My VM is Lighter (and Safer) than your Container

Filipe Manco
NEC Laboratories Europe
filipe.manco@gmail.com

Jose Mendes
NEC Laboratories Europe
jose.mendes@neclab.eu

Kenichi Yasukata
NEC Laboratories Europe
kenichi.yasukata@neclab.eu

ABSTRACT

Containers are in great demand because they are lightweight
when compared to virtual machines. On the downside, con-
tainers offer weaker isolation than VMs, to the point where
people run containers in virtual machines to achieve proper
isolation. In this paper, we examine whether there is indeed
a strict tradeoff between isolation (VMs) and efficiency (con-
tainers). We find that VMs can be as nimble as containers, as
long as they are small and the toolstack is fast enough.

We achieve lightweight VMs by using unikernels for spe-
cialized applications and with Tinyx, a tool that enables
creating tailor-made, trimmed-down Linux virtual machines.
By themselves, lightweight virtual machines are not enough
to ensure good performance since the virtualization control
plane (the toolstack) becomes the performance bottleneck.
We present LightVM, a new virtualization solution based
on Xen that is optimized to offer fast boot-times regardless
of the number of active VMs. LightVM features a complete
redesign of Xen’s control plane, transforming its centralized
operation to a distributed one where interactions with the
hypervisor are reduced to a minimum. LightVM can boot a
VM in 2.3ms, comparable to fork/exec on Linux (1ms), and
two orders of magnitude faster than Docker. LightVM can
pack thousands of LightVM guests on modest hardware with
memory and CPU usage comparable to that of processes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SOSP 2017, Oct 28-31, Shanghai

© 2017 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-X/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Costin Lupu
Univ. Politehnica of Bucharest
costin.lupu@cs.pub.ro

Simon Kuenzer
NEC Laboratories Europe
simon.kuenzer@neclab.eu

Costin Raiciu
Univ. Politehnica of Bucharest
costin.raiciu@cs.pub.ro

Florian Schmidt

NEC Laboratories Europe
florian.schmidt@neclab.eu

Sumit Sati
NEC Laboratories Europe
sati.vicky@gmail.com

Felipe Huici
NEC Laboratories Europe
felipe.huici@neclab.eu

CCS CONCEPTS

» Software and its engineering — Virtual machines;
Operating Systems;

KEYWORDS

Virtualization, unikernels, specialization, operating systems,
Xen, containers, hypervisor, virtual machine.

ACM Reference Format:

Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe
Huici. 2017. My VM is Lighter (and Safer) than your Container. In
Proceedings of SOSP 2017, Shanghai, Oct 28-31, 16 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Lightweight virtualization technologies such as Docker [6]
and LXC [25] are gaining enormous traction. Google, for
instance, is reported to run all of its services in containers [4],
and Container as a Service (CaaS) products are available
from a number of major players including Azure’s Container
Service [32], Amazon’s EC2 Container Service and Lambda
offerings [1, 2], and Google’s Container Engine service [10].

Beyond these services, lightweight virtualization is cru-
cial to a wide range of use cases, including just-in-time in-
stantiation of services [23, 26] (e.g., filters against DDoS
attacks, TCP acceleration proxies, content caches, etc.) and
NFV [41, 51], all while providing significant cost reduction
through consolidation and power minimization [46].

The reasons for containers to have taken the virtualiza-
tion market by storm are clear. In contrast to heavyweight,
hypervisor-based technologies such as VMWare, KVM or
Xen, they provide extremely fast instantiation times, small
per-instance memory footprints, and high density on a single
host, among other features.

However, no technology is perfect, and containers are no
exception: security is a continuous thorn in their side. The

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SOSP 2017, Oct 28-31, Shanghai

400
350 |-
300
250

200 | | | | | | |
2002 2004 2006 2008 2010 2012 2014 2016 2018

Linux Release Year

No. of syscalls

Figure 1: The unrelenting growth of the Linux syscall
API over the years (x86_32) underlines the difficulty
of securing containers.

main culprit is the hugely powerful kernel syscall API that
containers use to interact with the host OS. This API is very
broad as it offers kernel support for process and thread man-
agement, memory, network, filesystems, IPC, and so forth:
Linux, for instance, has 400 different system calls [37], most
with multiple parameters and many with overlapping func-
tionality; moreover, the number of syscalls is constantly in-
creasing (see figure 1). The syscall API is fundamentally more
difficult to secure than the relatively simple x86 ABI offered
by virtual machines where memory isolation (with hardware
support) and CPU protection rings are sufficient. Despite the
many isolation mechanisms introduced in the past few years,
such as process and network namespaces, root jails, seccomp,
etc, containers are the target of an ever increasing number of
exploits [11, 22]. To complicate matters, any container that
can monopolize or exhaust system resources (e.g., memory,
file descriptors, user IDs, forkbombs) will cause a DoS attack
on all other containers on that host [14, 35].

At least for multi-tenant deployments, this leaves us with
a difficult choice between (1) containers and the security
issues surrounding them and (2) the burden coming from
heavyweight, VM-based platforms. Securing containers in
the context of an ever-expanding and powerful syscall API is
elusive at best. Could we make virtualization faster and more
nimble, much like containers? The explicit goal would be
to achieve performance in the same ball-park as containers:
instantiation in milliseconds, instance memory footprints of
a few MBs or less, and the ability to concurrently run one
thousand or more instances on a single host.

In this paper we introduce LightVM, a lightweight virtual-
ization system based on a type-1 hypervisor. LightVM retains
the strong isolation virtual machines are well-known for
while providing the performance characteristics that make
containers such an attractive proposition. In particular, we
make the following contributions:

o An analysis of the performance bottlenecks prevent-
ing traditional virtualization systems from achieving
container-like dynamics (we focus our work on Xen).

e An overhaul of Xen’s architecture, completely remov-
ing its back-end registry (a.k.a. the XenStore), which
constitutes a performance bottleneck. We call this noxs

Manco et al.

(no XenStore), and its implementation results in sig-

nificant improvements for boot and migration times,

among other metrics.
e A revamp of Xen’s toolstack, including a number of
optimizations and the introduction of a split toolstack
that separates functionality that can be run periodi-
cally, offline, from that which must be carried out when
a command (e.g., VM creation) is issued.
The development of Tinyx, an automated system for
building minimalistic Linux-based VMs, as well as the
development of a number of unikernels. These light-
weight VMs are fundamental to achieving high perfor-
mance numbers, but also for discovering performance
bottlenecks in the underlying virtualization platform.
A prototypical implementation along with an exten-
sive performance evaluation showing that LightVM is
able to boot a (unikernel) VM in as little as 2.3ms, reach
same-host VM densities of up to 8000 VMs, migration
and suspend/resume times of 60ms and 30ms/25ms re-
spectively, and per-VM memory footprints of as little
as 480KB (on disk) and 3.6MB (running).

To show its applicability, we use LightVM to implement
four use cases: personalized firewalls, just-in-time service in-
stantiation, high density TLS termination and a lightweight
compute service akin to Amazon Lambda or Google’s Cloud
Functions but based on a Python unikernel. LightVM is avail-
able as open source at http://sysml.neclab.eu/projects/lightvm

2 REQUIREMENTS

The goal is to be able to provide lightweight virtualization
on top of hypervisor technology. More specifically, as re-
quirements, we are interested in a number of characteristics
typical of containers:

¢ Fast Instantiation: Containers are well-known for
their small startup times, frequently in the range of
hundreds of milliseconds or less. In contrast, virtual
machines are infamous for boot times in the range of
seconds or longer.

¢ High Instance Density: It is common to speak of
running hundreds or even up to a thousand containers
on a single host, with people even pushing this bound-
ary up to 10,000 containers [17]. This is much higher
than what VMs can typically achieve, which lies more
in the range of tens or hundreds at most, and normally
requires fairly powerful and expensive servers.

e Pause/unpause: Along with short instantiation times,
containers can be paused and unpaused quickly. This
can be used to achieve even higher density by pausing
idle instances, and more generally to make better use of

My VM is Lighter (and Safer) than your Container

1000
2 800 |
® 600 |
% 400 |
S 200}
o

0 200 400 600 800 1000
VM image size (MB)

Figure 2: Boot times grow linearly with VM image size.

CPU resources. Amazon Lambda, for instance, “freezes”
and “thaws” containers.

The single biggest factor limiting both the scalability and
performance of virtualization is the size of the guest vir-
tual machines: for instance, both the on-disk image size as
well as the running memory footprint are on the order of
hundreds of megabytes to several gigabytes for most Linux
distributions. VM memory consumption imposes a hard up-
per bound on the number of instances that can be run on the
same server. Containers typically require much less memory
than virtual machines (a few MBs or tens of MBs) because
they share the kernel and have smaller root filesystems.

Large VMs also slow down instantiation times: the time
needed to read the image from storage, parse it and lay it
out in memory grows linearly with image size. This effect is
clearly shown in Figure 2 where we boot the same unikernel
VM from images of different sizes, all stored in a ramdisk.
We increase the size by injecting binary objects into the
uncompressed image file. This ensures that the results are
due to the effects that image size has on VM initialization.

3 LIGHTWEIGHT VMS

The first step towards achieving our goals is to reduce both
the image size and the memory footprint of virtual machines.
We observe, as others [27], that most containers and virtual
machines run a single application; if we reduce the function-
ality of the VM to include only what is necessary for that
application, we expect to reduce the memory usage dramati-
cally. Concretely, we explore two avenues to optimize virtual
machine images:

o Unikernels: tiny virtual machines where a minimalis-
tic operating system (such as MiniOS [34]) is linked di-
rectly with the target application. The resulting VM is
typically only a few megabytes in size and can only run
the target application; examples include ClickOS [29]
and Mirage [27].

o Tinyx: a tool that we have built to create a tiny Linux
distribution around a specified application. This results
in images that are a few tens of MBs in size and need
around 30MBs of RAM to boot.

SOSP 2017, Oct 28-31, Shanghai

3.1 Unikernels

There is a lot of prior work showing that unikernels have
very low memory footprint, and for specific applications
there already exist images that one can re-use: ClickOS is
one such example that can run custom Click modular router
configurations composed of known elements. Mirage [27] is
another example that takes applications written in OCaml
and creates a minimalistic app+OS combo that is packed as
a guest VM.

If one needs to create a new unikernel, the simplest is
to rely on Mini-OS [34], a toy guest operating system dis-
tributed with Xen: its functionality is very limited, there is no
user/kernel separation and no processes/fork. For instance,
only 50 LoC are needed to implement a TCP server over
Mini-OS that returns the current time whenever it receives a
connection (we also linked the Iwip networking stack). The
resulting VM image, which we will refer to as the daytime
unikernel, is only 480KB (uncompressed), and can run in as
little as 3.6MB of RAM.! We use the daytime unikernel as a
lower bound of memory consumption for possible VMs.

We have also created unikernels for more interesting ap-
plications, including a TLS termination proxy and Minipy-
thon, a Micropython-based unikernel to be used by Amazon
lambda-like services; both have images of around 1MB and
can run with just 8MB of memory.

In general, though, linking existing applications that rely
on the Linux syscall API to Mini-OS is fairly cumbersome and
requires a lot of expert time. That is why we also explored
another approach to creating lightweight VMs based on the
Linux kernel, described next.

3.2 Tinyx

Tinyx is an automated build system that creates minimalistic
Linux VM images targeted at running a single application (al-
though the system supports having multiple ones). The tool
builds, in essence, a VM consisting of a minimalistic, Linux-
based distribution along with an optimized Linux kernel. It
provides a middle point between a highly specialized uniker-
nel, which has the best performance but requires porting of
applications to a minimalistic OS, and a full-fledged general-
purpose OS VM that supports a large number of applications
out of the box but incurs performance overheads.

The Tinyx build system takes two inputs: an application to
build the image for (e.g., nginx) and the platform the image
will be running on (e.g., a Xen VM). The system separately
builds a filesystem/distribution and the kernel itself. For the
distribution, Tinyx includes the application, its dependencies,
and BusyBox (to support basic functionality).

The 3.6MB requires a small patch to Xen’s toolstack to get around the fact
that it imposes a 4MB minimum by default.

SOSP 2017, Oct 28-31, Shanghai

To derive dependencies, Tinyx uses (1) objdump to gen-
erate a list of libraries and (2) the Debian package manager.
To optimize the latter, Tinyx includes a blacklist of pack-
ages that are marked as required (mostly for installation, e.g.,
dpkg) but not strictly needed for running the application. In
addition, we include a whitelist of packages that the user
might want to include irrespective of dependency analysis.

Tinyx does not directly create its images from the pack-
ages since the packages include installation scripts which
expect utilities that might not be available in the minimalis-
tic Tinyx distribution. Instead, Tinyx first mounts an empty
OverlayFS directory over a Debian minimal debootstrap sys-
tem. In this mounted directory we install the minimal set of
packages discovered earlier as would be normally done in
Debian. Since this is done on an overlay mounted system,
unmounting this overlay gives us all the files which are prop-
erly configured as they would be on a Debian system. Before
unmounting, we remove all cache files, any dpkg/apt related
files, and other unnecessary directories. Once this is done,
we overlay this directory on top of a BusyBox image as an
underlay and take the contents of the merged directory; this
ensures a minimalistic, application-specific Tinyx “distribu-
tion”. As a final step, the system adds a small glue to run the
application from BusyBox’s init.

To build the kernel, Tinyx begins with the “tinyconfig”
Linux kernel build target as a baseline, and adds a set of
built-in options depending on the target system (e.g., Xen
or KVM support); this generates a working kernel image.
By default, Tinyx disables module support as well as kernel
options that are not necessary for virtualized systems (e.g.,
baremetal drivers). Optionally, the build system can take
a set of user-provided kernel options, disable each one in
turn, rebuild the kernel with the olddefconfig target, boot
the Tinyx image, and run a user-provided test to see if the
system still works (e.g., in the case of an nginx Tinyx image,
the test includes attempting to wget a file from the server);
if the test fails, the option is re-enabled, otherwise it is left
out of the configuration. Combined, all these heuristics help
Tinyx create kernel images that are half the size of typical
Debian kernels and significantly smaller runtime memory
usage (1.6MB for Tinyx vs. 8MB for the Debian we tested).

4 VIRTUALIZATION TODAY

Armed with our tiny VM images, we are now ready to ex-
plore the performance of existing virtualization technologies.
We base our analysis on Xen [3], which is a type-1 hyper-
visor widely used in production (e.g., in Amazon EC2). Xen
has a small trusted computing base and its code is fairly
mature, resulting in strong isolation (the ARM version of
the hypervisor, for instance, consists of just 11.4K LoC [43],
and dissagregation [5] can be used to keep the size of critical

Manco et al.

Dom0 (Linux/NetBSD)

xenbus

=]
o
N
w
i
Q
a

xenbus |
virt
driversl

Xen Hypervisor

Hardware (CPU, Memory, MMU, NICs, ..)

Figure 3: The Xen architecture including toolstack, the
XenStore, software switch and split drivers between
the driver domain (Domo0) and the guests (DomUs).

Dom@ code low). The competing hypervisor, KVM, is based
on the Linux kernel and has a much larger trusted computing
base. To better understand the following investigation, we
start with a short introduction on Xen.

4.1 Short Xen Primer

The Xen hypervisor only manages basic resources such as
CPUs and memory (see Figure 3). When it finishes booting,
it automatically creates a special virtual machine called Dom@.
Dom@ typically runs Linux and hosts the toolstack, which in-
cludes the x1 command and the 1ibx1 and libxc libraries
needed to carry out commands such as VM creation, migra-
tion and shutdown.

Dom@ also hosts the XenStore, a proc-like central registry
that keeps track of management information such as which
VMs are running and information about their devices, along
with the libxs library containing code to interact with it.
The XenStore provides watches that can be associated with
particular directories of the store and that will trigger call-
backs whenever those directories are modified.

Typically, Dom@ also hosts a software switch (Open vSwitch
is the default) to mux/demux packets between NICs and the
VMs, as well as the (Linux) drivers for the physical devices.?
For communication between Dom@ and the other guests, Xen
implements a split-driver model: a virtual back-end driver
running in Dom@ (e.g., the netback driver for networking)
communicates over shared memory with a front-end driver
running in the guests (the netfront driver). So-called event
channels, essentially software interrupts, are used to notify
drivers about the availability of data.

2Strictly speaking, this functionality can be put in a separate VM called a
driver domain, but in most deployments Dom@ acts as a driver domain.

My VM is Lighter (and Safer) than your Container

Debian Boot Tinyx Create - - - - Docker Boot
Debian Create - - - - MiniOS Boot Docker Run
Tinyx Boot MiniOS Create - --- Process Create

0 200 400 600 800 1000
Number of running guests

Figure 4: Comparison of domain instantiation and
boot times for several guest types. With small guests,
instantiation accounts for most of the delay when
bringing up a new VM.

4.2 Overhead Investigation

As a testing environment, we use a machine with an Intel
Xeon E5-1630 v3 CPU at 3.7 GHz and 128 GiB of DDR4 mem-
ory, and Xen and Linux versions 4.8. We then sequentially
start 1000 virtual machines and measure the time it takes to
create each VM (the time needed for the toolstack to prepare
the VM), and the time it takes the VM to boot. We do this for
three types of VMs that exemplify vastly different sizes: first,
a VM running a minimal install of Debian jessie that we view
as a typical VM used in practice; second, Tinyx, where the
distribution is bundled into the kernel image as an initramfs;
and finally, the daytime unikernel.

Figure 4 shows creation and boot times for these three VM
types, Docker containers, and basic Linux processes (as a
baseline). All VM images are stored on a ramdisk to eliminate
the effects that disk I/O would have on performance.

The Debian VM is 1.1GB in size; it takes Xen around 500ms
to create the VM when there are no other VMs running, and
it takes the VM 1.5 seconds to boot. The Tinyx VM (9.5MB
image) is created in 360ms and needs a further 180ms to boot.
The first unikernel (480KB image) is created in 80ms, and
needs 3ms to boot.

Docker containers start in around 200ms, and a process is
created and launched (using fork/exec) in 3.5ms on average
(9ms at the 90% percentile). However, for both processes and
containers creation time does not depend on the number of
existing containers or processes.

As we keep creating VMs, however, the creation time
increases noticeably (note the logarithmic scale): it takes 42s,
10s and 700ms to create the thousandth Debian, Tinyx, and
unikernel guest, respectively. These results are surprising,
since all the VMs are idle after they boot, so the total system

SOSP 2017, Oct 28-31, Shanghai

1800 —
1600 | config
1400 | hypervisor s
xenstore
'g 1200 - devices mmmm
£. 1000 |- load m——
g 800 toolstack
F 600
400
200
0
0 200 400 600 800 1000

Number of running guests

Figure 5: Breakdown of the VM creation overheads
shows that the main contributors are interactions
with the XenStore and the creation of virtual devices.

utilization should be low regardless of the number of VMs.
Another result is also apparent from this test: as the size
of the VM decreases, the creation time contributes a larger
and larger fraction of the time that it takes from starting the
VM creation to its availability: with lightweight VMs, the
instantiation of new VMs becomes the main bottleneck.

To understand VM creation overheads, we instrumented
Xen’s x1 command-line tool and its 1ibx1 library, and cate-
gorized the work done into several categories:

e Parsing the configuration file that describes the VM
(kernel image, virtual network/block devices, etc.).

e Interacting with the hypervisor to, for example, reserve
and prepare the memory for the new guest, create the
virtual CPUs, and so on.

e Writing information about the new guest in the Xen-
Store, such as its name.

e Creating and configuring the virtual devices.

e Parsing the kernel image and loading it into memory.

e Internal information and state keeping of the toolstack
that do not fit into any of the above categories.

Figure 5 shows the creation overhead categorized in this
way. It is immediately apparent that there are two main
contributors to the VM creation overhead: the XenStore in-
teraction and the device creation, to the point of negligibility
of all other categories.® Device creation dominates the guest
instantiation times when the number of currently running
guests is low; its overhead stays roughly constant when we
keep adding virtual machines.

However, the time spent on XenStore interactions increases
superlinearly, for several reasons. The protocol used by the
XenStore is quite expensive, where each operation requires

3Note that this already uses oxenstored, the faster of the two available
implementations of the XenStore. Results with cxenstored show much
higher overheads.

SOSP 2017, Oct 28-31, Shanghai

sending a message and receiving an acknowledgment, each
triggering a software interrupt: a single read or write thus
triggers at least two, and most often four, software inter-
rupts and multiple domain changes between the guest, hy-
pervisor and Dom@ kernel and userspace; as we increase the
number of VMs, so does the load on this protocol. Secondly,
writing certain types of information, such as unique guest
names, incurs overhead linear with the number of machines
because the XenStore compares the new entry against the
names of all other already-running guests before accepting
the new guest’s name. Finally, some information, such as
device initialization, requires writing data in multiple Xen-
Store records where atomicity is ensured via transactions.
As the load increases, XenStore interactions belonging to
different transactions frequently overlap, resulting in failed
transactions that need to be retried.

Finally, it is worth noting that the spikes on the graph
are due to the fact that the XenStore logs every access to
log files (20 of them), and rotates them when a certain max-
imum number of lines is reached (13,215 lines by default);
the spikes happen when this rotation takes place. While dis-
abling this logging would remove the spikes, it would not
help in improving the overall creation times, as we verified
in further experiments not shown here.

5 LIGHTVM

Our target is to achieve VM boot times comparable to process
startup times. Xen has not been engineered for this objec-
tive, as the results in the previous section show, and the root
of these problems is deeper than just inefficient code. For
instance, one fundamental problem with the XenStore is its
centralized, filesystem-like API which is simply too slow for
use during VM creation and boot, requiring tens of inter-
rupts and privilege domain crossings. Contrast this to the
fork system call which requires a single software interrupt
- a single user-kernel crossing. To achieve millisecond boot
times we need much more than simple optimizations to the
existing Xen codebase.

To this end, we introduce LightVM, a complete re-design
of the basic Xen control plane optimized to provide light-
weight virtualization. The architecture of LightVM is shown
in Figure 6. LightVM does not use the XenStore for VM cre-
ation or boot anymore, using instead a lean driver called
noxs that addresses the scalability problems of the XenStore
by enabling direct communication between the frontend
and backend drivers via shared memory instead of relaying
messages through the XenStore. Because noxs does not rely
on a message passing protocol but rather on shared pages
mapped in the guest’s address space, reducing the number
of software interrupts and domain crossings needed for VM
operations (create/save/resume/migrate/destroy).

Manco et al.
Dom(0 (Linux/NetBSD)

chaos
daemon

libchaos
(prepare)

libchaos
(execute)

n
M
()
>
-
=]
T

netback
drivers

Figure 6: LightVM architecture showing noxs, x1’s re-
placement (chaos), the split toolstack and accompany-
ing daemon, and xendevd in charge of quickly adding
virtual interfaces to the software switch.

LightVM provides a split toolstack that separates VM cre-
ation functionality into a prepare and an execute phase,
reducing the amount of work to be done on VM creation.
We have also implemented chaos/libchaos, a new virtu-
alization toolstack that is much leaner than the standard
x1/1ibx1, in addition to a small daemon called xendevd
that quickly adds virtual interfaces to the software switch or
handles block device images’ setup. We cover each of these
in detail in the next sections.

5.1 Noxs (no XenStore) and the Chaos
Toolstack

The XenStore is crucial to the way Xen functions, with many
x1 commands making heavy use of it. By way of illustra-
tion, Figure 7a shows the process when creating a VM and
its (virtual) network device. First, the toolstack writes an
entry to the network back-end’s directory, essentially an-
nouncing the existence of a new VM in need of a network
device. Previous to that, the back-end placed a watch on that
directory; the toolstack writing to this directory triggers the
back-end to assign an event channel and other information
(e.g., grant references, a mechanism for sharing memory be-
tween guests) and to write it back to the XenStore (step 2
in the figure). Finally, when the VM boots up it contacts the
XenStore to retrieve the information previously written by
the network back-end (step 3). The above is a simplification:

My VM is Lighter (and Safer) than your Container

dom0 NW NW
backend frontend
toolstack
@ . _
Xen | @ g é § é
< Q
store » 3 b 3
e X 8 b
/ N\
— J
backend-id
@ event channel id
grant reference
(a) XenStore
domO NW NW
backend frontend
backend-id

toolstack

event channel id
grant reference

frebie] & 2N ©)
create[O =
o o —
Q H =
— 2 H =
0} + 9]
o [Q
=] >
4 =
S
backemri]—id g memory
event channel i 2
age hypervisor
grant reference pag yp
(b) noxs

Figure 7: Standard VM creation process in Xen using
the XenStore versus our noxs implementation.

in actuality, the VM creation process alone can require in-
teraction with over 30 XenStore entries, a problem that is
exacerbated with increasing number of VMs and devices.

Is it possible to forego the use of the XenStore for opera-
tions such as creation, pause/unpause and migration? As it
turns out, most of the necessary information about a VM is
already kept by the hypervisor (e.g., the VM’s id, but not the
name, which is kept in the XenStore but is not needed during
boot). The insight here is that the hypervisor already acts as
a sort of centralized store, so we can extend its functionality
to implement our noxs (no XenStore) mechanism.

Specifically, we begin by replacing 1ibx1 and the corre-
sponding x1 command with a streamlined, thin library and
command called 1ibchaos and chaos, respectively (cf. Fig-
ure 6); these no longer make use of the XenStore and its
accompanying libxs library.

In addition, we modify Xen’s hypervisor to create a new,
special device memory page for each new VM that we use
to keep track of a VM’s information about any devices, such
as block and networking, that it may have. We also include
a hypercall to write to and read from this memory page,

SOSP 2017, Oct 28-31, Shanghai

and make sure that, for security reasons, the page is shared
read-only with guests, with only Dom@ allowed to request
modifications.

When a chaos create command is issued, the toolstack
first requests the creation of devices from the back-end(s)
through an ioctl handled by the noxs Linux kernel module
(step 1 in Figure 7b).* The back-end then returns the details
about the communication channel for the front-end. Second,
the toolstack calls the new hypercall asking the hypervisor
to add these details to the device page (step 2).

When the VM boots, instead of contacting the XenStore,
it will ask the hypervisor for the address of the device page
and will map the page into its address space using hyper-
calls (step 3 in the figure); this requires modifications to the
guest’s operating system, which we have done for Linux and
Mini-OS. The guest will then use the information in the page
to initiate communication with the back-end(s) by mapping
the grant and binding to the event channel (step 4). At this
stage, the front and back-ends set up the device by exchang-
ing information such as its state and its MAC address (for
networking); this information was previously kept in the
XenStore and is now stored in a device control page pointed
to by the grant reference. Finally, front and back-ends no-
tify each other of events through the event channel, which
replaces the use of XenStore watches.

To support migration without a XenStore, we create a new
pseudo-device called sysctl to handle power-related opera-
tions and implement it following Xen’s split driver model,
with a back-end driver (sysctlback) and a front-end (sysctl-
front) one. These two drivers share a device page through
which communication happens and an event channel.

With this in place, migration begins by chaos opening
a TCP connection to a migration daemon running on the
remote host and by sending the guest’s configuration so that
the daemon pre-creates the domain and creates the devices.
Next, to suspend the guest, chaos issues an ioctl to the
sysctl back-end, which will set a field in the shared page to
denote that the shutdown reason is suspend, and triggers
the event channel. The front-end will receive the request to
shutdown, upon which the guest will save its internal state
and unbind noxs-related event channels and device pages.
Once the guest is suspended we rely on libxc code to send
the guest data to the remote host.

5.2 Split Toolstack

In the previous section we showed that a large fraction of
the overheads related to VM creation and other operations
comes from the toolstack itself. Upon closer investigation, it
turns out that a significant portion of the code that executes

4Currently this mechanism only works if the back-ends run in Dom@, but
the architecture allows for back-ends to run on a different virtual machine.

SOSP 2017, Oct 28-31, Shanghai

VM create
command

1. HYPERVISOR RESERVATION
fnl..faN

1. HYPERVISOR RESERVATION
fnl..faN

2. COMPUTE ALLOCATION
fnl..faN

2. COMPUTE ALLOCATION
fnl..faN

3. MEMORY RESERVATION
fnl..faN

3. MEMORY RESERVATION
fnl..faN

4. MEMORY PREPARATION
fnl..faN

4. MEMORY PREPARATION
fnl..faN

5. DEVICE PRE-CREATION
fnl..fnN

5. DEVICE PRE-CREATION
fnl..faN

6. CONFIGURATION PARSING
fnl..fnN

7. DEVICE INITIALIZATION
fnl..faN

6. CONFIGURATION PARSING
fnl..faN

VM CREATE PROCESS

8. IMAGE BUILD
fnl..faN

7. DEVICE INITIALIZATION
fnl..fnN

9. VIRTUAL MACHINE BOOT
fnl..fnN

8. IMAGE BUILD
fnl..faN

standard toolstack

9. VIRTUAL MACHINE BOOT
fnl..faN

split toolstack

Daemon
(background
operation)

3SVHd 34vd3dd

o
S
H
2

command

3SVHd 31nJ3xX3

Figure 8: Toolstack split between functionality be-
longing to the prepare phase, carried out periodically
by the chaos daemon, and an execute phase, directly
called by chaos when a command is issued.

when, for instance, a VM create command is issued, does not
actually need to run at VM creation time. This is because
this code is common to all VMs, or at least common to all
VMs with similar configurations. For example, the amount
of memory may differ between VMs, but there will generally
only be a small number of differing memory configurations,
similar to OpenStack’s flavors. This means that VMs can be
pre-executed and thus off-loaded from the creation process.

To take advantage of this, we replace the standard Xen
toolstack with the libchaos library and split it into two
phases. The prepare phase (see Figure 8) is responsible for
functionality common to all VMs such as having the hyper-
visor generate an ID and other management information and
allocating CPU resources to the VM. We offload this func-
tionality to the chaos daemon, which generates a number
of VM shells and places them in a pool. The daemon ensures
that there is always a certain (configurable) number of shells
available in the system.

The execute phase then begins when a VM creation com-
mand is issued. First, chaos parses the configuration file
for the VM to be created. It then contacts the daemon and
asks for a shell fitting the VM requirements, which is then
removed from the pool. On this shell, the remaining VM-
specific operations, such as loading the kernel image into
memory and finalizing the device initialization, are executed
to create the VM, which is then booted.

5.3 Replacing the Hotplug Script: xendevd

The creation of a virtual device by the driver domain usually
requires some mechanism to setup the device in user-space
(e.g., by adding a vif to the bridge). With standard Xen this
process is done either by x1, calling bash scripts that take

Manco et al.

4096

1024 - Xl .

)
E ‘ chaos [XS+split] -
g chaos [XS]
£
o
Rl
<
e
O

4 1

chaos [NoXS] LightvM
1 1 1 1 1
0 200 400 600 800 1000

Number of Running VMs

Figure 9: Creation times for up to 1,000 instances
of the daytime unikernel for all combinations of
LightVM’s mechanisms. “x1” denotes standard Xen
with no optimizations.

care of the necessary initialization or by udevd, calling the
same scripts when the backend triggers the udev event. The
script that is executed is usually user-configured, giving great
flexibility to implement different scenarios. However launch-
ing and executing bash scripts is a slow process taking tens
of milliseconds, considerably slowing down the boot process.
To work around this, we implemented this mechanism as a
binary daemon called xendevd that listens for udev events
from the backends and executes a pre-defined setup without
forking or bash scripts, reducing setup time.

6 EVALUATION

In this section we present a performance evaluation of LightVM,
including comparisons to standard Xen and, where applica-
ble, Docker containers. We use two x86 machines in our tests:
one with an Intel Xeon E5-1630 v3 CPU at 3.7 GHz (4 cores)
and 128GB of DDR4 RAM, and another one consisting of
four AMD Opteron 6376 CPUs at 2.3 GHz (with 16 cores
each) and 128GB of DDR3 RAM. Both servers run Xen 4.8.

We use a number of different guests: (1) three Mini-OS-
based unikernels, including noop, the daytime unikernel,
and one based on Micropython [31] which we call Minipy-
thon; (2) a Tinyx noop image (no apps installed) and a Tinyx
image with Micropython; and (3) a Debian VM. For container
experiments we use Docker version 1.13.

6.1 Instantiation Times

We want to measure how long it takes to create and boot a
virtual machine, how that scales as the number of running
VMs on the system increases, and how both of these com-
pare to containers. We further want to understand how the
LightVM mechanisms affect these times.

My VM is Lighter (and Safer) than your Container

65536
16384
4096
1024
256
64 | ,

16 1

4 Emmmwwmmww ' ™
1 | | | | | | |

0 1000 2000 3000 4000 5000 6000 7000 8000

Number of Running VMs/Containers

Docker
LightVM ——]

Time [ms]

Figure 10: LightVM boot times on a 64-core machine
versus Docker containers.

For the first test, we boot up to 1,000 daytime unikernels,
and we measure the time it takes for the n’th unikernel to be
created. We repeat this experiment with all combinations of
the LightVM mechanisms: chaos + XenStore, chaos + noxs,
chaos + split toolstack and chaos + noxs + split toolstack;
we also include measurements when running out-of-the-box
Xen (labeled “x1”). We run the tests on the 4-core machine,
with one core assigned to Dom@ and the remaining three cores
assigned to the VMs in a round-robin fashion.

The results are shown in Figure 9. Out of the box, Xen (the
“x1” curve) has creation times of about 100ms for the first VM,
scaling rather poorly up to a maximum of just under 1 second
for the 1000th VM. In addition, the curve shows spikes at reg-
ular intervals as a result of the log rotation issue mentioned
earlier in the paper. Replacing x1 with chaos results in a no-
ticeable improvement, with creation times ranging now from
roughly 15 to 80ms. Adding the split toolstack mechanism
to the equation improves scalability, showing a maximum of
about 25ms for the last VMs. Removing the XenStore (chaos
+ noxs curve) provides great scalability, essentially yielding
low creation times in the range of 8-15 ms for the last VMs.
Finally, we obtain the best results with all of the optimiza-
tions (chaos + noxs + split toolstack) turned on: boot times
as low as 4ms going up to just 4.1ms for the 1,000th VM. As
a final point of reference, using a noop unikernel with no
devices and all optimizations results in a minimum boot time
of 2.3ms.

Next, we test LightVM against Docker containers when
using even larger numbers of instances (see Figure 10). To
measure this, we used the 64-core AMD machine, assigning
4 cores to Dom@ and the remaining 60 to the VMs in a round-
robin fashion; we used the noop unikernel for the guests
themselves. As before, the best results come when using
chaos + noxs + split toolstack, which shows good scalability
with increasing number of VMs, up to 8,000 of them in this
case. Docker containers start at about 150ms and ramp up to

SOSP 2017, Oct 28-31, Shanghai

1024 ! !
512 + gl
256 - N *ﬂmmm
_ 128} bl 1
g 64 | Tinyx over LightVM ——
o 32 ¢ Docker
£ 16 - Unikernel over LightVM —— -
. 8 L. S S O
4t)
2L
1 L L L L
0 200 400 600 800 1000

Number of Running VMs/Containers

Figure 11: Boot times for unikernel and Tinyx guests
versus Docker containers.

about 1 second for the 3,000th container. The spikes in that
curve coincide with large jumps in memory consumption,
and we stop at about 3,000 because after that the next large
memory allocation consumes all available memory and the
system becomes unresponsive.

For the final test we show how the boot times of a Tinyx
guest compare to those of a unikernel, and we further plot a
Docker container curve for comparison (see Figure 11). As
expected, the unikernel performs best, but worthy of note
is the fact that Tinyx, a Linux-based VM, performs rather
close to Docker containers up to roughly 750 VMs (250 per
core on our test machine). The increase in boot times as the
number of VMs per core increases is due to the fact that
even an idle, minimal Linux distribution such as Tinyx runs
occasional background tasks. As the number of VMs per core
increases, contention for CPU time increases, increasing the
boot time of each VM. In contrast, idling docker containers
or unikernels do not run such background tasks, leading to
no noticeable increase in boot times.

6.2 Checkpointing and Migration

In the next set of experiments we use the 4-core machine
and the daytime unikernel to test save/restore (i.e., check-
pointing) and migration times. In all tests we use a RAM disk
for the filesystem so that the results are not skewed by hard
drive access speeds. We assign two cores to Dom@ and the
remaining two to the VMs in a round-robin fashion.

For checkpointing, the experimental procedure is as fol-
lows. At every run of the test we start 10 guests and randomly
pick 10 guests to be checkpointed; for instance, in the first
run all 10 guests created are checkpointed, in the second one
20 guests exist out of which 10 are checkpointed, and so on
up to a total of 1,000 guests. This is to show how quick check-
pointing is when the system is already running N numbers
of guests. The results are shown in Figure 12a and Figure 12b,

SOSP 2017, Oct 28-31, Shanghai

Manco et al.

igg T T T 1024 T T T T 4096 T T T T
— 64 : : iy 256 1 Ty 1024 w
B 32— E ey L o YU I w5
e BT Xl 1 2 1. = X 3 o % X
£ r 1 £ chaos [XS] —— £ 16 .
= 4 | chaos+x<_enstore . [4 chaos [NOXS] ==] - 4L ch;g: c[’ng;g% —
% + LightVM —— 1k LightVM —— 1 1 LightYM ——
C Il Il L L i
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Number of Running VMs

(a) Save

Number of Running VMs

(b) Restore

Number of Running VMs

Figure 12: Checkpointing times using the daytime unikernel.

split between save and restore times, respectively. The fig-
ures show that LightVM can save a VM in around 30ms and
restore it in 20ms, regardless of the number of running guests,
while standard Xen needs 128ms and 550ms respectively.

For migration tests we carry out the same procedure of
starting 10 guests and randomly choosing 10 to migrate. Once
the 10 guests are migrated, we replace the migrated guests
with 10 new guests to make sure that the right number of
guests are running on the source host for the next round of
the test (e.g., if we have 100 guests, we migrate 10, leaving
90 on the source host; we then create 10, leaving 100 at the
source host so that it is ready for the next round).

We plot migration times for the daytime unikernel in Fig-
ure 13. As in previous graphs, turning all optimizations on
(chaos, noxs and split toolstack) yields the best results, with
migration times of about 60ms irrespective of how many
VMs are currently running on the host. For low number of
VMs the chaos + XenStore slightly outperforms LightVM:
this is due to device destruction times in noxs which we have
not yet optimized and remain as future work.

6.3 Memory Footprint

One of the advantages of containers is that, since they use
a common kernel, their memory usage stays low as their
numbers increase. This is in contrast to VMs, where each
instance is a full replica of the operating system and filesys-
tem. In our next experiment we try to see if small VMs can
get close to the memory scalability that containers provide.
For the test we use the 4-core machine and allocate a single
core to Dom@ and the remaining 3 to the VMs as before. We
use three types of guests: a Minipython unikernel, a Tinyx
VM with Micropython installed, and a Debian VM also with
Micropython installed. For comparison purposes we also
conduct tests with a Docker/Micropython container and a
Micropython process.

Generally, the results (Figure 14) show that the unikernel’s
memory usage is fairly close to that of Docker containers.
The Tinyx curve is higher, since multiple copies of the Linux
kernel are running; however, the additional memory con-
sumption is not dramatic: for 1,000 guests, the system uses

the

Figure 13: Migration times for
daytime unikernel.

65536
16384
4096
1024

Memory Usage [MB]

ol Débian —— |
6 e Tinyx
10 Docker Micropython «------]
41 Minipython]
1t Micropython Process -----]
0 200 400 600 800 1000

VM/Container/Process #

Figure 14: Scalability of VM memory usage for differ-
ent VMs, for containers and for processes.

about 27GB versus 5GB for Docker. This 22GB difference is
small for current server memory capacity (100s of GBs or
higher) and memory prices. Debian consumes about 114GB
when running 1,000 VMs (assuming 111MB per VM, the
minimum needed for them to run).

6.4 CPU Usage

For the final test of the section we take a look at CPU usage
when using a noop unikernel, Tinyx and a Debian VM, and
plot these against usage for Docker. For the VM measure-
ments we use iostat to get Dom@’s CPU usage and xentop
to get the guests’ utilizations.

As shown in Figure 15, Docker containers have the low-
est utilization although the unikernel is only a fraction of
a percentage point higher. Tinyx also fares relatively well,
reaching a maximum utilization of about 1% when running
1,000 guests. The Debian VM scales more poorly, reaching
about 25% for 1,000 VMs: this is because each Debian VM
runs a number of services out of the box that, taken together,
results in fairly high CPU utilization. In all, the graph shows
that CPU utilizations for VMs can be roughly on par with
that of containers, as long as the VMs are trimmed down to
include only the functionality crucial for the target applica-
tion.

My VM is Lighter (and Safer) than your Container

25 T
— Debian
S 201 Tinyx i
s Unikernel
g 15 Docker --=ee--- |
N
'5 10 + 4
0 o " " " uj |) N —"
0 200 400 600 800 1000

Number of Running VMs/Containers

Figure 15: CPU usage for a unikernel, Tinyx, a Debian
VM and Docker.

7 USE CASES

We now explore scenarios where lightweight virtualization
can bring a tangible benefit over the status quo. In all the fol-
lowing scenarios, using containers would help performance
but weaken isolation, while using full-blown VMs would pro-
vide the same isolation as lightweight VMs, but with poorer
performance.

7.1 Personal Firewalls

The number of attacks targeting mobile phones is increasing
constantly [30]. Running up-to-date firewalls and intrusion
detection/prevention on the mobile phone is difficult, so one
option is to scrub the traffic in the cloud instead. Ideally, each
mobile user should be able to run a personal firewall that is
on-path of the traffic to avoid latency inflation.

Recently, mobile operators have started working on mobile-
edge computing (MEC) [16], which aims to run processing
as close as possible to mobile users and, to this end, deploys
servers co-located with mobile gateways situated at or near
the cellular base stations (or cells).

The MEC is an ideal place to instantiate personal firewalls
for mobile users. The difficulty is that the amount of deployed
hardware at any single cell is very limited (one or a few
machines), while the number of active users in the cell is on
the order of a few thousand. Moreover, users enter and leave
the cell continuously, so it is critical to be able to instantiate,
terminate and migrate personal firewalls quickly and cheaply,
following the user through the mobile network.

Using full-blown Linux VMs is not feasible because of their
large boot times (a few seconds) and their large image sizes
(GBs) which would severely increase migration duration and
network utilization. Using containers, on the other hand, is
tricky because malicious users could try to subvert the whole
MEC machine and would be able to read and tamper with
other users’ traffic.

SOSP 2017, Oct 28-31, Shanghai

Instead, we rely on ClickOS, a unikernel specialized for
network processing [29] running a simple firewall configu-
ration we have created. The resulting VM image is 1.7MB in
size and the VM needs just 8MB of memory to run; we can
run as many as 8000 such firewalls on our 64-core AMD ma-
chine, and booting one instance takes about 10ms. Migrating
a ClickOS VM over a 1Gbps, 10ms link takes just 150ms.

We want to see if the ClickOS VMs can actually do use-
ful work when so many of them are active simultaneously.
We start 1000 VMs running firewalls for 1000 emulated mo-
bile clients, and then run an increasing number of iperf
instances, each instance representing one client and being
serviced by a dedicated VM. We limit each client’s through-
put to 10Mbps to mimic typical 4G speeds in busy cells. We
measure total throughput as well added latency. For the latter,
we have one client run ping instead of iperf.

The results, run on a server with an Intel Xeon E5-2690 v4
2.6 GHz processor (14 cores) and 64GB of RAM, are shown
in Figure 16a. The cumulative throughput grows linearly
until 2.5Gbps (250 clients), each client getting 10Mbps. After
that, heavy CPU contention curbs the throughput increase:
the average per-user throughput is 6.5Mbps when there are
500 active users, and 4Mbps with 1000 active users. The
per-packet added latency is negligible with few active users
(tens), but increases to 60ms when 1000 users are active; this
is to be expected since the Xen scheduler will effectively
round-robin through the VMs. We note that VMs servicing
long flows care less about latency, and a better scheduler
could prioritize VMs servicing few packets (like our ping
VM); this subject is worth future investigation.

To put the performance in perspective, we note that the
maximum theoretical download throughput of LTE-advanced
is just 3.3Gbps (per cell sector), implying that a single ma-
chine running LightVM would be able to run personalized
firewalls for all the users in the cell without becoming a
performance bottleneck.

7.2 Just-in-Time Service Instantiation

Our second use-case also targets mobile edge computing:
we are interested in dynamically offloading work from the
mobile to the edge as proposed by [28]; the most important
metrics are responsiveness and the ability to offer the service
to as many mobile devices as possible. We implemented a
dummy service that boots a VM whenever it receives a packet
from a new client, and keeps the VM running as long as the
client is actively sending packets; after 2s of inactivity we tear
down the VM. To measure the worst-case client perceived
latency, we have each client send a single ping request, and
have the newly booted VM reply to pings.

We use open-loop client arrivals with different intensities
and plot the CDFs of ping times in Figure 16b. The different

SOSP 2017, Oct 28-31, Shanghai

Manco et al.

g 4 — Y 1 7 1500 : ‘
& 4l S —- 075 | |8 1250 —
2 140 2 < 1000 are metal —+
5 2 1308 g o5} 10ms 13 750 Tinyx - |
2 120 & 25ms ---o-- € 500 unikernel - |
[Throughput —e— 025 1 50 ms 1 3 250 x
g g RTT = 110 100ms ---- £ : 1
g ot | ‘ 0 0 | | \ £ 0 | | | |

1 100 250 500 750 1000 0 20 40 60 80 100 1 100 250 500 750 1000

Running VMs

(a) Running personal firewalls for
1000 users using ClickOS.

ping RTT

(b) Just-in-time instantiation of VMs
to service mobile clients.

of instances

(c) TLS termination throughput for up
to 1000 end points.

Figure 16: LightVM use cases.

curves correspond to varying client inter-arrival rates: with
one new client every 25 ms, the client-measured latency is
13ms in the median and 20ms at the 90%. With one new
client every 10 ms, the RTTs improve up to the point that
our Linux bridge is overloaded and starts dropping packets
(mostly ARP packets), hence some pings time out and there
is a long tail for the client-perceived latency.

7.3 High Density TLS Termination

The Snowden leaks have revealed the full extent of state-level
surveillance, and this has pushed most content providers to
switch to TLS (i.e., HTTPS) to the point where 70% of Internet
traffic is now encrypted [39]. TLS, however, requires at least
one additional round-trip time to setup, increasing page load
times significantly if the path RTT is large. The preferred
solution to reduce this effect is to terminate TLS as close to
the client as possible using a content-distribution network
and then serve the content from the local cache or fetch it
from the server over a long-term encrypted tunnel.

Even small content providers have started relying on CDNs,
which now must serve a larger number of customers on the
same geographically-distributed server deployments. TLS
termination needs the long term secret key of the content
provider, requiring strong isolation between different content-
providers’ HTTPS proxies; simply running these in contain-
ers is unacceptable, while running full Linux VMs is too
heavyweight.

We have built two lightweight VMs for TLS termination:
one is based on Minipython and the other one is based on
Tinyx. Our target is to support as many TLS proxies as pos-
sible on a single machine, so we rely on axtls [12], a TLS
library for embedded systems optimized for size. The uniker-
nel relies on the 1wip networking stack, boots in 6ms and
uses 16MB of RAM at runtime. The Tinyx machine uses
40MB of RAM and boots in 190ms.

To understand whether the CDN provider can efficiently
support many simultaneous customers on the same box, we
have N apachebench clients continuously requesting the
same empty file over HTTPS from N virtual machines. We

| chaos fXS] JE—
LightVM ——

VM runtime (s)
[
o

0 200 400 600 800 1000

VM #
Figure 17: Lightweight compute function service time
on an overloaded machine (Minipython unikernels)

measure the aggregate throughput on the 14-core machine
and plot it in Figure 16¢ (bare metal means a Linux process,
i.e., no hypervisor). The graph shows that adding more VMs
increases total throughput; this is because more VMs fully
utilize all CPUs to perform public-key operations, masking
protocol overheads. Tinyx’s performance is very similar to
that of running processes on a bare-metal Linux distribu-
tion: around 1400 requests per second are serviced. This
number is low because we use 1024-bit RSA keys instead of
more efficient variants such as ECDHE. Finally, note that the
unikernel only achieves a fifth of the throughput of Tinyx;
this is mostly due to the inefficient 1lwip stack. With appro-
priate engineering, the stack can be fixed, however reaching
the maturity of the Linux kernel TCP stack is a tall order.

These results highlight the tradeoffs one must navigate
when aiming for lightweight virtualization: either use Tinyx
or other minimalistic Linux-based VMs that are inherently
slower to boot (hundreds of ms) and more memory hungry,
or invest considerable engineering effort to develop minimal
unikernels that achieve millisecond-level boot times and
allow for massive consolidation.

7.4 Lightweight Compute Service

On-demand compute services such as Amazon’s Lambda or
blockchain-backed distributed ledgers are increasing in pop-
ularity. Such services include data, image, or video aggrega-
tions and conversions, or cryptographic hash computations,
and perform calculations that often do not last more than a

My VM is Lighter (and Safer) than your Container

140 chaos [XS] ‘

igg | LightvM ——
80 -
60 -
40 +
20

of concurrent VMs

0 50 100 150 200 250 300
Time [s]

Figure 18: Number of concurrently running Minipy-
thon unikernels for the compute service use case.

few seconds. Further, there is no need to keep state between
independent calculations which means that the service can
be simply destroyed after finishing the calculation. Never-
theless, compute services for different tenants need strong
isolation to reduce sensitive information leaks.

Lightweight VMs are a perfect match for such lightweight
computation services. For this use case we rely on the Mini-
python unikernel we created which runs computations writ-
ten in Python, similar to Amazon’s Lambda. The unikernel
uses the the lightweight MicroPython interpreter and also
links a networking stack. In addition, we have implemented
a daemon in Dom@ that receives compute service requests (in
the form of python programs) and spawns a VM to run the
program. When the program finishes the VM shuts down.
We ran experiments on our four-core machine. All compute
services calculated an approximation of e that takes approxi-
mately 0.8 seconds. The domains were spawned on three of
the four cores (with the fourth exclusively used by Dom@).

We generate one thousand compute requests in an open
loop with inter-arrival times of 250ms. This is faster than our
machine can cope (266ms inter-arrivals lead to full utiliza-
tion), slowly increasing load on the system. Creation times
are not strongly affected by the increasing load, since Dom@
had its own dedicated core. Creation times for noxs slowly
increase from approximately 2.8 ms to approximately 3.5 ms.
Using the split toolstack and its pre-created domains takes a
nearly constant 1.3 ms regardless of the number of already-
created domains. Figure 17 shows the time it takes for the
nth compute request to be serviced in this overloaded sys-
tem, and Figure 18 shows the number of active VMs as a
function of time. Notice how our optimizations, in particular
not using the XenStore, improve the completion times by a
factor of 5 when the system is slightly overloaded (100-200
backlogged VMs); here the work reduction provided by noxs
allows other VMs to do useful work instead, reducing the
number of backlogged VMs.

8 RELATED WORK

A number of OS-level virtualization technologies exist and
are widely deployed, including Docker, LXC, FreeBSD jails
and Linux-VServer, among others [6, 13, 25, 42]. In terms

SOSP 2017, Oct 28-31, Shanghai

of high density, the work in [17] shows how to run 10,000
Docker containers on a single server. Zhang et al. implement
network functions using Docker containers and can boot
up to 80K of them [51]. In our work, we make the case for
lightweight virtualization on top of a hypervisor, providing
strong isolation while retaining the attractive properties
commonly found in containers.

A number of works have looked into optimizing hyper-
visors such as Xen, KVM and VMWare [3, 20, 47] to reduce
their overheads in terms of boot times and other metrics. For
example, Intel Clear Containers [45] (ICC) has similarities
to our work but a different goal. ICC tries to run containers
within VMs with the explicit aim of keeping compatibility
with existing frameworks (Docker, rkt); this compatibility
results in overheads. LightVM optimizes both the virtualiza-
tion system and guests, achieving performance similar to
or better than containers without sacrificing isolation. We
have also showed that it is possible to make automated build
tools to minimize the effort needed to make such special-
ized guests (i.e., with Tinyx). ICC also optimizes parts of
the virtualization system (e.g., the toolstack), but does not
provide other features such as the split toolstack and uses
larger guests: an ICC guest is 70MB and boots in 500ms [19]
as opposed to a Tinyx one which is about 10MB and boots
in about 300ms.

ukvm [50] implements a specialized unikernel monitor on
top of KVM and uses MirageOS unikernels to achieve 10 ms
boot times (the main metric the work focuses on). Jitsu [26]
optimizes parts of Xen to implement just-in-time instantia-
tion of network services by accelerating connection start-up
times. Earlier work [48] implemented JIT instantiation of
honeypots through the use of image cloning; unlike the work
there, we do not require the VMs on the system to run the
same application in order to achieve scalability. The work
in [36] optimizes xl toolstack overheads, but their use of
Linux VMs results in boot times in the hundreds of millisec-
onds or seconds range. LightVM aims to provide container-
like dynamics; as far as we know, this is the first proposal
to simultaneously provide small boot, suspend/resume and
migration times (sometimes an order of magnitude smaller
than previous work), high density and low per-VM memory
footprints.

Beyond containers and virtual machines, other works
have proposed the use of minimalistic kernels or hypervi-
sors to provide lightweight virtualization. Exokernel [8] is a
minimalistic operating system kernel that provides applica-
tions with the ability to directly manage physical resources.
NOVA [44] is a microhypervisor consisting of a thin virtual-
ization layer and thus aimed at reducing the attack surface
(NOVA’s TCB is about 36K LoC, compared to for instance
11.4K for Xen’s ARM port). The Denali isolation kernel is
able to boot 10K VMs but does not support legacy OSes and

SOSP 2017, Oct 28-31, Shanghai

has limited device support [49]. The work in [40] proposes
the implementation of cloudlets to quickly offload services
from mobile devices to virtual machines running in a cluster
or data center, although the paper reports VM boot times in
the 60-90 seconds range. The Embassies project [7, 15] and
Drawbridge [33] make a similar case than us by providing
strong isolation through picoprocesses that have a narrow
interface (the way VMs do), though the target there was
running isolated user-space applications or web client apps.

Finally, unikernels [27] have seen significant research in-
terest; prior work includes Mirage [27], ClickOS [29], Erlang
on Xen [9] and OSv [21] to name just a few. Our work does
not focus on unikernels, but rather leverages them to be able
to separate the effects coming from the virtual machine from
those of the underlying virtualization platform. For example,
they allow us to reach high density numbers without having
to resort to overly expensive servers.

9 DISCUSSION AND OPEN ISSUES

Memory sharing: LightVM does not use page sharing be-
tween VMs, assuming the worst-case scenario where all
pages are different. One avenue of optimization is to use
memory de-duplication (as proposed by SnowFlock [24])
to reduce the overall memory footprint; unfortunately this
requires non-negligible changes to the virtualization system.
Generality: While LightVM is based on Xen, most of its
components can be extended to other virtualization plat-
forms such as KVM. This includes (1) the optimized toolstack,
where work such as ukvm [50] provides a lean toolstack for
KVM (among other things); (2) the pre-creation of guests,
which is independent of the underlying hypervisor tech-
nology; and (3) the use of specialized OSes and unikernels,
several of which already exist for non-Xen hypervisors (e.g.,
the Solo5 unikernel [18], rump kernels [38], OSv [21]). The
one feature that is Xen-specific is the XenStore, though KVM
keeps similar information in the Linux kernel (process infor-
mation) and in the QEMU process (device information).
Usability and portability: Despite its compelling perfor-
mance, LightVM is still not as easy to use as containers.
Container users can rely on a large ecosystem of tools and
support to run unmodified existing applications.

LightVM exposes a clear trade-off between performance
and portability/usability. Unikernels provide the best per-
formance, but require non-negligible development time and
manual tweaking to get an image to compile against a target
application. Further, debugging and extracting the best per-
formance out of them is not always trivial since they do not
come with the rich set of tools that OSes such as Linux have.
At the other extreme, VMs based on general-purpose OSes
such as Linux require no porting and can make use of ex-
isting management tools, but their large memory footprints

Manco et al.

and high boot times, among other issues, have at least partly
resulted in the widespread adoption of containers (and their
security problems).

In designing and implementing the Tinyx build system we
tried to take a first step towards solving the problem: Tinyx
provides better performance than a standard Debian distri-
bution without requiring any application porting. However,
Tinyx is still a compromise: we sacrifice some performance
with respect to unikernels in order to keep the ecosystem
and existing application support.

The ultimate goal is to be able to automatically build
custom-OSes targeting a single application. For instance,
the Rump Kernels project [38] builds “unikernels”, relying
on large portions of NetBSD to support existing applications.
This is not quite what we would need since the performance
and size of the resulting images are not in the same order
of magnitude as LightVM. Part of the solution would have
to decompose an existing OS into fine-granularity modules,
automatically analyze an application’s dependencies, and
choose which is the minimum set of modules needed for the
unikernel to compile. This area of research is future work.

10 CONCLUSIONS

We have presented LightVM, a complete redesign of Xen’s
toolstack optimized for performance that can boot a minimal-
istic VM in as little as 2.3ms, comparable to the fork/exec im-
plementation in Linux (1ms). Moreover, LightVM has almost
constant creation and boot times regardless of the number
of running VMs; this is in contrast to the current toolstack
that can take as much as 1s to create a VM when the system
is loaded. To achieve such performance LightVM foregoes
Xen’s centralized toolstack architecture based on the Xen-
Store in favor of a distributed implementation we call noxs,
along with a reimplementation of the toolstack.

The use cases we presented show that there is a real need
for lightweight virtualization, and that it is possible to si-
multaneously achieve both good isolation and performance
on par or better than containers. However, there is a devel-
opment price to be paid: unikernels offer best performance
but require significant engineering effort which is useful for
highly popular apps (such as TLS termination) but likely
too much for many other applications. Instead, we have pro-
posed Tinyx as a midway point: creating Tinyx images is
streamlined and (almost) as simple as creating containers,
and performance is on par with that of Docker containers.

ACKNOWLEDGMENTS

This paper has received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement no. 671566 (“Superfluidity”).

My VM is Lighter (and Safer) than your Container

REFERENCES

[1] Amazon Web Services [n. d.]. Amazon EC2 Container Service. https:
//aws.amazon.com/ecs/. ([n. d.]).

[2] Amazon Web Services [n. d.]. AWS Lambda - Serverless Compute.
https://aws.amazon.com/lambda. ([n. d.]).

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen
and the Art of Virtualization. SIGOPS Oper. Syst. Rev. 37, 5 (Oct. 2003),
164-177. https://doi.org/10.1145/1165389.945462

[4] J. Clark. [n. d.]. Google: “EVERYTHING at Google runs in
a container”. http://www.theregister.co.uk/2014/05/23/google_
containerization_two_billion/. ([n. d.]).

[5] Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello, George Coker,

Tim Deegan, Peter Loscocco, and Andrew Warfield. 2011. Breaking Up

is Hard to Do: Security and Functionality in a Commodity Hypervi-

sor. In Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles (SOSP °11). ACM, New York, NY, USA, 189-202.

https://doi.org/10.1145/2043556.2043575

Docker [n. d.]. The Docker Containerization Platform. https://www.

docker.com/. ([n. d.]).

[7] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R. Lorch. 2008.

Leveraging Legacy Code to Deploy Desktop Applications on the Web.

In Proceedings of the 8th USENLX Conference on Operating Systems

Design and Implementation (OSDI'08). USENIX Association, Berkeley,

CA, USA, 339-354. http://dl.acm.org/citation.cfm?id=1855741.1855765

D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. 1995. Exokernel: An

Operating System Architecture for Application-level Resource Man-

agement. In Proceedings of the Fifteenth ACM Symposium on Operating

Systems Principles (SOSP °95). ACM, New York, NY, USA, 251-266.

https://doi.org/10.1145/224056.224076

Erlang on Xen 2012. Erlang on Xen. http://erlangonxen.org/. (July

2012).

[10] Google Cloud Platform [n. d.]. The Google Cloud Platform Container
Engine. https://cloud.google.com/container-engine. ([n. d.]).

[11] A. Grattafiori. [n. d.]. Understanding and Hardening Linux Contain-
ers. https://www.nccgroup.trust/us/our-research/understanding-and-
hardening-linux-containers/. ([n. d.]).

[12] Cameron Hamilton-Rich. [n. d.]. axTLS Embedded SSL. http://axtls.
sourceforge.net. ([n. d.]).

[13] Poul henning Kamp and Robert N. M. Watson. 2000. Jails: Confining
the omnipotent root. In In Proc. 2nd Intl. SANE Conference.

[14] J. Hertz. [n. d.]. Abusing Privileged and Unprivileged Linux Contain-
ers. https://www.nccgroup.trust/uk/our-research/abusing-privileged-
and-unprivileged-linux-containers/. ([n. d.]).

[15] Jon Howell, Bryan Parno, and John R. Douceur. 2013. Embassies:

Radically Refactoring the Web. In Presented as part of the 10th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 13).

USENIX, Lombard, IL, 529-545. https://www.usenix.org/conference/

nsdil3/technical-sessions/presentation/howell

Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie

Young. 2015. Mobile Edge Computing - A key technology towards 5G.

ETSI White Paper No. 11, First edition (2015).

[17] IBM. [n. d.]. Docker at insane scale on IBM Power Sys-

tems. https://www.ibm.com/blogs/bluemix/2015/11/docker-insane-

scale-on-ibm-power-systems. ([n. d.]).

IBM developerWorks Open [n. d.]. Solo5 Unikernel. https://developer.

ibm.com/open/openprojects/solo5-unikernel/. ([n. d.]).

Intel. [n. d.]. Intel Clear Containers: A Breakthrough Combination

of Speed and Workload Isolation. https://clearlinux.org/sites/default/

files/vmscontainers_wp_v5.pdf. ([n. d.]).

(6

=

—
(o)
[t

[o

[

[16

=

(18

=

(19

[

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]
[34]

[35]

[36]

SOSP 2017, Oct 28-31, Shanghai

Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
2007. KVM: the Linux Virtual Machine Monitor. In In Proc. 2007 Ottawa
Linux Symposium (OLS "07).

Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don
Marti, and Vlad Zolotarov. 2014. OSv—Optimizing the Operating Sys-
tem for Virtual Machines. In Proceedings of the 2014 USENLX Annual
Technical Conference (USENIX ATC ’14). USENIX Association, Philadel-
phia, PA, 61-72. https://www.usenix.org/conference/atc14/technical-
sessions/presentation/kivity

E. Kovacs. [n. d.]. Docker Fixes Vulnerabilities, Shares Plans For
Making Platform Safer. http://www.securityweek.com/docker-fixes-
vulnerabilities-shares- plans-making-platform-safer. ([n. d.]).

Simon Kuenzer, Anton Ivanov, Filipe Manco, Jose Mendes, Yuri
Volchkov, Florian Schmidt, Kenichi Yasukata, Michio Honda, and Fe-
lipe Huici. 2017. Unikernels Everywhere: The Case for Elastic CDNs.
In Proceedings of the 13th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments (VEE '17). ACM, New York, NY,
USA, 15-29. https://doi.org/10.1145/3050748.3050757

Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, Adin Matthew
Scannell, Philip Patchin, Stephen M. Rumble, Eyal de Lara, Michael
Brudno, and Mahadev Satyanarayanan. 2009. SnowFlock: Rapid Virtual
Machine Cloning for Cloud Computing. In Proceedings of the 4th ACM
European Conference on Computer Systems (EuroSys '09). ACM, New
York, NY, USA, 1-12. https://doi.org/10.1145/1519065.1519067
LinuxContainers.org [n. d.]. LinuxContainers.org. https://
linuxcontainers.org. ([n. d.]).

Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas
Gazagnaire, David Sheets, Dave Scott, Richard Mortier, Amir Chaudhry,
Balraj Singh, Jon Ludlam, Jon Crowcroft, and Ian Leslie. 2015. Jitsu:
Just-In-Time Summoning of Unikernels. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI °15). USENIX As-
sociation, Oakland, CA, 559-573. https://www.usenix.org/conference/
nsdil5/technical-sessions/presentation/madhavapeddy

Anil Madhavapeddy and David J. Scott. 2013. Unikernels: Rise of the
Virtual Library Operating System. Queue 11, 11, Article 30 (Dec. 2013),
15 pages. https://doi.org/10.1145/2557963.2566628

Y. Mao, J. Zhang, and K. B. Letaief. 2016. Dynamic Computation Of-
floading for Mobile-Edge Computing With Energy Harvesting Devices.
IEEE Journal on Selected Areas in Communications 34, 12 (Dec 2016),
3590-3605. https://doi.org/10.1109/JSAC.2016.2611964

Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Mi-
chio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the
Art of Network Function Virtualization. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI °14). USENIX As-
sociation, Seattle, WA, 459-473. https://www.usenix.org/conference/
nsdil4/technical-sessions/presentation/martins

McAffee. 2016. Mobile Threat Report. https://www.mcafee.com/us/
resources/reports/rp-mobile-threat-report-2016.pdf. (2016).
MicroPython [n. d.]. MicroPython. https://micropython.org/. ([n. d.]).
Microsoft. [n. d.]. Azure Container Service. https://azure.microsoft.
com/en-us/services/container-service/. ([n. d.]).

Microsoft Research. [n. d.]. Drawbridge. https://www.microsoft.com/
en-us/research/project/drawbridge/. ([n. d.]).

minios [n. d.]. Mini-OS. https://wiki.xenproject.org/wiki/Mini-OS. ([n.
d.]).

A. Mourat. [n. d.]. 5 security concerns when using Docker.
https://www.oreilly.com/ideas/five-security-concerns-when-using-
docker. ([n. d.]).

Vlad Nitu, Pierre Olivier, Alain Tchana, Daniel Chiba, Antonio Bar-
balace, Daniel Hagimont, and Binoy Ravindran. 2017. Swift Birth and
Quick Death: Enabling Fast Parallel Guest Boot and Destruction in the

https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/lambda
https://doi.org/10.1145/1165389.945462
http://www.theregister.co.uk/2014/05/23/google_containerization_two_billion/
http://www.theregister.co.uk/2014/05/23/google_containerization_two_billion/
https://doi.org/10.1145/2043556.2043575
https://www.docker.com/
https://www.docker.com/
http://dl.acm.org/citation.cfm?id=1855741.1855765
https://doi.org/10.1145/224056.224076
http://erlangonxen.org/
https://cloud.google.com/container-engine
https://www.nccgroup.trust/us/our-research/understanding-and-hardening-linux-containers/
https://www.nccgroup.trust/us/our-research/understanding-and-hardening-linux-containers/
http://axtls.sourceforge.net
http://axtls.sourceforge.net
https://www.nccgroup.trust/uk/our-research/abusing-privileged-and-unprivileged-linux-containers/
https://www.nccgroup.trust/uk/our-research/abusing-privileged-and-unprivileged-linux-containers/
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/howell
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/howell
https://www.ibm.com/blogs/bluemix/2015/11/docker-insane-scale-on-ibm-power-systems
https://www.ibm.com/blogs/bluemix/2015/11/docker-insane-scale-on-ibm-power-systems
https://developer.ibm.com/open/openprojects/solo5-unikernel/
https://developer.ibm.com/open/openprojects/solo5-unikernel/
https://clearlinux.org/sites/default/files/vmscontainers_wp_v5.pdf
https://clearlinux.org/sites/default/files/vmscontainers_wp_v5.pdf
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
http://www.securityweek.com/docker-fixes-vulnerabilities-shares-plans-making-platform-safer
http://www.securityweek.com/docker-fixes-vulnerabilities-shares-plans-making-platform-safer
https://doi.org/10.1145/3050748.3050757
https://doi.org/10.1145/1519065.1519067
https://linuxcontainers.org
https://linuxcontainers.org
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy
https://doi.org/10.1145/2557963.2566628
https://doi.org/10.1109/JSAC.2016.2611964
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
https://micropython.org/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
https://www.microsoft.com/en-us/research/project/drawbridge/
https://www.microsoft.com/en-us/research/project/drawbridge/
https://wiki.xenproject.org/wiki/Mini-OS
https://www.oreilly.com/ideas/five-security-concerns-when-using-docker
https://www.oreilly.com/ideas/five-security-concerns-when-using-docker

SOSP 2017, Oct 28-31, Shanghai

(37
(38
[39

[40

[41

[42

(43

[44

(45

(46

[47

[48

[49

(50

[51

= S S O

]

—

= =

—_ =

[l

[

[t

—

Xen Hypervisor. In Proceedings of the 13th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments (VEE ’17). ACM,
New York, NY, USA, 1-14. https://doi.org/10.1145/3050748.3050758
MAN page. [n. d.]. Linux system calls list. http://man7.org/linux/man-
pages/man2/syscalls.2.html. ([n. d.]).

Rumpkernel.org [n. d.]. Rump Kernels. http://rumpkernel.org/. ([n.
d.]).

Sandvine. [n. d.]. Internet traffic encryption. https://www.sandvine.
com/trends/encryption.html. ([n. d.]).

Mahadev Satyanarayanan, Paramvir Bahl, Ramon Caceres, and Nigel
Davies. 2009. The Case for VM-Based Cloudlets in Mobile Computing.
IEEE Pervasive Computing 8, 4 (Oct. 2009), 14-23. https://doi.org/10.
1109/MPRV.2009.82

Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Vyas Sekar. 2012. Making Middleboxes Someone
Else’s Problem: Network Processing As a Cloud Service. In Proceedings
of the ACM SIGCOMM 2012 Conference on Computer Communication
(SIGCOMM ’12). ACM, New York, NY, USA, 13-24. https://doi.org/10.
1145/2342356.2342359

Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier,
and Larry Peterson. 2007. Container-based Operating System Vir-
tualization: A Scalable, High-performance Alternative to Hypervi-
sors. SIGOPS Oper. Syst. Rev. 41, 3 (March 2007), 275-287. https:
//doi.org/10.1145/1272998.1273025

S. Stabellini. [n. d.]. Xen on ARM. http://www.slideshare.net/xen_
com_mgr/alsf13-stabellini. ([n. d.]).

Udo Steinberg and Bernhard Kauer. 2010. NOVA: A Microhypervisor-
based Secure Virtualization Architecture. In Proceedings of the 5th
European Conference on Computer Systems (EuroSys ’10). ACM, New
York, NY, USA, 209-222. https://doi.org/10.1145/1755913.1755935
A.van de Ven. [n. d.]. An introduction to Clear Containers. https:
//lwn.net/Articles/644675/. ([n. d.]).

Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak, Pradipta De, and
Ravi Kothari. 2009. Server Workload Analysis for Power Minimization
Using Consolidation. In Proceedings of the 2009 USENIX Annual Techni-
cal Conference (USENIX ATC ’09). USENIX Association, Berkeley, CA,
USA, 28-28. http://dl.acm.org/citation.cfm?id=1855807.1855835
VMWare. [n. d.]. vSphere ESXi Bare-Metal Hypervisor. http://www.
vmware.com/products/esxi-and-esx.html. ([n. d.]).

Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft,
Alex C. Snoeren, Geoffrey M. Voelker, and Stefan Savage. 2005. Scal-
ability, Fidelity, and Containment in the Potemkin Virtual Honey-
farm. SIGOPS Oper. Syst. Rev. 39, 5 (Oct. 2005), 148-162. https:
//doi.org/10.1145/1095809.1095825

Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. 2002. Scale
and Performance in the Denali Isolation Kernel. SIGOPS Oper. Syst.
Rev. 36, SI (Dec. 2002), 195-209. https://doi.org/10.1145/844128.844147
Dan Williams and Ricardo Koller. 2016. Unikernel Monitors: Extend-
ing Minimalism Outside of the Box. In 8th USENLX Workshop on Hot
Topics in Cloud Computing (HotCloud ’16). USENIX Association, Den-
ver, CO. https://www.usenix.org/conference/hotcloud16/workshop-
program/presentation/williams

Wei Zhang, Jinho Hwang, Shriram Rajagopalan, K.K. Ramakrish-
nan, and Timothy Wood. 2016. Flurries: Countless Fine-Grained
NFs for Flexible Per-Flow Customization. In Proceedings of the 12th
International on Conference on Emerging Networking EXperiments
and Technologies (CoNEXT ’16). ACM, New York, NY, USA, 3-17.
https://doi.org/10.1145/2999572.2999602

Manco et al.

https://doi.org/10.1145/3050748.3050758
http://man7.org/linux/man-pages/man2/syscalls.2.html
http://man7.org/linux/man-pages/man2/syscalls.2.html
http://rumpkernel.org/
https://www.sandvine.com/trends/encryption.html
https://www.sandvine.com/trends/encryption.html
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1145/2342356.2342359
https://doi.org/10.1145/2342356.2342359
https://doi.org/10.1145/1272998.1273025
https://doi.org/10.1145/1272998.1273025
http://www.slideshare.net/xen_com_mgr/alsf13-stabellini
http://www.slideshare.net/xen_com_mgr/alsf13-stabellini
https://doi.org/10.1145/1755913.1755935
https://lwn.net/Articles/644675/
https://lwn.net/Articles/644675/
http://dl.acm.org/citation.cfm?id=1855807.1855835
http://www.vmware.com/products/esxi-and-esx.html
http://www.vmware.com/products/esxi-and-esx.html
https://doi.org/10.1145/1095809.1095825
https://doi.org/10.1145/1095809.1095825
https://doi.org/10.1145/844128.844147
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://doi.org/10.1145/2999572.2999602

	Abstract
	1 Introduction
	2 Requirements
	3 Lightweight VMs
	3.1 Unikernels
	3.2 Tinyx

	4 Virtualization Today
	4.1 Short Xen Primer
	4.2 Overhead Investigation

	5 LightVM
	5.1 Noxs (no XenStore) and the Chaos Toolstack
	5.2 Split Toolstack
	5.3 Replacing the Hotplug Script: xendevd

	6 Evaluation
	6.1 Instantiation Times
	6.2 Checkpointing and Migration
	6.3 Memory Footprint
	6.4 CPU Usage

	7 Use Cases
	7.1 Personal Firewalls
	7.2 Just-in-Time Service Instantiation
	7.3 High Density TLS Termination
	7.4 Lightweight Compute Service

	8 Related Work
	9 Discussion and Open Issues
	10 Conclusions
	Acknowledgments
	References

