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1. INTRODUCTION
Multipath TCP (MPTCP) is a drop-in replacement for TCP

that can use multiple paths in a single transport connection
to improve reliability and throughput. MPTCP has been re-
cently standardized [4] and shown to offer throughput im-
provement in datacenter networks [12], wide-area transfers
and for mobile clients. Recently, Multipath TCP adoption is
gaining pace: it has been deployed by Apple on all IOS de-
vices and Samsung (initially in Korea), as well as by OVH
and Swisscom to bond DSL and LTE links.

The key ingredient of Multipath TCP is the congestion
control algorithm [17] that aims to efficiently allocate net-
work resources across different multipath flows. To achieve
this goal, all multipath congestion controllers prefer less con-
gested links: traffic sent via lossy paths will be reduced to a
minimum (in theory) as long as there are less congested al-
ternative paths. This enables MPTCP to get near-optimal
throughput in network topologies with non-equal cost paths
between endpoints, such as the BCube [5] or Jellyfish [15]
datacenter network topologies and most operator networks.

MPTCP assumes the loss signal it receives from the net-
work is an indication of congestion. In this paper we ask
whether network operators can “game” the loss signal to
convince multipath traffic crossing their network to travel
on alternative paths. Doing so would reduce the amount
of MPTCP traffic network operators carry, reducing their
costs. Creating artifical loss to fool MPTCP is not trivial:
the operator must take care not to penalize TCP traffic or
MPTCP traffic that does not have good alternative paths,
while obbeying net-neutrality requirements.

We show that the MPTCP congestion controller can be
gamed with a technique we call policy drop. Policy drop
adds artificial loss to all TCP and MPTCP traffic based on
the client’s access link speed and the connection RTT, and
is thus net-neutral according to the current legislation. We
have implemented policy drop both in simulation and in the
Click modular router. Our experiments show that policy
drop has no effect on the throughput of TCP or single-path
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MPTCP traffic, and significantly reduces its buffering delay
for low-RTT connections. Policy drop is very effective for
MPTCP traffic: when the client has two access links of the
same speed and one enables policy drop, traffic on that link
is reduced by 60%-80%.

In the second part of our paper we rely on game theory to
understand the effect policy drop might have on the Internet
ecosystem. Our findings indicate that there are economic
advantages for operators that embrace policy drop, which
could lead to this mechanism being used in practice.

As with other operator traffic engineering approaches, pol-
icy drop is highly controversial. While operators may view
it as a useful tool to manage their traffic, users will be up-
set if policy drop is applied without prior consent, despite
the fact that it is net-neutral. Beyond unveiling policy drop,
this paper does not advocate for its deployment: it simply
tries to understand whether it might work and whether there
are economic incentives for people to use it. We also briefly
discuss how users could detect or circumvent policy drop.

2. MULTIPATH CONGESTION CONTROL
Multipath congestion control aims to efficiently allocate

resources in a network where connections span multiple paths.
The stated goals for the Multipath TCP congestion controller
are: a) do not harm existing TCP traffic, b) achieve at least
as much throughput as TCP on the best path available to
MPTCP and c) use efficient paths [17]. The starting point of
all practical multipath congestion control algorithms is the
theoretical work by Kelly and Voice that have proposed a
class of congestion control algorithms where senders regu-
late the transmission rates based only on loss information
received from the network[6].

The key idea behind the Kelly Voice algorithm is that senders
send most traffic on the paths with lowest loss rates, and
only probe other paths; this is reflected by the goal to use
efficient paths. Based on the Kelly Voice ideas, a flurry of
congestion control algorithms have been proposed for use
with Multipath TCP: LIA [17], OLIA [7] or BALIA [11],
to name only the most important ones. All these algorithms
prefer paths with the lowest congestion, but also aim to en-
sure that MPTCP never receives less throughput than single
path TCP on the same path. This goal is achieved by esti-
mating the throughput TCP would receive on one path and
ensuring that MPTCP achieves at least that in aggregate.

To understand how Multipath TCP congestion control works
in practice, the example in Figure 1 shows a client with two
10Mbps DSL links from different providers. The client uses
MPTCP to download data from a server. We run an exper-
iment where we vary the number of competing TCP flows
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ISP	  1	  10	  Mbps	  

ISP	  2	  10	  Mbps	  

TCP	  

MPTCP	  

…	  …	  

Figure 1: Resouce pooling example for
MPTCP congestion control.
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Figure 2: MPTCP congestion controller
pulls traffic away from congested paths
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Figure 3: Policy drop effect on loss rates
perceived by the client

at provider B and plot the total throughput achieved by the
MPTCP connection when using the standardized Linked In-
creases congestion controller, or when using independent
NewReno congestion control on each path. The results show
that LIA utilizes both links when there is no competing traf-
fic and achieves 20Mbps; when there is congestion, LIA
shifts traffic away from the congested link responding to
congestion much more severely than NewReno: the more
congestion there is at provider B, the less traffic is sent there
by the MPTCP customer.

This implies that provider B could intentionally underpro-
vision its network and shift MPTCP traffic to provider A;
indeed, this was one of the main concerns expressed by net-
work operators when first presented with the MPTCP con-
cept. It turns out these concerns are unfounded in practice:
MPTCP adoption is gradual, and most traffic is still TCP,
so underprovisioning would first affect the TCP users and
drive them away from the operator. Secondly, congestion in
the core network is seen as a sign of bad network planning:
it generates crippling delays to all users and degrades cus-
tomer satisfaction. Moreover, in the wide majority of access
networks, congestion in not in the shared part of the network,
but at the user access links (e.g. at the BRAS for DSL net-
works). In conclusion, our MPTCP customer would receive
20Mbps of throughput from most network operators today.

3. POLICY DROP
Network operators can’t afford to underprovision their net-

works to convince Multipath TCP traffic to move to other
networks, but we observe that they can achieve the same goal
by using policy drop: explicitly dropping a fraction of Multi-
path TCP traffic. Policy drop will increase the loss rate seen
by MPTCP subflows crossing a provider’s network, tricking
the MPTCP sender to shift traffic to other paths if these are
available. Deploying policy drop must: not affect the per-
formance of TCP or single-path MPTCP traffic, ensure that
MPTCP always gets at least as much aggregate throughput
as TCP on the best of its paths and be net-neutral.

The naive approach is to deploy a middlebox that scans
for MPTCP traffic by examining options in TCP packets and
drops some fixed fraction of them, e.g. 5%. It is obvious that
this have the desired effect for MPTCP flows where other
subflows exist that can carry traffic such as in Fig. 1, but it
will not meet the requirements above:
• When an MPTCP connection only has a single subflow its

rate will be drastically affected by 5% drop rate.
• When the alternative paths have low throughput, the user

will get less than TCP on the best path.
• It discriminates MPTCP traffic and is thus not net-neutral.

To make policy drop deployable, the main goal is to ensure
that the MPTCP sender can accurately infer the throughput
single path TCP would get on the path, despite the fact that
we are dropping a fraction of packets. To achieve this goal,
we apply a different a drop rate per source-destination pair
in a way that ensures base TCP throughput is not affected.

Assume that the bottleneck link in any connection is the
client’s access link with bandwidth B. In principle, any
long-running TCP connection to/from any destination in the
Internet will fully utilize the link and achieve throughput B.
We can use the well known TCP throughput formula to es-
timate the loss rate of such a TCP connection as a function
of B and RTT : B = MSS

RTT

√
8
3p . This estimate assumes the

bottleneck buffer equals the bandwidth delay product of the
TCP connection, but real buffers are in practice much larger
to accomodate a wide range of RTTs: as B is constant, when
RTTs are higher the loss rates will be lower.

It follows that the highest possible policy drop rate δ that
does not affect TCP throughput is the one computed from
the formula above, where the RTT is smallest: δ = p, where
p is derived from the equation above. Thus, δ = 3MSS2

8B2RTT 2 .
The network operator can readily compute δ: it knows B
since it is policy dropping one of its clients’ traffic and can
estimate the RTT with small overhead.

To better understand the effect of policy drop, we show in
Figure 3 the loss rate experienced by the client as a function
of offered load on the path. In a standard network loss rate
will be zero as long as the offered load is smaller than the
available capacity (10Mbps in this example), and TCP will
increase its window until it fills the pipe and creates a small
amount of loss (1% loss rate in this example). Policy drop
will drop 1% of all packets regardless of the offered load.

Policy drop should not affect regular TCP clients, as they
are “wired” to obtain 10Mbps throughput for the specified
loss rate. However, MPTCP clients that have alternative
paths will observe the higher loss rate and pull traffic away
from this path as long as the loss rate on the alternative path
is smaller. We study these hypotheses next.
Simulation study of policy drop. We have implemented
policy drop in the htsim simulator [17] and ran simulations
to understand the effects it has on client throughput in a wide
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(a) Total client throughput

 0
 2.5

 5
 7.5
 10

 12.5
 15

 17.5
 20

 10  20  30  40  50  60  70  80  90  100

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

Round trip time (ms)

No policy drop
Provider 1 drops

Both providers drop

(b) Throughput obtained from Provider 1
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Figure 4: Effect of RTT on the efficiency of policy drop.

range of scenarios. In all our experiments the client is dual-
homed and the bottlenecks are the client access links.

Consider the case when the two access links have the same
speed (10Mbps) and assume that the bottleneck buffers are
provisioned for Internet-wide RTTs (200ms). The policy
drop rate depends on the connection RTT: smaller RTTs re-
sult in higher policy drop loss rates. To understand how
good policy drop is in forcing traffic away from provider 1,
we vary the connection RTT from 10 to 100ms and measure
the throughput for three scenarios: when no provider drops,
when provider 1 alone drops, and when both providers drop.

We first examined the behaviour of TCP traffic 1 in this
scenario: TCP throughput is the same with or without pol-
icy drop. However, policy drop has a beneficial effect on
the RTT, decreasing the average RTT from 150ms to 35ms.
This is because policy drop reduces the sender congestion
window to the minimum required to keep the access link
utilized. In contrast, TCP without policy drop will period-
ically fill the 200ms access link queue. Our experiments
also show that Multipath TCP traffic running uncoupled con-
gestion control (i.e. independent NewReno on each sub-
flow) behaves similary to single path TCP: on each subflow
throughput is unaffected and the RTT is reduced.

The behaviour of the Linked Increases algorithm is more
interesting, and the results are given in Fig.4. First, notice
that the total client throuhgput is lower than 20Mbps when
policy is applied, but it is always greater than 10Mbps in all
experiments, which means that the policy drop achieves its
target of not breaking the MPTCP “do no worse than TCP”
contract. When provider 1 uses policy drop alone, it gets a
massive reduction in the traffic it carries for its client: 80%
for small RTTs and around 50% for larger RTTs. When both
providers shape, both reduce their traffic by 20%-30%.

Next, we wish to understand what happens when the speeds
of the two access links are different. We fix the RTT at
20ms and the first access link speed at 10Mbps; provider 1
drops. We then vary the speed of the second access link from
1Mbps to 160Mbps, measuring the amount of traffic savings
at Provider 1 in Fig. 5. The results show that little savings
can be had when the speed of link 2 is small (1-5Mbps): this
is because the loss rate on small links will be comparatively
large, and the loss induced on link 1 is not enough to make
the MPTCP congestion controller pull traffic away. In com-
parison, when the second link is at least twice faster than the

1The behaviour is the same for MPTCP with single subflow

policy drop link, its loss rate will be much lower, and policy
drop will make 90% of traffic leave the first access link.

All the experiments so far were run with perfect RTT in-
formation. To understand how sensitive policy drop is to
RTT estimation errors, we vary the RTT used when comput-
ing the policy drop ratio (estimated RTT). We use a 20ms
base RTT and 10Mbps links, and only show the effects at
Provider 1 using policy drop in Figure 6. The figure shows
that underestimating the baseline RTT (i.e. propagation de-
lay) decreases regular TCP throughput, though not drasti-
cally: a 12ms estimated RTT reduces TCP throughput by
20%. Over-estimating the RTT decreases the traffic offload-
ing benefits of policy drop for MPTCP traffic. With a 25%
overestimation, only 50% of the traffic is pushed away, and
a 50% overestimation only achieves a 10% traffic reduction.

Finally, we also explored what happens when the access
link is not the bottleneck, and the bottleneck is the provider
uplink to the core network. In our scenario a 1Gbps access
link is shared shared between 100 to 500 customers, each
with 10Mbps access links. Each client runs one TCP con-
nection with a 20ms RTT, and only one client is subject to
policy drop. In Figure 7 we plot the throughput obtained by
the policy dropped client as a fraction of the other clients’
throughput. The results show that policy drop has almost no
effect on TCP traffic when the core link is not bottlenecked;
when we load the link the throughput of the customer subject
to policy drop is reduced by 10% to 20%.
Implementation. We have implemented policy drop as a
Click modular router element [8]. Our implementation does
not hold per-flow state, and treats each packet independently.
Our element relies on two in-memory arrays that store:
• Customer link speed information, with one 1B per cus-

tomer. We assume the provider has 1 million customers
so the total table is 1MB in size.
• RTT estimation information. We store a single RTT esti-

mate per /24 IP prefix, resulting in 16 million entries. The
RTT map aims to capture underlying base RTTs to differ-
ent destinations, and thus changes rarely. Our policy drop
element takes it as input.
When a packet from the Internet to the local network ar-

rives, our code uses the destination address to directly index
the link speed array, finding the client’s access speed, and
uses the most significant 24 bits of the source address to get
an RTT estimate from the RTT array. Using this informa-
tion, the policy drop probability is computed for this con-
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Figure 5: Provider 1 can shift more traffic
if Provider 2 access link is faster
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crease TCP throughput or reduce policy
drop gains.
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Figure 7: Policy drop has little effect on
TCP when bottlenecks reside om provider
uplinks.

nection and a random decision is made whether to drop this
packet or not. Our implementation only drops data packets;
it never drops TCP handshake messages to avoid the result-
ing lengthy timeouts and their associated impact on applica-
tion performance. When the transport is ECN-enabled, the
packets are marked instead with the CE codepoint.

The RTT information can be estimated offline and sup-
plied to the policy drop module. The simplest option is to
actively sample a fraction of client-to-Internet packets, store
them in a map and compute the RTT when the corresponding
ACK packets arrive. In our experiments, we manually filled
the RTT map according to the experiment we were running;
we plan to implement the adaptive version and to perform
Internet-wide measurements in the future.

We deployed our prototype in a local cluster on three 6-
core Intel Xeon machines with 8GB of RAM running Linux
3.36 kernel patched with MPTCP version 0.88. One host
acts as the client, one as the policy-drop router and one as
the server. The client and server boxes can communicate via
two paths, one that passes the policy drop router and one that
avoids it. We used dummynet to shape traffic. In all our ex-
periments we use NewReno congestion control at endpoints
(instead of Cubic) for TCP traffic, and the LIA congestion
control algorithm for MPTCP traffic.

Our experiments targeted two aspects: first, we re-ran se-
tups from simulation and cross-checked the results, finding
that the simulator and experimental results matched. Next,
we measured the throughput of our Click implementation
running over netmap[13], to understand how expensive pol-
icy drop is to deploy in practice. We generated different-
sized packets with the pktgen tool. The table below shows
the throughput of policy drop and contrasts it to simple Click
forwarding on the same machine. The results show that pol-
icy drop can forward almost 10Mpps on two cores, and that
it reaches 10Gbps line-rate with 128B packets.

Packet size 64B 128B
CPU Cores 1 2 1 2
Forwarding 8.5Mpps 13.2Mpps 8.2Mpps 8.2Mpps

5.7Gbps 8.87Gbps 10Gbps 10Gbps
Policy drop 6.8Mpps 9.5Mpps 6.8Mpps 8.2Mpps

4.57Gbps 6.38Gbps 8.2Gbps 10Gbps

4. POLICY DROP IMPLICATIONS
Our performance analysis shows that policy drop is effec-

tive at pushing MPTCP traffic away when there are alterna-

tives, and that a single box can sustain almost 40Gbps of
throughput per box. In this section we wish to understand
whether Internet providers will deploy policy drop, assum-
ing they make rational choices based on their expected profit.
For policy drop to be used, the traffic reduction it provides
must be greater than the cost of the policy-drop machines.

The cost of servers for policy drop grows linearly with the
amount of traffic that is processed. If policy drop is effective,
total operator traffic will decrease by as much as 80%; hard-
ware is only needed to handle the remaining traffic. If no
traffic reduction is achieved, then the hardware would have
to handle all traffic and would cost significantly more. We
thus expect the attractiveness of policy drop to depend on the
amount of MPTCP traffic that can be shifted.

We rely on game-theory to understand whether operators
will use policy drop or not, and under what circumstances.
Preliminaries. In our model, n providers interact with m
clients. Each provider i offers a single fixed xi Mbps sub-
scription and each client has a type TCP or MPTCP, with a
preference for low or high bandwidth. A provider’s decision
to policy drop traffic is δi ∈ {0, 1}. δ = (δ1, . . . , δn) is a set
of actions - one for each provider. An action for client j is
qj = (q1j , . . . , qnj), where qij ∈ {0, 1} is client j’s option
for provider i. Q = (q1, . . . , qm) is a set of actions - one for
each client. We start by introducing our utility model.
The client utility trades off price and throughput. Internet
subscription prices are strongly correlated with the provider
costs of carrying client traffic to the Internet. To keep our
model simple, we assume that subscription prices only de-
pend on the providers’ transit cost and the cost of purchasing
servers to run policy drop. We analyzed real ISP subscrip-
tion prices [1] as well as transit costs reported in [2], and
chose γ ·

√
x as a model for the transit cost supported by

any provider carrying x Mbps to the Internet2. We estimate
policy dropping costs at 1 eurocent/Mbps/month.

MPTCP clients select at least two providers to ensure high
availability; TCP clients select a single provider as they do
today. Let us first look at the utility of a MPTCP client which
selects subscriptions x1 and x2 of two no-dropping ISPs:

βj · log(1 + x1 + x2)− γ(
√
x1 +

√
x2)

The expression βj · log(1 + x1 + x2) measures the payoff
from the combined throughput x1 + x2 — a client with a

2With γ selected as to best fit the romanian transit costs from [1]



higher βj will prefer higher-bandwidth subscriptions. The
expression γ(

√
x1 +

√
x2) is the price of the subscriptions.

Note that the utility function is concave w.r.t. throughtput.
We now move to a more general setting where ISPs have

made dropping decisions δ and clients made provider selec-
tions Q. The throughput of a TCP client will allways be
equal to the subscription he acquired. For MPTCP clients,
the throughput is thj(Q, δ) =

∑
reali(δ) i.e. the sum of

the actual throughput received from each provider i, as in-
fluenced by policy drop.

The table below illustrates all possible values real1(δ) and
real2(δ) for any two providers (denoted here as 1 and 2)
selected by the same MPTCP client3. We assume w.l.o.g
that subscription x1 ≥ x2. For simplicity of analysis, the
values below assume an ideal MPTCP congestion controller
that pushes all traffic away from the congested link, with the
exception of negligible probing traffic4.

δ1 δ2 thj(Q, δ) real1(δ) real2(δ)
0 0 x1 + x2 x1 x2
1 0 x1 x1 − x2 x2
0 1 x1 x1 0
1 1 x1 x1

x2

x1+x2
x1

x1

x1+x2

The subscription prices are also influenced by policy drop
— we assume an idealised provider model where charging
is done on the actual carried traffic and not on the declared
subscription size. Hence, priceij(Q, δ) is the cost of the real
traffic transited by provider i divided by the number of i’s
clients, including policy dropping costs:

priceij(Q, δ) =
γ
√∑

1≤j≤m reali(δ) · qij∑
1≤j≤m qij

+δidropcosti (1)

The expression δi · dropcosti models the dropping cost
(when it occurs) and is linear in the carried traffic.

We are now ready to combine the throughput and price
expressions into a unified, type-independent client utility:

Uj(δ,Q) = βj · log(1 + thj(Q, δ))−
∑

pricei,j(Q, δ)

4.1 The game
While it is clear that providers have a strong incentive to

policy-drop in order to reduce costs, we would like to see
if ISPs can use dropping to offer more attractive client sub-
scriptions, instead of securing some unilateral benefit.

We analyse the state of an idealised ISP market at equi-
librium. To this end, we use the strategic game model [10,
Chapter 2.1.] — where, similarly to the rock-paper-scissors
game, actions are played simultaneously. In an equilibrium
of such a game, no individual player can unilaterally im-
prove his utility, if the actions of all other players are fixed5.

3The throughput expressions can easily be lifted to the case when
k out of n > k providers policy drop
4our LIA experiments show that probing on higher loss paths is
15% even in the best case; other congestion controllers probe less
5This corresponds to the Nash Equilibrium of a strategic game, c.f.
[10, Chapter 2.1.]

We take a few basic assumptions: clients and providers
are only affected by subscription sizes and dropping; they
are rational and self-interested — they behave in such a way
as to maximise utility. Moreover, ISPs know the client util-
ity model and exploit this knowledge when deciding to pol-
icy drop. To capture this, we use a Stackelberg game [16]
consisting of two stages (or two strategic sub-games): ISPs
make the first move by deciding whether to use policy drop
and clients respond by chosing the best ISPs.

We start with the client stage. Suppose ISPs have already
made the dropping decisions δ. A best-response Q∗ of the
clients is a Nash Equilibrium dependent on δ. Since such a
response need not be unique, let NE(δ) designate the set of
equilibria induced by δ.

We turn to the provider stage. ISPs know that clients will
always reply with a best-response. We take this into account
when formulating the provider utility µi(δ) =

∑
Q∗ si(Q∗)

|NE(δ)| ,
where si(Q) = 1 if provider i is selected in Q, and 0 —
otherwise. Providers count the equilibria in which they have
clients and divide the amount by the total number of equilib-
ria. Thus, µi(δ) is the probability that provider i is selected
by some client j, if each Nash Equilibrium Q∗ ∈ NE(δ) is
equally likely. The equilibrium δ∗ of the provider stage is a
subgame-perfect equilibrium (SPE) [10].

4.2 Results
We compute SPE for a range of scenarios, and examine the

best client move for each such equilibrium. As determining
SPE is computationally hard [9] our experiments are limited
to games with a small number of clients and providers.

We consider subscriptions of 3, 10 and 100 Mbps. We
refer to 3 and 10 Mbps providers as low-bandwidth and to
those of 100 Mbps as high-bandwidth. A clients’ type is x-y
where x ∈ {TCP,MPTCP} and y ∈ {low, high} (different
β in the utility function).

In a TCP game with one TCP-low client, one 3, 10 Mbps
subscriptions and two 100 Mbps subscriptions we observe
— as expected — that policy drop is not a good choice.
MPTCP with uniform subscriptions. To observe the ef-
fects of dropping, we compute SPE for the game Gdrop, with
four identical 10 Mbps providers and two MPTCP-lo clients.
We illustrate the best client move as a m × n matrix where
lines represent clients, rows represent providers and each
cell i, j represents clients’ i option for provider j. The four
equilibria δx, x ∈ {a, b, c, d} are shown in Fig. 8.

In each SPE, one provider is better off not dropping and
will always be selected by all clients. Each of the other three
providers are better off dropping. They offer almost-zero
bandwidth for an almost-zero cost. Since our subscription
price function p is concave, the price for a bigger subscrip-
tion x1 + x2 is allways smaller than that of any combina-
tion of smaller subscriptions x1 and x2. To maximise util-
ity, clients choose the subscription closest to their bandwidth
needs and the cheapest subscription available as backup.

Intuitively, p(x2) is an availability cost which MPTCP



δa = (0, 1, 1, 1)

δb = (1, 0, 1, 1)

δc = (1, 1, 0, 1)

δd = (1, 1, 1, 0)

δa = ( 0 , 1 , 1 , 1 )

Q1
a =

(
1 0 1 0
1 0 0 1

)

Figure 8: SPE of Gdrop and the best client response to δa

clients are happy to pay. For instance, in Q1
a (Fig. 8 - right),

both clients receive 0 + 10Mbps throughput; 10 Mbps is re-
ceived from the no dropping provider (the first one), and 0
Mbps — from the dropping provider (in Q1

a, the third and
forth provider). Any policy dropping provider has equal
chances of being selected by some client. There are 9 pos-
sible best-moves for the client for each δx, and each drop-
ping provider will be selected in 5 such moves, yeilding a
selection probability of ≈ 0.55. If a provider would try to
compete with the no dropping provider — hence change his
action to “no dropping” — he would have only 0.5 probabil-
ity of being selected. This shows why each δx is stable.

How do these observations scale to large Internet markets?
Suppose a new ISP would like to enter a market with uniform
subscriptions havingm potential clients. The new ISP has to
decide whether to compete with the no dropping or the drop-
ping providers from the market. Our experiment shows that,
if at least one no dropping provider exists, then the rational
decision for the new ISP is to perform dropping6.
Heterogeneous MPTCP clients. We now move to the game
Gmdrop, where clients are no longer identical. We have one
MPTCP-lo and one MPTCP-hi client. There are one 3, 10
and two 100 Mbps subscriptions. We use two 100 Mbps
ISPs instead of one to observe their competitive behaviour.

We obtain three SPE δe = (0, 0, 0, 0), δf = (1, 1, 0, 0)
and δg = (0, 0, 1, 1). In the first, the MPTCP-lo client se-
lects the 3 and 10 Mbps subscriptions, while the MPTCP-hi
client selects the 3 and 100 Mbps subscriptions. This is the
best outcome for the low-band providers as both get selected.

If any low-band provider would policy drop to reduce costs,
it would force the MPTCP-lo client to select him (for al-
most 0 cost) and the 100 Mbps provider. This outcome
is not stable as it would force the other low-subscription
provider to behave in the same way in order to be competi-
tive. This is reflected by the equilibrium δf . Here, surpris-
ingly, the high-bandwith providers do not drop. If one did
policy drop, it would greatly increase the price of the asso-
ciated low bandwidth subscription, resulting in higher total
price for the client.

The SPEs δf , δg depend on subscriptions and client values
βj , thus it is hard to generalise this result directly. However,
dropping as a means to offer cheap subscriptions remains a
viable ISP move irrespective of the market setting.
From TCP to MPTCP. Our analysis shows that policy drop
makes no sense when traffic is TCP, and is desirable when all

6For n dropping providers there are m(n− 1) outcomes where the
ISP is not selected, out of nm possibilities. The probability that the
ISP is not selected is ≈ m

nm−1 → 0 for large m.

traffic is MPTCP. The natural question is how much MPTCP
traffic must there be until it makes sense to use policy drop?

To answer this question, we consider that a percentage p
of the clients’ traffic is MPTCP while the rest is TCP and
compute a threshold condition at which policy drop becomes
attractive to providers. We find that, for a provider to policy
drop when the amount of MPTCP traffic is low it must offer
a low bandwidth subscription. We omit details for brevity.

5. RELATED WORK
Previous work has explored whether network operators

can glean more information about the aggregate MPTCP con-
nection just by looking at one subflow [14]. The work also
exploits the resource pooling behaviour, albeit in a passive
way, to determine which subflows are part of MPTCP con-
nections with multiple subflows, and estimate how good those
subflows are. The detection method is intended for offline
analysis because it is very expensive computationally as it
requires maintenance of per-flow state. Our approach does
not try to detect alternative subflows; instead, it applies pol-
icy drop to all traffic, and only the traffic that has alternative
paths will move away.

6. DISCUSSION
Policy drop is a technique that tricks MPTCP traffic to take

another path and is a simple way for network operators to re-
duce the traffic they carry. it is likely that there will be takers
for this technology, if one only looks at the huge market in
DPI, application optimization and other network functions,
including the recent push towards NFV. Since policy drop is
applied to all traffic, it obbeys US net neutrality laws. Fur-
thermore, our economic incentive analysis shows that clients
might actually prefer a cheap second link for availability pur-
poses, even if they know the provider uses policy drop.
Circumvention. Can endpoints avoid policy drop? It is cer-
tainly possible to detect it, and perhaps blow the whistle on
policy dropping operators. If clients actively monitor their
loss rate and their received throughput, they can obtain re-
sults similar to Figure 3. Detecting policy drop is trivial be-
cause there is a significant loss rate even at low throughputs.

Policy drop can be neutralized if endpoints simply give up
on multipath congestion control altogether, and run indepen-
dent congestion control on each path instead. If this were the
case, policy dropping providers would incur the high cost of
policy drop equipment and not see any bennefit in traffic re-
duction. This could be used as a “stick” by users to convince
providers against policy drop.

The trouble with changing the congestion controller is twofold.
First, the servers are running the congestion control algo-
rithms for downlink traffic and the clients have no control
over it. Secondly, this also nullifies all the resource pooling
benefits of Multipath TCP that benefit not only networks but
users alike. Previous work has shown these benefits in the
context of datacenters [12] and to achieve smooth handovers
in dense Wifi networks [3].
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