-
fore appear to tick once every 122 nanoseconds, which
is well within the bounds set by RFC1323.

For active connections, our solution works perfectly
fine. However, problems appear for connections that
are idle for long periods, such as those used by mobile
phones for push notifications. In such cases, if the pause
between packets is large enough, the new timestamp
will be rejected by the client if it has advanced by more
than 231. We solve this issue by having the server send
keepalive messages at least once every four minutes.

RTT Measurement. On receipt of a packet, the
server obtains the 19 least significant bits of the packet
timestamp by shifting right the value it receives. Next,
it fills out the most significant bits by copying them
from the current value of its local clock. It then com-
putes the RTT by subtracting the timestamp from the
current clock. If the value is negative, the highest or-
der bits must have changed (i.e. the 19-bit range has
wrapped around). In this case, the server simply adds
1 << 19 to the RTT. Our algorithm is guaranteed to
work correctly as long as the packet RTT is smaller than
512s. This always holds in practice, since 512s is four
times larger than the maximum segment lifetime.

Cores
SYN Data (86B)

TCP MPC JOIN TS TS(Worst) No TS
1 4.07 1.01 3.64 4.36 3.79 4.23
2 6.48 2.02 6.65 6.99 6.89 7.00
3 6.46 2.98 6.92 6.98 6.96 6.96
6 6.30 5.87 6.62 6.69 6.69 6.67

Table 1: Mux performance vs. packet type (Mpps)

4. PRELIMINARY EVALUATION
We have implemented the mux in the Click modular

router suite [4] and we run it using the FastClick distri-
bution that relies on netmap [12] to bypass the kernel
for improved performance. Our servers run Linux ker-
nel 3.18 with the MPTCP patch (version 0.90) modified
such that the server uses the connection keys generated
by the mux and tokens are embedded in all outgoing
timestamps. We have also implemented a host agent
kernel module that decapsulates and encapsulates pack-
ets, applies redirection and daisy chaining rules. These
rules are managed by a userspace daemon.

We have tested the performance and correctness of
our prototype in a small testbed.

Performance evaluation. We first tested a mux in
isolation. The server we used has a six core Intel Xeon
E5645 processor running at 3GHz, 8GB of RAM and
two dual-port ten gigabit Intel 82599 NICs.

Our traffic generator is based on the pktgen utility
from the netmap [12] suite: we modified it to gener-
ate multiple types of packets. The traffic generator can
saturate a 10Gbps link with minimum sized packets. In
each experiment we generate a single packet type and
we measure performance at the receiver using pktgen.

Table 1 lists performance of our software multiplexer.
As expected, the single core results show that process-
ing SYN(MPC) packets is the most expensive: the mux
does two SHA1 computations and packet encapsulation.
In comparison, for all other packet types the encapsu-
lation is the most expensive operation

Processing MPTCP SYN(JOIN)s is slightly more ex-
pensive than regular TCP SYN packets, as we have to
perform one additional hash operation and encapsulate
one more field. For smallest-size data packets (86B),
direct hashing (shown as “no timestamp”) is slightly
slower than using timestamps for load balancing, be-
cause of the hash calculation. We also measure a worst-
case scenario for the timestamp option, placing it at
the end of the options field and preceding it with nops:
throughput is now 3.79Mpps, 14% lower compared to
the default placement used by Linux.

We then increased the number of cores used to service
the single NIC, spreading the NIC queues across all the
participating cores. The results for two cores show an
increase in throughput for all packet types. From three
cores and up, only the SYN(MPC) packets improve in
performance, and performance for other types of pack-
ets hits a plateau at around 6Mpps. To understand the
issue, we kept removing complexity until we were left
running only the netmap bridge, but the problem still

 0

 5

 10

 15

 20

 25

 30

 64 128 256 512 1024
 0

 2

 4

 6

 8

 10

 12

 14

T
h
ro

u
h
g
p
u
t
(G

b
p
s
)

P
a
c
k
e
t
ra

te
 (

M
p
p
s
)

Packet size (B)

Throughput
Packet Rate

Figure 10: Mux forwarding performance vs. packet size.
Our prototype can forward 26Gbps with 512B packets.

persisted; the netmap paper reports a similar pathology
on the receive path: when packet sizes are between 65B
and 127B receive throughput drops to 7Mpps (see [12]
Fig. 6). The bottleneck is, most likely, due the high
number of PCIe transactions.

All our experiments so far have used minimum sized
TCP packets and a single NIC. In our next experiment,
we measured throughput for a variety of packet sizes
in a mux with four ten gigabit NICs. The results are
presented in figure 10 and show that the mux saturates
three ten gigabit NICs when packet sizes reach 512B,
and that performance for 86B TCP packets is around
11Mpps, confirming our PCIe link bottleneck theory.

How many servers can one of our muxes handle?
Muxes are mainly used to handle HTTP requests from
clients, so we can get an estimate by examining real-life
web traffic characteristics. We examined recent traf-
fic traces from the MAWI backbone link, finding that
client to server traffic (to be serviced by the muxes) is
overwhelmingly composed of small packets: more than
90% of packets are 128B or less. Of these, only 5% are
SYN or FIN packets; the wide majority are TCP acks
and small TCP data segments. These findings, corrobo-
rated with the performance results above imply that the
mux should handle close to 10Gbps of client-to-server
traffic. The MAWI traces also show that server-to-client
traffic is 15 times larger than client to server traffic: a
single mux can, in principle, load balance for a pool of
servers that together serve 150Gbps of downlink traf-
fic. We expect one server to source around 1-10Gbps of
traffic, so a single mux should cater for 15-150 servers.

Ring size. In Fig. 7 we vary the ring size and measure
the throughput achieved when forwarding SYN(MPC)
packets. Ring size directly affects the performance of
batching heavily used in FastClick and netmap: smaller
rings will generate more interrupts and PCIe transac-
tions, reducing performance; ring sizes above 256 slots
don’t help throughput but increase latency.

Latency. Have we sacrificed packet latency in our pur-
suit of speed? We setup an experiment where our mux
is running on a single core and processing SYN(MPC)
packets sent at different rates. In parallel, we run a ping
with high frequency between two idle machines, and the
echo request passes unmodified through the mux. We
show a CDF of ping latency for different packet rates
in Figure 8. As long the CPU is not fully utilized, me-

 0

 2

 4

 6

 8

 10

 64 128 256 512 1024 2048

T
h
ro

u
g
h
p
u
t
(M

p
p
s
)

Interface ring size

1 core
2 cores
3 cores
6 cores

Figure 7: Effect of NIC ring size on
performance.

 0

 20

 40

 60

 80

 100

 0.01 0.1 0.5 1 2 3 5 10

C
D

F
 (

%
)

Ping latency (ms)

14% loss

10% CPU,100Kpps
50% CPU,500Kpps

90% CPU,0.9Mpps
100% CPU,1.1Mpps

Figure 8: Latency induced by our
mux

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35 40

P
a
c
k
e
t
ra

te
 (

M
p
p
s
)

Time (s)

Figure 9: Scaling out muxes instantly
increases available capacity.

dian and worst-case packet latencies stay below 0.5ms.
When we overload the mux, the latency jumps to 3-4ms
and 14% of packets are dropped. The 4ms latency is a
worst case and is mostly due the time it takes one core
to process all the packets stored in the 6 receive queues
used by netmap (256 packets per queue). With appro-
priate provisioning, overloading the mux CPU can be
avoided, and the latency inflation is at most 0.5ms.

Timestamp evaluation. To ensure our timestamp
modifications are safe, we ran experiments varying the
RTT between 1-500ms and loss rates between 0.01% to
5%, comparing the throughput of single-path MPTCP
using regular timestamps or the modified timestamps.
Our timestamp changes are benign: in all experiments
the differences in throughput are under 10%-20%, and
explained by typical TCP performance variability.

Scaling out. In a large datacenter, scaling out entails
starting a new mux and sending a BGP announcement
for the VIPs it serves. The border routers will then start
hashing traffic to the new mux. We have a local cluster
where we run experiments on machines connected by
an Openflow-enabled IBM G8264 Rackswitch. In our
context, using BGP is overkill; instead, we insert static
rules in the switch to load balance traffic across our
muxes using the source address prefix for redirection.

We generate and spread 10Gbps of SYN(MPC) pack-
ets across our muxes, which forward them to a single
DIP measuring throughput. In Fig. 9 we start with a
single mux running on one core and processing 1Mpps;
after that, every 10s we start one more mux and split
the traffic across muxes. With every additional mux,
there is an increase of 1Mpps of processed traffic, as
expected. In a large scale deployment we expect to see
more latency before the capacity increases, perhaps on
the order of seconds, due to BGP propagation delays.

5. RELATED WORK
Paasch et. al [10] discuss the problems posed by Mul-

tipath TCP traffic to datacenter load balancers. Their
analysis focuses on ensuring SYN(MPC) and SYN(JOIN)
packets reach the same server, and it assumes muxes
keep per flow state after the initial placement decision.
They provide two possible solutions to ensure the SYN(JOIN)
token can be used to select the correct server: change
the MPTCP handshake mechanism such that the token
is announced explicitly (and not derived from the ses-
sion key) or change the way the token is derived from

the key, using a block cipher instead of a hash function.
Our solution sidesteps these changes to the MPTCP
protocol by having muxes choose per connection keys,
and also allows muxes to be stateless for data packets.

6. CONCLUSIONS
Load balancing Multipath TCP is a necessity, yet de-

signing a scalable load balancer is far from trivial. We
have used three main ideas to tackle this challenge: sta-
ble hashing via buckets, generating connection keys at
muxes and embedding the MPTCP token in TCP times-
tamps on every packet. We have designed and imple-
mented MPLB, a stateless software load balancer that
can scale seamlessly and tolerates mux faults without
dropping any connections. Our prototype can forward
10Mpps for an expected HTTP client-to-server load on
a single modest Xeon machine with two NICs.

Acknowledgements
The authors would like to thank Mark Handley for his
suggestion to encode the server identifier in the times-
tamp. This work was partly funded by SSICLOPS
H2020 (644866) and UEFISCDI project Mobil4 (11/2012).

7. REFERENCES
[1] HAProxy - The Reliable, High Performance TCP/HTTP

Load Balancer. http://www.haproxy.org/, 2016.

[2] NGINX - HTTP Server. http://nginx.org/en/, 2016.
[3] Daniel E. Eisenbud et al. Maglev: A fast and reliable

software network load balancer. In NSDI, Santa Clara, CA,
2016.

[4] E. Kohler et al. The Click modular router. ACM Trans.
Computer Systems, 18(1), 2000.

[5] Ford, Alan et al. RFC6824:TCP Extensions for Multipath
Operation ... https://tools.ietf.org/html/rfc6824.

[6] Gandhi Rohan et al. Duet: Cloud scale load balancing with
hardware and software. In SIGCOMM, 2014.

[7] Gandhi Rohan et al. Rubik: Unlocking the power of
locality ... In ATC, 2015.

[8] V. Jacobson, R. Braden, and D. Borman. RFC 1323: TCP
Extensions for High Performance, May 1992.

[9] Nanxi Kang et al. Efficient traffic splitting on commodity
switches. In CONEXT, 2015.

[10] Paasch, Christoph et.al. MPTCP behind Layer-4
loadbalancers (ID). draft-paasch-mptcp-loadbalancer-00,
Sep 2015.

[11] Patel, Parveen et. al. Ananta: Cloud scale load balancing.
In SIGCOMM, 2013.

[12] L. Rizzo. netmap: A novel framework for fast packet i/o. In
Proc. USENIX Annual Technical Conference, 2012.

http://www.haproxy.org/
http://nginx.org/en/
https://tools.ietf.org/html/rfc6824

	Introduction
	Background
	Overview of MPLB
	Load balancing Multipath TCP

	Preliminary Evaluation
	Related work
	Conclusions
	References

