Computer Networks 272 (2025) 111709

Contents lists available at ScienceDirect
[Omputer
Netwarks

Computer Networks 2

journal homepage: www.elsevier.com/locate/comnet

Generating P4 data planes using LLMs

Mihai-Valentin Dumitru‘® *, Vlad-Andrei Badoiu, Alexandru M. Gherghescu, Costin Raiciu

University Politehnica of Bucharest, Splaiul Independentei 313, RO-060042, Bucharest, Romania

ARTICLE INFO ABSTRACT

Keywords: Over the past few years, Large Language Models (LLMs) have become the source of impressive results in code
P4 generation. However, most research focuses on widely adopted general-purpose programming languages, with
Programmable data planes little attention given to niche domain-specific languages (DSLs). This raises the question: do DSLs, such as P4, a
]é](;lfe generation data plane programming language, have a place in the LLM world?
The potential impact of generating DSL code could be tremendous. Automatically generating data plane code
promises flexible networks that can quickly adapt to specific conditions at the lowest level. P4 is structurally
simpler than general-purpose languages, but also offers a much smaller corpus of existing programs, thus setting
up interesting challenges for deep-learning based code generation.
In this paper, we show that crafting a highly specialized P4 dataset with domain knowledge is sufficient to
bootstrap P4 code generation through fine-tuning existing LLMs, even when they have not encountered P4 code
during pre-training. We further document the process of creating a relevant benchmark to assess the proficiency
of fine-tuned models in generating P4 code. Our evaluation shows that our fine-tuned models outperform much

larger models in both syntactic correctness and semantic alignment.

1. Introduction

The ongoing advancements in the field of LLMs (Large Language
Models) have revolutionized how we approach various software engi-
neering tasks, significantly enhancing productivity and innovation in
this sector. LLMs, powered by their ability to understand and generate
language, are now instrumental in a wide range of applications within
software engineering [15], including but not limited to requirements
engineering, software design, and software development.

In practice, we find that LLMs perform exceptionally well in gener-
ating high-quality code for programming languages that are prevalent
in their training datasets. However, their performance significantly de-
clines when dealing with less-represented languages specific to niche do-
mains such as data plane programming. For instance, P4 is absent from
major coding datasets like The Stack [17]. Even when such languages
are included, they often make up only a small, potentially uncleaned
fraction of the data, as in The Stack v2 [22].

In this context, recent studies have shown that the performance of
LLMs for code generation is significantly influenced by the quality [16]
and characteristics of the dataset, as well as the complexity of the lan-
guage involved [7]. For instance, the study by Jain et al. [16] highlights
how a model trained on a smaller amount of higher-quality data can
outperform a model trained on the original larger, non-cleaned dataset.

* Corresponding author.

Another notable example is the phi-1.5 model [19], trained exclusively
on a textbook dataset, that surpasses in performance models three times
its size trained on much larger datasets. These findings underscore the
importance of dataset quality over quantity and give us hope that LLMs
could be used in domains where they employ domain specific languages
with only a few megabytes of available code samples.

We theorize that data plane programming in P4 exhibits the neces-
sary characteristics that may enable models to learn it efficiently given a
specialized dataset. The language is simple in structure and very similar
to C, meaning that we can transfer C syntax knowledge. There are no
loops and the usual P4 code is size-limited by the available memory on
the switch. Moreover, due to its non-Turing-completeness, we can lever-
age verification frameworks [6,20,23,24,30] for P4 to generate higher
quality code, without bugs, by connecting their output to a prompt en-
gineering framework. With this work, we pave the way to generate P4
from natural language or specialized text such as RFCs to facilitate net-
working prototyping, research and development.

In this paper, we develop a specialized dataset for P4-16, by cu-
rating code available online and enhancing it with targeted insights.
This includes discussions related to P4, networking knowledge in the
form of Request For Comments (RFCs), and technical papers to bridge
language and networking knowledge. Besides employing state-of-the-
art code cleaning techniques [16,17], we synthetically introduce code

E-mail addresses: mihai.dumitru2201@upb.ro (M.-V. Dumitru), vlad_andrei.badoiu@upb.ro (V.-A. Badoiu), agherghescu2411@upb.ro (A.M. Gherghescu),

costin.raiciu@upb.ro (C. Raiciu).

https://doi.org/10.1016/j.comnet.2025.111709

Received 7 February 2025; Received in revised form 14 August 2025; Accepted 9 September 2025

Available online 13 September 2025

1389-1286/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
https://orcid.org/0009-0009-3202-6110

10^{-4}

mailto:mihai.dumitru2201@upb.ro
mailto:vlad_andrei.badoiu@upb.ro
mailto:agherghescu2411@upb.ro
mailto:costin.raiciu@upb.ro
https://doi.org/10.1016/j.comnet.2025.111709
https://doi.org/10.1016/j.comnet.2025.111709
http://creativecommons.org/licenses/by/4.0/

M.-V. Dumitru et al.

comments to better connect natural language descriptions and text im-
plementations. Our work outlines the methodology employed in assem-
bling such a dataset amidst the scarcity of relevant data on the internet.
We provide an analysis on how various dataset parameters impact the
model’s performance, building a comprehensive understanding of the
dataset’s influence on the performance of the model.

For our evaluation, we employed fine-tuning on small (1-7 billion
parameters) open models by training them for code generation in P4. To
assess the performance of the trained models, we developed a bench-
marking methodology that evaluates a model’s effectiveness in data
plane programming, even if it does not produce syntactically correct
programs. Our results demonstrate that fine-tuning with a specialized
P4 dataset is sufficient to generate code that rivals the performance of
OpenAl’s GPT-4 in P4 code generation, even with far smaller models.

We make the following core contributions:

e A family of specialized, highly-curated datasets for training mod-
els on the task of code generation. The datasets, together with the
pipeline to generate them are publicly available.'

e An open set of autocompletion benchmarks, designed to test a
model’s P4 generating capabilities. The benchmarks, together with
a framework that can automatically evaluate a model’s performance
on the compilation criterion (how many of the outputs compile) are
publicly available.?

e A study into how various factors pertaining to the dataset (content,
deduplication factor) and factors pertaining to the fine-tuning pro-
cess (e.g. model architecture, model size) influence the resulting P4
code-generating model.

2. Background

P4 [2] is an open and widely-used language for programmable data
planes. It has a C-like syntax, but with much simpler structure. Notably,
there are no loops, no jumps, no recursion, no pointers or memory man-
agement. P4 data planes consist of a number of programmable blocks,
such as ingress and egress control blocks, parsers, deparsers, checksum
calculators. The structure and syntactical elements of a control block
differ significantly from those of a parser, thus P4 can be thought of as
consisting of several specialized sub-languages. Due to the language’s
young age and restricted scope, there is very little publicly available
code.

The original version of the language, P4-14, was soon superseded by
P4-16, which abstracted away the switch architecture from the language
itself. Architectures specify the configuration and interactions of pro-
grammable and non-programmable blocks, mechanisms for forwarding,
recirculating and dropping packets, available metadata etc. The stan-
dard language itself is not sufficient for development; a P4 program must
be written for a particular architecture. In this paper, we will focus on
the vimodel architecture, due to its popularity.

These features make P4 a promising challenge for code generation.
The problem of automatically generating P4 code has been tackled be-
fore [8,12,14,21,26,29,31,38]. However, to our knowledge, there has
been no prior effort to use LLMs for this purpose.

Numerous works employ “classical” methods for generating P4 code.
Graph-to-P4 [38] can convert a graph of headers into the code for a P4
parser. Motivated by the idea of moving computation at the edge of the
network, P4rrot [12] provides a language for specifying application-
level processors which are then automatically translated into P4 in a
classical rule-based manner. Lucid [29] allows the programmer to em-
ploy powerful abstractions such as “events” and “handlers” for packet
processing that help avoid bugs and hide away data plane details. Lu-
cid 2.0 [21] builds on top of this by adding new constructs to achieve
Dipeline-safety. Lyra [8] provides a “one-big-pipeline” abstraction to the

! https://huggingface.co/datasets/p4llms/p4dataset
2 https://github.com/p4llms/benchmarks

Computer Networks 272 (2025) 111709

programmer, allowing them to specify their intent in “simple state-
ments” that then get converted into data plane code for one or more
actual devices. Homunculus [31] is a framework that can transform
declarative requirements for Machine Learning applications into a con-
crete implementation for the switching hardware, which may include
P4 data planes.

GP4P4 [26] uses genetic programming to create P4 data planes start-
ing from “behavioral rules”: a set of preconditions and postconditions
on the header fields and metadata of the processed packets. A genetic
programming approach is also presented in [14], which also employs
federated learning for a decentralized cross-domain collaboration in ac-
quiring data and learning from it. To the best of our knowledge, ours is
the first work specifically exploring LLMs as a medium for automatically
generating P4 code.

Focusing on machine learning-based code generation, many open
LLMs address the task of code generation [1,10,18,22,28,33,34]. Build-
ing these models involves two main steps: pretraining and post-
training [45]. During pretraining, models are trained on large corpuses
of data, often with lots of code, to learn programming language structure
and patterns. This is a form of unsupervised learning, where the model
learns to predict the next token in a sequence. The resulting model is
called a foundational model, as it serves as a base for further special-
ization. Post-training then adapts the model for specific tasks. This usu-
ally means continuing the training on focused datasets, like Python-only
code [28], to improve performance on that language. Finally, models
are fine-tuned on instruction datasets with examples of user questions
and responses, teaching them how to follow user instructions [46]. Post-
training uses much smaller datasets than pretraining, but still needs a lot
of computing resources. LoRA [47] offers a solution for limited resources
by making fine-tuning more efficient. Instead of updating all model pa-
rameters, LoRA freezes the pretraining model weights and only trains
a small set of new parameters. QLoRA [5] improves this further by us-
ing lower precision numbers for the model weights, which further cuts
down memory usage during training.

These models are usually trained on openly available code
datasets [9,17,22], which often do not feature P4 samples. One excep-
tion is the newly released The Stack v2 [22], the largest publicly avail-
able code dataset at this time, which contains samples from over 600
programming languages; but P4 is severely underrepresented, with only
70MB of code. The authors of The Stack v2 refer to Julia and Perl as
“low-resource languages”, with 6.12 and 7.82 GB of code available.

3. Initial exploration of existing models

The first question we want to answer is whether a very large lan-
guage model, with hundreds of billions of parameters or more, is pro-
ficient in a very low-resource programming language, in our case P4.
Secondly, we want to form a baseline on LLM code generation for P4,
understand what we can expect from other (smaller) models and, in
cases where the output is not satisfactory, understand what exactly goes
wrong and theorize about how to improve the results.

To this end we evaluated ChatGPT-3.5, ChatGPT-4 and Gemini Ultra.
We further included StarCoder 2 because it was at the time the only
model trained on a publicly available dataset that contains P4 code; we
choose the largest available version, the 15 billion parameter.

We ran these LLMs once on two variants of a set of tasks derived
from the P4 tutorial tasks from the P4 language repo’: with and with-
out the code skeleton. The tasks are further described in Section 4. While
the models might have been trained on the original P4 tutorials, our in-
troduced changes require an understanding of the P4 language and its
semantics to solve. A summary of the results is presented in Table 1,
where the comma is used to separate the results between code genera-
tion with and without a skeleton. Introducing the P4-16 manual and

3 https://github.com/p4lang/tutorials

https://huggingface.co/datasets/p4llms/p4dataset
https://github.com/p4llms/benchmarks
https://github.com/p4lang/tutorials

M.-V. Dumitru et al.

Table 1

Overview of model performance on P4 code generation tasks. There are two
scenarios: code completion with a given skeleton and generating from scratch,
with no code skeleton, respectively.

of additional

of programs programs that compile

Model that compile # of tests that pass after compiler feedback
ChatGPT-4 9,1 8,0 1,1
ChatGPT-3 1,0 0,0 0,0
Gemini Ultra 0,0 0,0 0,0
StarCoder 2 (15B) 0,0 0,0 0,0

code samples into the model context did not show any significant im-
provements.

Looking at the generated code, we see that training a very large
model on solely openly available code on the Internet is not sufficient for
a model to be proficient in a very low-resource programming language
and more is needed to improve the performance, which we will explore
in the next sections. For the remainder of this section, we discuss the
issues with the generated code on the ten tasks.

3.1. OpenAI’s ChatGPT

ChatGPT-4 generated code that compiles in 8 cases. By providing the
compiler’s output in a feedback loop it was able to produce compilable
code for one extra task. Two more solutions need only one line of code
change: removing a for loop over the elements of a header stack in the
deparser. Eight out of these nine solutions pass all unit tests relevant to
the task.

The tutorial that compiles but fails the tests is the mri exercise. A
newly added header is not set valid; the generated code is missing a
setValid() statement explicitly needed in P4-16, as opposed to P4-14.
Providing ChatGPT with this comment helps it to generate the fix and
pass the tests. Overall, we noticed the following common mistakes in
ChatGPT-4’s P4 generation:

e header validity checks in the deparser; this is unnecessary and, al-
though not explicitly prohibited by the P4-16 standard, it is not sup-
ported on BMv2

e C-style for loops in the deparser to emit the elements of a header
stack; the correct way to do this is to emit the entire header stack

¢ no explicit casts, between bitfields of different width

e wrong header stack syntax: type var[10]; instead of type[10]
var;

Other mistakes done by ChatGPT-4 include: trying to typedef an
anonymous structure, using character constants and declaring new vari-
ables using var; none of these are P4 constructs.

The syntactic quality of the generated code dramatically decreases
when we remove the skeleton and leave only the task statement: just
one solution compiles. Feedback from the compiler doesn’t help: for four
tasks, it regenerates the exact same error; for three others it misunder-
stands what the problem is.

One of the most frequent mistakes is placing tables and actions out-
side the scope of a control block: this is valid in P4-14, but not in P4-16.
It was not clear from our experiments with ChatGPT-4 whether this is-
sue stems from the presence of P4-14 programs in the training data; but
ChatGPT-3.5 seems prone to utilize the P4-14 syntax in other contexts,
such as writing parsers and header definitions.

ChatGPT also shows a lack of familiarity with some target-specific
constructs. Tasked to produce code for the vimodel architecture, it cor-
rectly generates the necessary control block signatures and instantiates a
‘V1Switch‘ with the proper parameters. However, it misspells Register
instead of register, doesn’t use hash but a hypothetical hash5, explic-
itly stating that the concrete hash function depends on the target.

ChatGPT-3.5 generates code with far more errors; even given the
skeleton, no solution compiles and it is not able to improve from com-

Computer Networks 272 (2025) 111709

piler feedback. It uses P4-14 syntax for the parser much more often; as
well as placing tables and actions outside the scope of a control block. At
times, it hallucinates headers and data types; one of these being time_t,
again suggesting that knowledge of other programming language may
hinder this task. Even though explicitly tasked to provide a complete
P4 program, both versions occasionally fail to do so, instead leaving
sections marked as “T0ODO”.

3.2. Gemini

Google’s Gemini [32] did not yield promising results, but the Ultra
version seems at least superficially on par with ChatGPT-4. The web
client has an output bug that omits the angle bracket notation that spec-
ifies the size of bitstrings, but we assume that these are always correct.

Much like ChatGPT, Gemini mixes in P4-14 syntax for headers and
parser, as well as sometimes placing actions and tables outside the scope
of a control block. Other shared problems include: validity checks in the
deparser, declaring variables with the keyword var, not including the
proper headers, wrong usage of platform primitives such as hashes and
registers.

Much more often, it does not output a complete program even when
specifically required to do so, but produces a verbose output with vari-
ous interspersed snippets. Some mistakes seem to be of a conceptual na-
ture, rather than purely syntactical. For example, in several instances,
the IPv4 checksum is recalculated in the forwarding action; the TTL is
sometimes not decremented.

3.3. Open models

Among the open models we tried, only StarCoder 2 15B is trained on
a dataset that contains P4 [22] and is able to produce P4. Unlike Chat-
GPT, StarCoder is not able to answer instructions and so performs poorly
on the tutorial tasks, sometimes extending the text, instead of writing a
data plane. However, it produces syntactically correct code, but in many
cases it just seems to replicate verbatim code from its training set.

Other state-of-the-art code generators, Magicoder [35], DeepSeek-
Coder [11] (7B), OLMo [10], Code LLama [28], Gemma [33] (7B and
13B) are not able to produce satisfactory code; most likely, this is due
to P4 missing entirely from their training dataset.

4. P4 benchmarks

In order to compare existing models and assess the effectiveness of
various improvement strategies, we need a quality metric for generated
code. At the time of writing, even the state-of-the-art models that can
generate P4 were unable to consistently output syntactically correct pro-
grams. This makes functional evaluation in the style of HumanEval [4]
difficult, as we cannot run tests on programs which don’t compile.

To explore existing code generators and get a clear view of their ca-
pabilities, as well as insights into what could be improved and how,
we have created two task categories to evaluate P4 generation capabil-
ities, focusing on code completion and the specific intricacies of data
plane programming. The benchmarks cover many language constructs
related to P4, as well as constructs specific to the vimodel architecture
(forwarding, dropping, registers etc.). There are some features of P4,
such as header stacks and header arrays, that are not covered by our
benchmarking set, which we plan to extend in the future.

4.1. Code generation for natural language prompts

We created the first tasks from a cleaned-up, modified versions of the
problem statement for the following P4 tutorials: basic forward, basic
tunneling, ECN, MRI, source routing, calculator, load balancing, QOS,
firewall and link monitor. Our changes consists of adding new tasks,
changing the code structure and updating the task instruction. For each
tutorial, we have a version including the starting code and one without.

M.-V. Dumitru et al.

The P4 tutorials, together with the reference solutions are very likely
part of models’ training sets. Our changes aim to avoid potential “copy-
paste” solutions; but even after the changes, the resulting tasks are sim-
ilar to the original ones; thus correct solutions alone are not good indi-
cators of generative capabilities. But failure of solving this task is a good
indicator of the model’s low capabilities in producing and understanding
P4 code.

These tasks rely on English-language specifications of the desired
functionality and as such are only suitable for chat models (or instruct
models) that operate in a Q&A mode. To evaluate autocompletion mod-
els, we skip these tests but create a separate benchmarking set. The
benchmarks, together with a testing harness are publicly available*.

4.2. Autocompletion benchmarks

We manually create a set of P4 autocompletion benchmarks, suitable
for base models that have not been further trained on instruct tasks.
Our benchmarks generally require the model to fill-in some code at
the “block” level (e.g. a parser state, a table, an action body); indica-
tions about the desired code are given in the form of code context (such
as an action’s signature, or previous header declarations) and English-
language comments.

We write our tests as complete P4 programs, accompanied by some
preprocessing metadata incorporated in comments. This metadata con-
sists of several tags that identify the start and end of the section
that should be included in the prompt, as well as of the section that
the model should complete, together with a specification of how to
extract a limited snippet from the model’s output. This is necessary
because autocompletion models very often simply generate as many
tokens as possible, following up on the “useful” part with arbitrary
code.

As a result of our design, each test file starts out as a complete and
correct P4 program, that implements all the desired functionality. Dur-
ing preprocessing, a key segment of the file is removed (this can be
considered a reference answer) and the model is presented with a prefix
of the code present before the removed segment. In the future, we in-
tend to explore the technique of “fill-in-the-middle” [39] to pass to the
model not just the context before the “hole”, but also the one after it.

A few example tasks:

e given some new header foo and macro definitions of the form
IP_PROTO_FOO, as well as a partial parser that deals with Ethernet,
followed by IPv4, the model is expected to complete the parse_ipv4
state.

¢ given some new header definitions and a parser implementation, the
model is expected to generate the deparser

e given the name and comment-description of an action (e.g. action
diff(in bit<32> a, in bit<32> b, out bit<32> result), the
model is expected to complete the action body

After getting the response from the model, we extract the relevant
part of the output and stitch it together with the other parts of the initial
code, to obtain a complete program. This allows us to automatically run
the p4c compiler on the resulting file to check if it compiles.

For some programs, we also define a set of unit tests, to check func-
tional correctness. Doing this in general, for all benchmarking tasks is
a non-trivial task. The testing framework does not only need to create
input packets and check some reference criteria on output packets; it
also needs to mock-up a control plane, inserting table rules or checking
the value of stateful objects (registers, meters, counters). This is done
through an API that is a result of compilation and so cannot be known
in advance: what tables are available and what are their names, what
actions they have and what are the action names etc. Some benchmarks
give the model freedom over these elements and their names, making it

4 https://github.com/p4llms/benchmarks

Computer Networks 272 (2025) 111709

SA
(14.0 MBs, 16.0%)

RFC
(25.2 MBs, 28.9%)

Fig. 1. Composition of the dataset: number of P4 source files, RFCs, P4 forums
discussion threads (DT), scientific articles (SA) and the P4-16 standard (STD).

difficult to set up static entries in advance. We add unit tests to 11 out
of our 50 tests, leaving the rest as future work.

5. Constructing a high-quality P4 dataset

Improving a model performance on a specific task or domain is most
commonly achieved through fine-tuning, which requires a high qual-
ity, task-specific dataset. To this end, we curated a dataset specifically
for the task of P4 code generation; it includes code, relevant knowl-
edge on networking for dataplane programming, and a glue between the
two. An overview of the final dataset’s composition can be consulted in
Figure 1.

5.1. Data crawling

We started by gathering all the P4 repositories available on GitHub,
using the language filter available in the public API°; we obtain 786
repositories. We extract from these all files with a .p4 or .P4 extension
that can be UTF-8 decoded, obtaining 42,588 files totalling 211 MBs.

We further include sources from the Software Heritage project® via
The Stack v2 [22]: 7,453 documents, totalling 49 MBs.

We then subject this collection of 50,041 documents to a commonly
used cleaning pipeline for code [18].

5.2. Removing P4-14 files

“P4” actually refers to two quite different languages. P4-14 [41], the
original version of the language, first released in 2014 and P4-16 [40] —a
replacement that followed just two years after. The two languages differ
drastically, both in overall structure and in specific syntactic elements,
such as headers, parsers and control blocks. Our experiments with ex-
isting models described in Section 3 show that one of the reasons for
poor performance was the occasional employment of P4-14 syntactical
constructs, so we decide to remove P4-14 files from our dataset.

5 https://docs.github.com/en/search-github/github-code-search/
understanding-github- code-search-syntax#language-qualifier
6 https://www.softwareheritage.org/

https://github.com/p4llms/benchmarks
https://docs.github.com/en/search-github/github-code-search/understanding-github-code-search-syntax#language-qualifier
https://docs.github.com/en/search-github/github-code-search/understanding-github-code-search-syntax#language-qualifier
https://www.softwareheritage.org/

M.-V. Dumitru et al.

We attempt to automatically identify P4-14 files by employing regex-
based searches that identify specific keywords (e.g. fields, reads) or
constructs (e.g. control ingress) in syntactical contexts that can only
exist in P4-14 and not in P4-16. In total, this step removes 6,580 docu-
ments totalling 47 MBs.

5.3. Removing non-P4 files

We further remove from the dataset mislabeled files which don’t
contain P4 code; we do this through heuristic regexes, as well as by
manually blacklisting some files. We remove several files which were
marked as having been auto-generated and one which was created by
the p4obfuscator. We also remove files smaller than 10 bytes (includ-
ing empty files) and those larger than 300 KBs. One of the main difficul-
ties in creating the dataset is that quite a substantial number of P4 files
appear to have at least part of them programmatically generated. We
choose to keep most of these, only discarding the files which don’t con-
tain any other syntactic constructs besides a long list of lines differing
in a few characters/numbers.

This filtering step discards 1,331 documents, totalling 57 MBs.

5.4. Deduplication

We employ MinHash [3] to filter near-duplicates with a 0.85 Jac-
card similarity threshold. This removes 31, 151 documents, totalling 102
MBs. This reduces the number of documents by a factor of four. The re-
sulting collection forms the first version of our dataset which we later
employ for fine-tuning; we call this the “code” dataset.

5.5. Networking knowledge

In addition to generating syntactically valid code, a successful code-
generator should be able to map natural language instruction to the
target programming language. To achieve this, we introduce the rele-
vant knowledge and glue between knowledge and code in several ways.
First, we extend the dataset with networking knowledge about protocols
in the form of RFCs, from RFC 791 to 2000. We then add 381 entries
from the P4 discussion forums’. We add the contents of 368 scientific
articles on P4, mainly collected from an extensive survey [13] as well
as the May 2023 revision of the P4-16 standard. We extract the content
texts using the tool presented by Yu et al. [36].

The resulting collection forms the second version of our dataset, the
“+text” dataset.

5.6. Adding code comments

One of our aims is for our model to be usable for auxiliary tasks in-
cluding adding code comments and refactoring. We leverage a teacher
LLM to enhance the code portion of our dataset, by synthetically in-
troducing new comments, summarizing existing functionality. We use
ChatGPT-3.5 due to its abundance of domain knowledge, fast response
time and similar quality of comments with ChatGPT-4 at this task. We
picked source files with lower than 10 comments and added comments
to 18 % of the source files.

The resulting collection forms the third and final version of our
dataset, the “+comments” dataset.

6. Training
6.1. Fine-tuning models with QLoRA
We started by fine-tuning several models, all with a context length of

2048: the 1B version of StarCoder [18], the 2B version of Gemma [33]
and the 3B version of StarCoder 2 [22].

7 https://forum.p4.org/

Computer Networks 272 (2025) 111709

At this step we wanted to determine the lower bound of what can be
achieved without having access to more expensive hardware for train-
ing. To this end, we used QLoRA [5] to fine-tune the models on a single
Nvidia A100 40GB GPU. We used a LoRA scaling factor alpha of 32 and a
rank r of 8. Based on several ablation experiments, we picked a learning
rate of 1074, to encourage slow domain-adaptation and prevent catas-
trophic forgetting, and a weight decay of 0.01. The batch size was kept
constant at 32, and the learning rate was annealed by a cosine schedule,
with an initial warm-up of 5% of the total number of steps. We ran the
training for a single epoch for all models, as we feared overfitting might
quickly become a problem, because the dataset contains a lot of repeti-
tive boilerplate, common in the P4 programs. The number of trainable
parameters through QLoRA amounted to less than 0.5% of the model’s
total number of parameters, which allowed for short fine-tuning times:
around four hours on a single Nvidia A100 40GB for the StarCoder 2 3B
on the “+comments” dataset.

In Figure 2 we plotted the training loss of these three models on the
“+comments” dataset. The loss plot shows no indication of overfitting,
which is further confirmed by our accuracy evaluation described in Sec-
tion 7.

6.2. Fully fine-tuning a larger model

Next, we fully fine-tuned the 7B variant of StarCoder 2 [22]. We used
no training optimization such as QLoRA. In total, we used 8 Nvidia H100
80GB GPUs, with a batch size of 4 per GPU. Because code comments did
not seem to make a significant difference in the evaluation of smaller
models, we decided to use the “+text” dataset. We trained for 5 epochs,
with early stopping based on the validation loss; training was stopped
after the fourth epoch; the whole process took slightly under 15 min to
complete.

Figure 3 shows the training loss during the fine-tuning process, with
no indication of overfitting.

7. Manual evaluation

We initially ran all the QLoRA fine-tuned models on a (earlier) sub-
set of the autocompletion benchmark described in Section 4, consist-
ing of just 15 tasks. We used ChatGPT-4 and Gemini Ultra as baselines,
prompting them to act as autocomplete tools. We evaluated only the
completion capabilities of the models because our dataset does not tar-
get instruct models: they don’t interpret text prompts as tasks that need
to be solved, but as streams of text that need to be continued, which
they sometimes do by emitting additional requirements, examples or
diagnostics.

We performed the postprocessing manually extracting the relevant
part from the model’s output, depending on the context: if the model
was supposed to autocomplete the definition of a parser state, we delete
everything that follows that parser state, before assessing the correctness
of the answer. We evaluated the following characteristics of the output
code:

Does it compile? We took the postprocessed output of the model
and insert it into a minimal, complete P4 program template, then run
it through the p4c compiler. We ignore warnings and consider the task
successful if there are no compilation errors.

Is it logically coherent? Compilation alone is not sufficient. In one
case, the model kept generating a long list of variable declarations; while
syntactically correct, these did not address the task at hand. This re-
quirement is also failed by the presence of any syntax error, with the
exception of size mismatches (using the wrong hash size, implicit casts,
etc.). We allow these errors because they seem “light”, in the sense that
they could be easily fixed by additional tools.

Does it implement all functionality requested? We used this to
distinguish proper solutions from partial solutions which, although co-
herent and free of compilation errors, do not contain all the code nec-
essary to solve the task.

https://forum.p4.org/

M.-V. Dumitru et al.

Computer Networks 272 (2025) 111709

3.5
—=— StarCoder 2 (3B)
3.01 Gemma
—— StarCoder 1 (1B)
2.51
(%))
8
it 2.0
1.5
1.0q
0.0 0.2 0.4 0.6 0.8 1.0
Epoch
Fig. 2. Training loss during the fine-tuning process on the “+comments” dataset.
1.75 14 17
1.50 s 6 10 6
- 1.25
N Q Q NI Q
81.00 v N DI A
0.75 (a) Comparison of CodeGemma variants (b) Comparison of CodeLlama variants
0.50
24
0.25 20
15 17
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 12 12
Epoch 7 a 9
Fig. 3. Training loss during the fine-tuning process on the “+text” dataset. Ry Q Ry ¥V R RO R X D
e Q B AR AEO S\ GIN >

Table 2

(c) Comparison of DeepSeek-Coder variants

(d) Comparison of Qwen2.5-Coder variants

22

Results of the fine-tuned models in the autocompletion bench-
mark consisting of 15 tasks. Gemini Ultra and ChatGPT-4 are
used as baselines.

Model Dataset Compiles? Coherent? All?
SC 1B code 9 8 7
SC 1B +text 11 8 8
SC1B + comments 12 9 6
Gemma 2B code 9 10 9
Gemma 2B + text 11 9 8
Gemma 2B +comments 11 8 8
SC2 3B code 12 10 8
SC2 3B + text 10 10 8
SC2 3B +comments 12 9 8
Gemini Ultra 5 4 4
ChatGPT-4 6 7 7

The results are summarized in Table 7. Compared to the fine-tuned
models, ChatGPT-4 makes more severe syntactical errors, such as includ-
ing for loops in the deparser. This supports the idea that dataset quality
is a key part of a model’s performance. Gemini generates syntax errors
more often and sometimes more severe, in one case omitting a clos-
ing brace for the parser block. For some tasks, it produced no relevant
code.

Five tasks were solved correctly by all models-under-test. These in-
volved writing two simple actions to calculate the maximum and sum of

q

K3 R) R 2 B

~

(e) Comparison of StarCoder variants (f) Comparison of StarCoder2 variants

Fig. 4. Comparison of various architecture at different sizes (numbers of pa-
rameters). Number of tasks that compile.

their arguments respectively. The other three required filling in a table’s
action list, parsing a new type of header, and writing a simple deparser.

The notable difference between models trained on our dataset and
ChatGPT-4 lies in the deparser: for 3 more tasks, our models produce a
deparser that compiles; ChatGPT often messes up the syntax, employing
loops and validity checks.

Other syntax errors performed by ChatGPT-4, such as declaring ac-
tions outside the scope of a control block, or using non-boolean expres-
sions as conditions for an if, are not present in our models’ output and
are likely a result of having P4-14 sources mixed into the training set of
ChatGPT-4.

Enhancing the dataset with text sources and synthetic comments
does not have a noticeable effect.

M.-V. Dumitru et al.

® R e

(a) Comparison of CodeGemma variants

Q R IR
5 FF® RS

R g

S

(c) Comparison of DeepSeek-Coder variants (d) Comparison of Qwen2.5-Coder variants

N & R & R Re

(e) Comparison of StarCoder variants (f) Comparison of StarCoder2 variants

Fig. 5. Comparison of various architecture at different sizes (numbers of param-
eters). Number of tasks for which unit tests were run (faded bar) and number
of tasks for which all unit tests pass (dark bar). There are 11 tasks which each
have 10 unit tests; if the model’s output for a task doesn’t compile, the tests are
not run.

8. Automatic evaluation

Manual evaluation is slow and prone to human errors. Automated
testing frameworks allow for a larger number of benchmarks, more mod-
els tested, and faster prototyping. We expanded our benchmark suite to
50 tasks and developed an automatic testing framework as described
in Section 4. For each task, we check whether the generated output
compiles without errors. For 11 tasks, we have 10 unit tests that val-
idate functional correctness; if the generated code compiles, we subject
it to these unit tests. A task is passed only if all of its 10 unit tests are
passed. For some tasks, functional testing requires custom control plane
entries; but the exact tables, table keys, actions and parameters cannot
be known in advance (the LLM is free to create any number of tables with
arbitrary features). This is why not all tasks have corresponding unit
tests.

When testing a model, we run it on all 50 tasks and look at the fol-
lowing metrics:

1. For how many tasks does the model produce output that compiles
without error?

2. Out of all tasks with unit tests, for which the model produces code
that compiles without error, how many unit tests pass?

3. Out of all tasks with unit tests, for which the model produces code
that compiles without error, how many tasks pass all their unit
tests?

We evaluated a larger number of models:

e ChatGPT-40 and ChatGPT-40-mini [42]

e Codegemma [43]: 2B, 7B, 1.1-2B, 1.1-7B-it
e CodeLLama [27]: 7B, 13B, 34B, 70B
deepseek-coder [11]: 1.3B, 6.7B, 33B

Computer Networks 272 (2025) 111709

70

40 50 50

20

P R N

(a) Comparison of CodeGemma variants (b) Comparison of CodeLlama variants

90

70 70 70
60
40 50 50

20

Q@ R IR
5 FF F RS

& P

2]

(c) Comparison of DeepSeck-Coder variants (d) Comparison of Qwen2.5-Coder variants

80

50 50
30 30 30

@ ® R G

(e) Comparison of StarCoder variants (f) Comparison of StarCoder2 variants

Fig. 6. Comparison of various architecture at different sizes (numbers of pa-
rameters). Number of unit tests that were run (faded bar) and number of unit
tests that pass (dark bar). There are 11 tasks which each have 10 unit tests; if
the model’s output for a task doesn’t compile, the tests are not run.

e Qwen2.5-Coder [45]: 0.5B, 1.5B, 3B, 7B, 14B, 32B
StarCoder [18]: 1B, 3B, 7B

e StarCoder2 [22]: 3B, 7B, 15B

e WizardCoder [44]: 15B

For those architecture which are available in different sizes, this
allows us to observe the relationship between model size and perfor-
mance. Figures 4-6 illustrate the general trend towards larger versions
of the same architecture performing better. Figures 4a-4e illustrate the
number of outputs that compile; Figures 5a-5e show the number of tasks
for which all unit tests passed; Figures 6a-6e show the number of unit
tests run and the number of unit tests passed, respectively.

We note that model performance is not monotonous across differ-
ent sizes for some architectures. We believe this variation stems from
the non-deterministic character of code generation, as well as the dis-
tribution of data that these models have seen during training. Larger
variants are trained on larger datasets; if the extra data is similar to P4,
or at least has the same distribution as the smaller set, an increase in
performance can be expected. Conversely, extra data could cause the
distribution to shift away from P4-like syntax and worsen performance.
The precise dataset on which each variant was trained is not public
knowledge.

Figure 4e shows a big difference in number of successful compilation
between the 7B and 15B versions of StarCoder 2. The 3B and 7B ver-
sions are trained on just 17 programming languages, while StarCoder
2 is trained on all 600+ programming languages from the Stack v2,
including P4 [22].

Figures 7-9 show a comparison between all models tested of around
7B parameters. Looking at the results, we conclude that our fine-tuned
version of starcoder2-7B outperforms all other models of its size.

A detailed comparison is presented in the next figures. Figure 7
shows the number of tasks for which the output compiles without

M.-V. Dumitru et al.

30

Computer Networks 272 (2025) 111709

25

20 A

Fig. 7. Comparison between all tested models around 7B parameters: number of tasks for which the code generated compiles. starcoder2-7B-fine-tuned is our

fine-tuned model described in Section 6.2.

tests run
tests passed
10
7
6
5
4 4
3 3
T T T T \I T T
@ Q@ & Q@ X @ Q& >
& & & o & o & &
& s Y & & X Rl o
@ 0 A
° & N & oF & o5 &
o @ K 3 QO
IS o“g’ @ fox 4 <
s ® o e &
< Qe'z’ &
& P

Fig. 8. Comparison between all tested models around 7B parameters: number
of tasks for which unit tests were run (light bars) and number of tasks for which
all unit tests passed (dark bars). starcoder2-7B-fine-tuned is our fine-tuned
model described in Section 6.2.

errors. Figure 8 shows the number of tasks for which unit tests were
run and the number of tasks for which all unit tests passed, respectively.
Figure 9 shows the number of unit tests run and the number of unit tests
passed, respectively. In all experiments, we can see that the fine-tuned
version passes the most tasks.

Looking at the broader picture, we see that our fine-tune model
is close in performance to much larger models, outperforming the
32B variant of Qwen2.5-Coder and being really close to ChatGPT-4o.
Figures 10-12 show a comparison between the best models under test.
Figure 10 shows the number of tasks for which the output compiles
without errors. Figure 11 shows the number of tasks for which unit tests
were run and the number of tasks for which all unit tests passed, respec-
tively. Figure 12 shows the number of unit tests run and the number of
unit tests passed, respectively. For the ChatGPT variants the actual num-
ber of parameters is not publicly available; the other columns indicate
that our model’s performance is comparable with much larger models.

unit tests run
unit tests passed 100
70
60
50
40 40
30 30
T T T T \I T T >
Q& @ & o &
o & o & & & & «°
& & Q,{& N & N IS o
& R $ « > & o &
M & & 3 & <§’b & &
B © © N o R
4 & &
KX a
@)

&

Fig. 9. Comparison between all tested models around 7B parameters: num-
ber of unit tests run (light bars) and number of unit tests passed (dark bars).
starcoder2-7B-fine-tuned is our fine-tuned model described in Section 6.2.

& Q > > (s}
&
Sa & N ® il &° &
& > R & & & O
< 4 ° & Iou IS &
@ & ' © o Q& [N
be\/ & ¢ P Q q,:\
S & & & &
(e (e o
<
&

Fig. 10. Comparison between the best tested models: number of tasks for which
the code generated compiles. starcoder2-7B-fine-tuned is our fine-tuned
model described in Section 6.2.

M.-V. Dumitru et al.

tests run
tests passed
1"
10 10
9
8
7 7
T T ‘\I T T T
& X = < < & °
& o & & & » &
006 ox ’b& oy & Q/\ &
& o & o A & ©
@ & odb & e"" o
o ot @ob

Fig. 11. Comparison between the best tested models: number of tasks for which
unit tests were run (light bars) and number of tasks for which all unit tests passed
(dark bars). starcoder2-7B-fine-tuned is our fine-tuned model described in
Section 6.2.

unit tests run 110
unit tests passed 100 100
90
80
70 70
T T \I T T T
> Q& o
q/;f’ N Q(g‘\ o < & q&y
) ¢ & i & »° X
S o N o & S &
o < N o & e} S
& & ¥ Q& & &
W [y & & $)
(e (e &
&
&

Fig. 12. Comparison between the best tested models: number of unit tests run
(light bars) and number of unit tests passed (dark bars). starcoder2-7B-fine-
tuned is our fine-tuned model described in Section 6.2.

9. Discussion and future work

In §6 we presented our experiments of fine-tuning small, open mod-
els (ranging from 1B to 7B) on a curated dataset, both partially using
QLoRA and fully. As we show in Section 8, larger versions of the same
architecture tend to perform better on downstream tasks. Existing mod-
els seem to improve way past the point of 7B parameters; an immediate
next step would be to fine-tune even larger models.

We consider the main limitation of this fine-tuning process to be
the small size of the dataset; an idea worth exploring is using a larger,
more capable LLM to generate synthetic data that could then be used to
augment the dataset, which could serve as a better starting point for a
smaller model.

We also plan to train an “instruct” [25] version of our model, which
could generate P4 code based on natural language descriptions of the
desired functionality. Evaluation of this model would require an addi-
tional benchmark suite. The results in §7 indicate that text resources
and synthetic comments added to the dataset do not yield noticeable
improvements in model performance. However, the benchmark tasks
are focused on code-completion; an “instruct” model would allow us to
explore natural language tasks, for which these dataset enhancements
might prove useful.

Automatic code generation is a stepping stone towards developing
a robust, adaptable network, capable of rewriting itself at the lowest

Computer Networks 272 (2025) 111709

level, similar to the ideas presented in [26,31,37]. The code produced
should not only be syntactically correct, but also efficient and secure.
There is already a substantial amount of literature on employing P4
as the low-level backend for languages that can operate with complex
abstractions over a single switch or over an entire network [8,12,21,
29,38]. Instead of producing raw P4 code, a model could be trained to
generate programs in such higher-level languages.

10. Conclusions

In this paper, we have shown that there is hope for low-resource DSLs
in the world of LLM code generation. We focus on P4, a data plane pro-
gramming language that is severely underrepresented in open datasets
and for which even very large language models struggle to generate
syntactically correct code. Our work proves that good P4 code genera-
tion is possible by fine-tuning models on high-quality, carefully curated
datasets, bringing us closer to the goal of automatically generating data
plane code for flexible networks.

We make four main contributions. First, we present an exploration of
existing models’ capabilities at the task of generating P4 code, together
with an analysis of their shortcomings. Secondly, using the insights from
this endeavour, we developed and publicly released a complete set of P4
datasets along with the tools to build them. Thirdly, we built a bench-
marking framework based on program compilation, with 50 tests that
can measure how well models generate P4 code. Lastly, our experiments
show that models fine-tuned on our datasets drastically improve the
quality of generated P4 code, with small models being comparable with
much larger state-of-the-art models.

The evaluation confirms that our approach works and points to ways
to further improve P4-generating models as discussed in the last part of
the paper. The performance gains we achieved suggest that using larger
models could lead to even better results. By providing both the datasets
and testing tools needed for progress, this work lays the groundwork for
the growing field of automated data plane code generation — an impor-
tant step toward truly programmable networks.

CRediT authorship contribution statement

Mihai-Valentin Dumitru: Writing — review & editing, Writing —
original draft, Visualization, Validation, Software, Methodology, In-
vestigation, Formal analysis, Data curation, Conceptualization; Vlad-
Andrei Badoiu: Writing — review & editing, Writing — original draft,
Validation, Software, Methodology, Investigation, Formal analysis, Data
curation; Alexandru M. Gherghescu: Writing — original draft, Val-
idation, Software, Methodology, Formal analysis, Conceptualization;
Costin Raiciu: Writing — review & editing, Writing — original draft,
Validation, Supervision, Project administration, Methodology, Funding
acquisition, Formal analysis, Conceptualization.

Data availability

Our data is available on public repositories, linked from the paper’s
body.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This research was supported by the project “Romanian Hub for Ar-
tificial Intelligence — HRIA”, Smart Growth, Digitization and Financial
Instruments Program, 2021-2027, MySMIS no. 334906. UPB authors
were partly supported by VMWare gift funding. The authors would like

M.-V. Dumitru et al.

to thank Marta Chinnici and ENEA Italy for providing us with access to
the Nvidia A100 card on which we fine-tuned our first models.

Appendix A. Prompts

We exemplify here one of our 50 autocompletion benchmarks pre-
sented in 4.2. The program receives packets consisting of a single header
with three fields; it adds the first two and places their sum into the third
field then returns the packet on the port from which it came.

There is some metadata for our custom parser, inserted as comments.
At the top of the program, the block between “START” and “END” informs
the parser to take the LLM response and extract everything from the first
character, until a closing brace }, not opened in the output itself (the
opening brace is part of the prompt; the model output can contain other
paired braces).

1 // START

2 // parser: "find_group_end"
// arguments: 2

1 // "delimiter": "}"

5 // "opening_in_prompt": true

6 // END

7 /* -x- P4_16 -x- x/

¢ #include <core.p4>

o #include <vimodel.p4>

struct metadata {

3 /* empty */

header math_h {
7 bit<32> a;
bit<32> b;

bit<32> result;

struct headers {

23 math_h math;

26 control MyIngress (inout headers hdr,
inout metadata meta,
inout standard_metadata_t
// Calculate the sum of a and b and put

action sum(in bit<32> a, in bit<32> b,

// <PROMPT_END >

result a + b;

Computer Networks 272 (2025) 111709

The model will be given all the code from the next line after
“END” until “// <PROMPT_END>” as the prompt. To form a complete
program, this prompt will be concatenated with the extracted model
output and everything from “// <RESPONSE_END>” until the end of the
file.

Because the metadata is presented as valid P4 comments, this tem-
plate file acts as a standalone reference implementation (note that
the LLM does not see the reference implementation of whatever it is
prompted to generate).

standard_metadata) {

it in result

10

out bit<32> result) {

M.-V. Dumitru et al.

33

65 }

66)

67

68 //

60 // Boilerplate code omitted for brevity.

70 // In order to have a fully-working P4 program, we need additional

71 // control blocks for egress processing, deparsing, checksum

72 // verification and computation, plus to instantiate a V1Switch.
References

[1] E. Almazrouei, et al, The falcon series of open language models, Technical report,
arXiv preprint, 2023.

[2] Programming protocol-independent packet processors, ACM SIGCOMM Comput.
Commun. Rev. 4 (3) (2014) 87-95. Pat Bosshart et al.

//

b
<RESPONSE_END >

table compute {

actions = { sum(hdr.math.a, hdr.math.b, hdr.math.result);

default_action = sum(hdr.math.a, hdr.math.b, hdr.math.

result) ;

}

action send_back () {
standard_metadata.egress_spec = standard_metadata.
ingress_port;

X

table t_send_back {
actions = { send_back(); }

default_action = send_back();

}
apply {
compute.apply () ;
t_send_back.apply ();
}

parser MyParser (packet_in packet,

out headers hdr,
inout metadata meta,

inout standard_metadata_t standard_metadata) {

state start {
packet.extract (hdr.math) ;

transition accept;

}

Computer Networks 272 (2025) 111709

[3] A.Z. Broder, Identifying and filtering near-duplicate documents, in: Annual Sympo-

11

sium on Combinatorial Pattern Matching, Springer, 2000, pp. 1-10.

[4] M. Chen, J. Tworek, H. Jun, Q. Yuan, H.P. D.O. Pinto, J. Kaplan, H. Edwards, Y.
Burda, N. Joseph, G. Brockman, Evaluating large language models trained on code,
Technical Report, arXiv preprint, 2021.

http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0001
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0001
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0002
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0002
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0003
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0003
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0003

M.-V. Dumitru et al.

[5]

[6]

[7]

[8]

[91
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

[18]
[19]

[20]

[21]
[22]
[23]

[24]

[25]
[26]

[27]

T. Dettmers, A. Pagnoni, A. Holtzman, L. Zettlemoyer, QLoRA: efficient finetuning
of quantized LLMs, Adv. Neural Inform. Process. Syst. 36 (2024).
D. Dumitrescu, R. Stoenescu, bf4: towards bug-free p4 programs, in: Proceedings
of the 2020 ACM SIGCOMM, the 2020 ACM SIGCOMM, 2020, pp. 571-585. Lorina
Negreanu, and Costin Raiciu.
R. Eldan, Y. Li, Tinystories: how small can language models be and still speak co-
herent English, Technical Report, arXiv preprint, 2023.
J. Gao, et al, Lyra: a cross-platform language and compiler for data plane program-
ming on heterogeneous asics, in: Proceedings of the 2020 ACM SIGCOMM, the 2020
ACM SIGCOMM, 2020, pp. 435-450.
L. Gao, et al., The pile: an 800gb dataset of diverse text for language modeling,
Technical Report, arXiv preprint, 2020.
D. Groeneveld, et al, Olmo: accelerating the science of language models, Technical
Report, arXiv preprint, 2024.
D. Guo, et al., Deepseek-coder: when the large language model meets programming
— the rise of code intelligence, 2024.
C. Gyorgyi, S. Laki, S. Schmid, P4rrot: generating P4 code for the application layer,
ACM SIGCOMM Comput. Commun. Rev. 53 (1) (2023) 30-37.
F. Hauser, et al, A survey on data plane programming with P4: fundamentals, ad-
vances, and applied research, J. Netw. Comput. Appl. 212 (2023) 103561.
0. Hireche, C.B. d, T. Taleb, Deep data plane programming and ai for zero-trust
self-driven networking in beyond 5g, Comput. Netw. 203 (2022) 108668.
X. Hou, et al., Large language models for software engineering: a systematic litera-
ture review, Technical Report, arXiv preprint, 2023.
N. Jain, T. Zhang, W.-L. Chiang, J.E. Gonzalez, K. Sen, 1. Stoica, Lim-assisted code
cleaning for training accurate code generators, Technical Report, arXiv preprint,
2023.
D. Kocetkov, et al, The stack: 3 TB of permissively licensed source code, Technical
Report, arXiv preprint, 2022.
R. Li, et al., Starcoder: may the source be with you! arXiv preprint, 2023.
Y. Li, S. Bubeck, R. Eldan, A.D. Giorno, S. Gunasekar, Y. Tat, Lee, Textbooks are all
you need II: phi-1.5 technical report, Technical Report, arXiv preprint, 2023.
J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H. Wang, C. Cascaval,
N. Mckeown, N. Foster, P4v: practical verification for programmable data planes, in:
Proceedings of the 2018 Conference of the Conference of the ACM Special Interest
Group on Data Communication, 2018, pp. 490-503.
D. Loehr, D. Walker, Proceedings of the safe, modular packet pipeline programming,
ACM Program. Lang. 6 (2022) 1-28.
A. Lozhkov, et al, Starcoder 2 and the stack v2: the next generation, 2024.
M. Neves, L. Freire, A. Schaeffer-Filho, M. Barcellos, Verification of P4 programs in
feasible time using assertions, in: Proceedings of the 14th ACM CoNEXT, the 14th
ACM CoNEXTNew York, NY, USA, ACM, 2018, pp. 73-85.
A. Notzli, J. Khan, A. Fingerhut, C. Barrett, P. Athanas, P4pktgen: automated test
case generation for p4 programs, 5 of the Symposium on SDN Research, SOSR ’18New
York, NY, USA, ACM, 2018.
L. Ouyang, et al, Training language models to follow instructions with human feed-
back, Adv. Neural Inform. Process. Syst. 35 (2022) 27730-27744.
M. Riftadi, J. Oostenbrink, F. Kuipers, Gp4p4: enabling self-programming networks,
Technical Report, arXiv preprint, 2019.

et al Baptiste Roziere, Code llama: open foundation models for code, Technical
Report, arXiv preprint, 2023.

12

[28]
[29]

[30]

[31]

[32]
[33]

[34]
[35]
[36]

371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Computer Networks 272 (2025) 111709

et al Baptiste Roziére, Code llama: open foundation models for code, 2024.

J. Sonchack, D. Loehr, J. Rexford, D. Walker, Lucid: a language for control in the
data plane, in: Proceedings of the 2021 ACM SIGCOMM 2021 Conference , 2021,
pp. 731-747.

R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, C. Raiciu, Debugging P4
programs with Vera, in: Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication 2018, pp. 518-532.

T. Swamy, A. Zulfigar, L. Nardi, M. Shahbaz, K. Olukotun, Homunculus: auto-
generating efficient data-plane ml pipelines for datacenter networks, Proceedings
of the 28th ACM ASPLOS 3 (2023) 329-342.

G. Team, et al Gemini, A family of highly capable multimodal models, 2023.

G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak, L. Sifre, M.
Riviére, M.S. Kale, J. Love, et al Gemma, Open models based on Gemini research
and technology, Technical Report, arXiv preprint, 2024.

H. Touvron, et al, Llama 2: open foundation and fine-tuned chat models, Technical
Report, arXiv preprint, 2023.

Y. Wei, Z. Wang, J. Liu, Y. Ding, L. Zhang, Magicoder, Source code is all you need,
Technical Report, arXiv preprint, 2023.

C. Yu, C. Zhang, J. Wang, Extracting body text from academic pdf documents for
text mining, Technical Report, arXiv preprint, 2020.

L. Yu, J. Sonchack, V. Liu, Mantis: reactive programmable switches, in: Proceed-
ings of the 2020 ACM SIGCOMM, the 2020 ACM SIGCOMM, 2020, pp. 296—
309.

O. Eder, Z. Zaballa, Zhou, Graph-to-P4: a P4 boilerplate code generator for parse
graphs, in: ACM/IEEE Symposium on Architectures for Networking and Communi-
cations Systems (ANCS), IEEE, 2019, pp. 1-2.

M. Bavarian, H. Jun, N. Tezak, J. Schulman, C. Mcleavey, J. Tworek, M. Chen, Ef-
ficient training of language models to fill in the middle, Technical Report, arXiv
preprint, 2022.

Language consortium. P4, language specification, 2023.

The P4 language consortium. The P4 language specification, 2005.

G.. Openai, H. Zhao, J. Hui, J. Howland, N. Nguyen, S. Zuo, A. Hu, C.A. Choquette-
Choo, J. Shen, Kelley, articleteam2024codegemma, title=Codegemma: open code
models based on gemma, author=Team, CodeGemma, Technical Report, jour-
nal=arXiv preprint, 2024. Advancing cost-efficient intelligence, https://openai.
com/index/gpt-40-mini-advancing-cost-efficient-intelligence2024.

C. Team, H. Zhao, J. Hui, J. Howland, N. Nguyen, S. Zuo, A. Hu, C.A. Choquette-
Choo, J. Shen, J. Kelley, et al Codegemma, Open code models based on gemma,
Technical Report, arXiv preprint, 2024.

Z. Luo, C. Xu, P. Zhao, Q. Sun, X. Geng, W. Hu, C. Tao, J. Ma, Q. Lin, D. Jiang,
Wizardcoder, Empowering code large language models with evol-instruct, Technical
Report, arXiv preprint, 2023.

B. Hui, J. Yang, Z. Cui, J. Yang, D. Liu, L. Zhang, T. Liu, J. Zhang, B. Yu, K. Lu,
Qwen2.5-coder technical report, Technical Report, arXiv preprint, 2024.

J. Wei, M. Bosma, Y. Vincent, K. Zhao, A.W. Guu, B. Yu, N. Lester, A.M. Du, Dai,
V. Quoc, Le, Finetuned language models are zero-shot learners, Technical report,
arXiv preprint, 2021.

J. Edward, Y. Hu, P. Shen, Z. Wallis, Y. Allen-Zhu, S. Li, L. Wang, W. Wang, Chen,
LoRA: low-rank adaptation of large language models, ICLR 1 (2) (2022) 3.

http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0004
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0004
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0005
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0005
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0005
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0006
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0006
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0007
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0007
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0007
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0008
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0008
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0009
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0009
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0010
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0010
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0011
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0011
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0012
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0012
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0013
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0013
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0014
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0014
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0014
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0015
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0015
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0016
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0017
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0017
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0018
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0018
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0018
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0018
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0019
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0019
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0020
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0021
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0021
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0021
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0022
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0022
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0022
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0023
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0023
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0024
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0024
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0025
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0025
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0026
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0027
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0027
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0027
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0028
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0028
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0028
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0029
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0029
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0029
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0030
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0031
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0031
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0031
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0032
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0032
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0033
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0033
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0034
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0034
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0035
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0035
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0035
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0036
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0036
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0036
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0037
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0037
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0037
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0038
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0039
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0040
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0040
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0040
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0040
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence2024
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0040
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence2024
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0041
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0041
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0041
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0042
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0042
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0042
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0043
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0043
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0044
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0044
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0044
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0045
http://refhub.elsevier.com/S1389-1286(25)00675-9/sbref0045

	Generating P4 data planes using LLMs
	1 Introduction
	2 Background
	3 Initial exploration of existing models
	3.1 OpenAI's ChatGPT
	3.2 Gemini
	3.3 Open models

	4 P4 benchmarks
	4.1 Code generation for natural language prompts
	4.2 Autocompletion benchmarks

	5 Constructing a high-quality P4 dataset
	5.1 Data crawling
	5.2 Removing P4-14 files
	5.3 Removing non-P4 files
	5.4 Deduplication
	5.5 Networking knowledge
	5.6 Adding code comments

	6 Training
	6.1 Fine-tuning models with QLoRA
	6.2 Fully fine-tuning a larger model

	7 Manual evaluation
	8 Automatic evaluation
	9 Discussion and future work
	10 Conclusions
	A Prompts

