
Enabling Fast, Dynamic Network Processing with ClickOS

Joao Martins†, Mohamed Ahmed†, Costin Raiciu‡, Felipe Huici†

† NEC Europe Ltd. ‡ University Politehnica of Bucharest

firstname.lastname@neclab.eu, costin.raiciu@cs.pub.ro

ABSTRACT
Middleboxes are both crucial to today’s networks and ubiq-
uitous, but embed knowledge of today’s protocols and appli-
cations to the detriment of those of tomorrow, making the
network harder to evolve. SDNs seek to make it easier to
extend the network with new functionality, but most of the
research effort has focused on the network’s control plane,
that is, how packets are switched are routed through a SDN.

Given the pervasiveness and importance of middleboxes,
we believe that a fully programmable network should also be
able to dynamically instantiate and quickly move middlebox
functionality. In this paper we shift focus towards making
the data plane more programmable by introducing ClickOS,
a tiny, Xen-based virtual machine that can run a wide range
of middleboxes. ClickOS is small (5MB when running), can
be instantiated in very small times (roughly 30 milliseconds)
and can fill up a 10Gb pipe while concurrently running 128
vms on a low-cost commodity server.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Communications Management

General Terms
Performance

Keywords
Virtualization, Xen, middleboxes, SDN, NFV, ClickOS

1. INTRODUCTION
We are witnessing a revival of Internet architecture re-

search that leverages software defined networking (SDN) to
overcome the limitations of the current network, the biggest
of which is ossification. To create an evolvable network, SDN
proposes centralization of the control plane and commodi-
tization of the data plane, thus removing the long-standing
“you can’t touch the core” deployment barrier. By creat-
ing an easily changeable software control plane, SDN allows

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotSDN’13, August 16, 2013, Hong Kong, China.
Copyright 20XX ACM 978-1-4503-2178-5/13/08 ...$15.00.

flexible packet switching and routing, promising to acceler-
ate the adoption of new Internet protocols (e.g., IPv6) or
changes to existing ones.

Unfortunately, changing the way packets are switched may
not be enough to evolve the Internet: there is a lot more
functionality embedded in the network today—in the form
of middleboxes—that also needs updating. Middleboxes are
crucial to today’s operational networks, performing a diverse
set of functions ranging from security (firewalls, IDSes, traf-
fic scrubbers), traffic shaping (rate limiters, load balancers),
dealing with address space exhaustion (NATs) or improv-
ing the performance of network applications (traffic accel-
erators, caches, proxies). Middleboxes are almost ubiqui-
tous: one recent study [6] found that a third of access net-
works maintain TCP connection state, performing various
flow processing functionality. Another study of enterprise
networks concludes that there are as many middleboxes de-
ployed in networks as routers and switches [23].

Given the pervasiveness and importance of middleboxes,
an evolvable Internet must be able to dynamically instanti-
ate, upgrade and quickly shift middlebox functionality. In
this paper we switch focus towards making the data plane
of SDNs more programmable, that is, the actual processing
that packets go through as they pass through networks.

Middleboxes are, for the most part, costly, purpose-built
hardware devices that are difficult to configure or upgrade,
much like routers. The obvious solution to evolvable middle-
boxes is to instantiate them as software on commodity hard-
ware, perhaps in the cloud [26, 23]. For cost-effectiveness
and scalability reasons, software middleboxes will run inside
virtual machines, allowing them to be consolidated on a sin-
gle physical machine when traffic is low, and migrated to
idle machines when traffic ramps up.

What is the right programming interface for software mid-
dleboxes? Before we jump to an answer, let’s consider the
requirements of a good solution:

• Fast instantiation: the system should be able to
instantiate middlebox processing quickly and where
needed, in order to match (possibly rapidly) changing
SDNs.
• Small Footprint: ideally the system should be able

to host a large number of middleboxes on the same
server in order to reduce purchasing and operational
costs.
• Isolation: in a world where slices of networks are

given to different entities and users, it becomes increas-
ingly important that users’ middleboxes that happen

to run on common hardware do not affect each other,
both from a security and performance point of view.
• Performance: in order to have a chance at competing

with hardware offerings, the system should provide a
high-performance data plane, including driver support
for the latest network devices.
• Flexibility: the system should be able to easily per-

form a wide range of middlebox functionality and be
extensible.

The default solution is to run middleboxes inside Linux
VMs (or other commodity OSes). This solution provides iso-
lation and performance, but has a large memory footprint
and relatively slow instantiation times (roughly 5 seconds
in some of our Linux-based tests). Typically, such software
middleboxes are developed using general purpose program-
ming languages, e.g. C or python.

Can we do better? We observe that middlebox process-
ing is not general purpose computation: it works at packet-
level and applies a relatively small menu of changes to pack-
ets. The Click modular router [8] is a good way to program
middlebox functionality: users can combine existing stock
elements or write new ones to quickly create complex pro-
cessing configurations. To date, a wide range of networking
processing has been implemented in Click [3].

Click offers flexibility and performance—but it lacks iso-
lation, and has a large memory footprint as it runs in the
Linux kernel. The coupling of Click with the Linux kernel
is not fundamental: we propose to break it and run Click as
a standalone virtual machine.

In this paper we introduce ClickOS, a Xen-based tiny vir-
tual machine that runs Click. Through optimizations to the
virtual machine itself and Xen’s underlying networking sys-
tem, ClickOS achieves the criteria above: it can be quickly
instantiated (boot times are in the ballpark of as little as
30 milliseconds), it has a small footprint (the compressed
image is 1.4MB and 5MB when running), and can process
a 10Gb pipe worth of traffic. In addition, it benefits from
the inherent isolation provided by Xen and the flexibility
afforded by the Click modular software.

The rest of this paper is dedicated to explaining ClickOS
and providing a performance evaluation of it. It is organized
as follows. Section 2 gives an overview of ClickOS. Sec-
tion 3 presents results concerning ClickOS’ fast boot times
and small footprint, as well as an evaluation of the system’s
data plane performance. Section 4 discusses related work.
Finally, section 5 discusses the wider implications of ClickOS
on middlebox processing.

2. CLICKOS ARCHITECTURE
We use Xen to create a scalable and easily programmable

architecture. The system runs a set of ClickOS virtual ma-
chines (vms), each composed of Click version 2.0.1 running
on top of MiniOS, a minimalistic OS provided with the Xen
sources (figure 1). Xen was chosen because it uses par-
avirtualization to run slightly modified operating-systems
as guests, offering better performance compared to full vir-
tualization solutions (where the guest OS is unmodified) [1].
We motivate using MiniOS in section 2.1.

To run Click, users provide a configuration, essentially
a text file specifying a graph of inter-connected elements.
Once running, they can access read/write handlers, internal
variables that can change the state of an element at run-
time (e.g., the AverageCounter element has a read handler

Figure 1: ClickOS architecture overview.

to get the number of packets seen so far, and a write handler
to reset that count). Click relies on the /proc filesystem
or sockets to provide these mechanisms; because these do
not exist in ClickOS, we must provide an equivalent way of
implementing them.

The ClickOS control plane in charge of handling all of
these operations consists of three parts. First, a C-based
CLI takes care of, among other tasks, creating and destroy-
ing ClickOS guest domains. When a guest domain boots,
a MiniOS control thread is created (the second part of the
control plane). This thread adds an entry to the Xen store,
a /proc-like database shared between dom0 and all running
guest domains (figure 1). The control thread then watches
for changes to the entry. When a Click configuration string is
written to it, it takes care of creating a new thread and run-
ning a Click instance within it, meaning that several Click
instances can run within a single ClickOS domain.

The third part of the control plane consists of a new Click
element called ClickOSControl. It talks, on one end, to all
elements in a given configuration and to the Xen store on the
other end. The CLI then provides users with an interface
to read and write to element handlers via the Xen store and
ClickOSControl. All these operations on the ClickOS side of
things are executed in the control thread mentioned above.

2.1 Building ClickOS
Xen is split into a privileged domain called dom0 that

(among other tasks) controls the hypervisor and hosts de-
vice drivers1; and guest domains, the users’ virtual machines
(also knows as domUs).

To achieve good performance, Click should run in the op-
erating system kernel, but this makes crashing the whole
system very easy - so Click must necessarily run inside a
virtual machine. Using a full blown Linux virtual machine
to run Click, as done today, is rather heavyweight, leading
to large memory footprints and long boot-up times.

We observe that many of the services provided by a Linux
kernel 2 are not needed to run Click, and neither is the
userspace API. First, a ClickOS instance will run a single
configuration belonging to a single user: there is no need for
multiple user support. In fact, there is no need for user-space
programs; removing the user-space/kernel space separation

1Strictly speaking, the device drivers are hosted in the driver
domain, but in practice dom0 frequently also acts as the
driver domain.
2The same observations apply for other commodity operat-
ing systems, not just Linux.

Figure 2: Basic ClickOS networking in Xen.

increases performance (e.g., no system calls) and simplifies
the kernel considerably.

In addition, Click does not need multiple memory ad-
dress spaces: a single configuration runs in the same address
space, as elements pass pointers to each other to perform
their functionality; this implies that support for multiple
processes is not needed either. Threads are needed, though,
as different processing chains may need to run in parallel.

On the I/O side, Click needs access to network interfaces.
These can be easily supported with a generic driver, leaving
the complexity of providing drivers for different hardware in
dom0. Filesystems are rarely used, and other I/O devices
(e.g., usb, video output) even less. In fact, removing most
of the I/O supports deprecates a big part of the Linux ker-
nel. Finally, a networking stack may be needed for TCP/IP
connectivity.

As it turns out, the Xen sources come with MiniOS, a min-
imalistic, para-virtualized OS that provides all the function-
ality needed by Click without any of the additional ”clutter”
included in traditional operating systems. As a result, we
build ClickOS as a combination of Click and MiniOS.

MiniOS implements the basics needed to operate in a Xen
environment: grant tables for sharing memory with other
domains including dom0, a netfront driver for packet I/O,
event channels (Xen interrupts) and the Xen store driver. In
addition, MiniOS has a single address space, no kernel/user
separation, and runs a co-operative scheduler, reducing con-
text switch costs.

In order to build and link Click and MiniOS we first
needed to have a Linux independent c++ cross-compiler (Click
is written in c++). To do so, we built a new toolchain (gcc,
ld, ar, etc) that uses the platform independent newlibc li-
brary instead of glibc.

In addition, we had to adapt certain parts of Click to work
in a MiniOS environment instead of a Linux or FreeBSD
one. These include the creation of the ClickOSControl el-
ement previously mentioned for dealing with Click element
handlers, as well as new Click elements that act as network
devices that can talk to the MiniOS netfront driver (see next
section).

2.2 ClickOS Networking
Xen has a split network driver model, whereby a netback

driver running in a driver domain talks to hardware de-
vices and exports a common, ring-based API; and a netfront
driver running in a guest domain (e.g., ClickOS) talks to the
netback driver via shared memory (i.e., the ring). This split
model allows guest domains to have access to hardware de-
vices without having to themselves host their drivers.

Figure 3: Optimized networking: modified net-
front driver, revamped network back-end using the
netmap API, and an improved VALE-based software
switch.

Under a typical Xen set-up, a network card is linked to
a virtual network device called a vif via the Linux bridge
module or in later Xen versions Open vSwitch (figure 2).
When a packet is received, it is forwarded to the vif whose
MAC address matches that of the packet’s destination. The
device then takes the packet and queues it at the netback
driver. At a later point in time, one of the netback driver
threads picks up the packet and puts it on the shared ring,
notifying the netfront driver in the process; packets sent out
follow a similar path in the opposite direction.

In order to interact with the netfront driver, we created
two new Click elements, FromNetfront and ToNetfront. The
first of these takes care of initializing a network device and,
each time it is scheduled, retrieves burst number of packets
from the netfront driver, where burst is a configuration pa-
rameter. The ToNetfront element is pretty straightforward,
simply calling the netfront’s transmit function.

Without optimizations, this network data path performs
rather poorly, in the range of only 8 Kp/s for maximum-sized
packets, and even with a Linux-based vm we experienced 2.9
Gb/s, confirming the figure given in [18]. To push this up
to the 10Gb supported by our cards, we had to undertake a
number of improvements 3.

First, we optimized the netfront driver by introducing two
mechanisms: we changed the driver’s receive function to poll
for packets from the MiniOS thread running Click, rather
than be interrupt driven, and we added a burst parameter
to process packets in batches. Second, we re-used the grants
that receive buffers are given and keep them for the lifetime
of the network device (a grant is Xen’s way of allowing two
domains to share memory).

The next bottleneck was the netback driver and the ring-
based API. Optimizing this required an overhaul of the Xen
backplane. In greater detail, we got rid of the vifs and re-
placed the netback driver with a netmap-based [20] one that
directly maps the network buffers of each port of the back-
end software switch onto a vm’s local memory4. This pro-
vides us a much more direct network path between the NIC
and the vm and thus better performance.

The final major bottleneck was the software switch (Open
vSwitch in recent Xen releases), which has been shown to
yield poor performance, at most 300 Kp/s for the kernel ver-

3Note: line rate is roughly 810 Kp/s for maximum-sized
packets and 14.8 Mp/s for minimum-sized ones.
4We chose netmap since it is able to handle packet transfers
at rates of 10Gb/s and higher while consuming relatively
few CPU cycles.

sion [21]. We replaced this switch with VALE [10], a netmap-
based switch designed for high-speed rates, and adapted it
to be able to interact with the ClickOS netfront driver.

3. EVALUATION
We now present results evaluating various aspects of ClickOS.

We perform all tests on a couple of x86 commodity servers,
each with two quad-core Intel Xeon E5620 2.4GHz proces-
sors (with hyper-threading disabled), 24GB of memory and
an Intel x520-t 10Gb adapter. One server acts as a packet
generator and sink, and the other runs Xen 4.1.2 and the
ClickOS vms. The servers are connected using direct ca-
bling.

ClickOS is compiled with most of the available Click ele-
ments (216/282), many of the remaining ones requiring a file
system to work (we are in the process of porting a simple file
system to increase the number of available elements). The
amount and variety of elements means that ClickOS can
support a wide range of middleboxes, including firewalls,
proxies, load balancers and NATs, to name a few. It is also
relatively easy to extend this functionality: adding a few
new elements we were able to create a carrier-grade NAT, a
software BRAS and a simple IDS.

3.1 Middlebox Instantiation
While flexibility is important, it is imperative that mid-

dleboxes can be instantiated quickly. In order to set up and
run a ClickOS middlebox, several steps take place. First,
the virtual machine is created, which includes reading its
configuration, its image file, writing a (large) number of en-
tries to the Xen store (e.g., the id of the vm, addresses for
memory allocations, etc) and creating the vm itself. Second,
we “attach” a virtual network device to the vm, which adds
more entries to the Xen store, and connect the device to the
software switch.

Once MiniOS boots, the ClickOS control thread is created.
When this thread receives a new Click configuration, it starts
a new Click thread, which in turn populates the Xen store
with entries used to support element handlers, initializes the
network device that had been previously created, and finally
sets the middlebox running.

When we first started measuring the ClickOS start-up
time we were getting results in the range of several seconds,
but a quick investigation showed that that was due to the
Xen store residing in an NFS-mounted drive; moving it to
a RAM disk lowered this timing to just over a second. The
second optimization was moving from the xm toolstack 5 to
the newer xl one (xm was Python-based and made use of
slow xml-rpc calls to carry out its operations). This change,
along with switching to the newer, more efficient oxenstore
resulted in a reduction of start-up times from roughly 0.86
to 0.21 seconds.

The final improvements had to do with trimming unneces-
sary operations from the MiniOS and Click start-up process,
which brought the total time down to about 70 msecs. At
this point, we discovered that reading the compressed vir-
tual machine image was slow; providing an uncompressed
image instead cut down the overall start-up time to about
30 msecs. Table 1 gives a detailed breakdown of the process
up to the creation of the ClickOS control thread (we call

5The toolstack is the user interface used to control Xen; this
includes vm creation.

description function time

issue create
hypercall

libxl domain make2 5.244

paravirt.
bootloader

libxl run bootloader 0.049

prepare
domain boot

libxl build2 pre 0.089

parse,
allocate and

boot vm image

xc dom allocate 0.016
xc dom kernel path 0.047
xc dom ramdisk 0.001
xc dom boot xen init 0.011
xc dom parse image 0.286
xc dom mem init 0.007
xc dom boot mem init 0.650
xc dom build image 7.091
xc dom boot image 0.707

write xen store
entries, notify

xen store daemon

libxl build2 post 2.202

init console
init console info 0.004
libxl need xenpv qemu 0.006
libxl device console add 4.371
TOTAL 20.789

Table 1: Costs of creating a ClickOS virtual machine
and booting it up, in milliseconds.

this the ClickOS boot time); creating a network device and
starting the Click middlebox (the start-up time) consumes
an additional 8 msecs or so, roughly 30 msecs in total.

So far the discussion has focused on a single ClickOS vm,
but how long would it take to actually create many of them?
Figure 4 shows boot times for 400 ClickOS vms on a single
server. The first vm takes the roughly 21 msecs described
in the table above, ramping up to about 200 msecs for the
400th vm. This shows ClickOS’ ability to quickly instantiate
processing even in the presence of several existing vms.

We further measured how long it takes to install a mid-
dlebox configuration in one of these ClickOS vms. Figure 5
shows such timings when different number of vms already
exist in the system. Again, these costs are small: about 7
msecs when 64 vms are already running, all the way up to
21 msecs for 400 vms.

3.2 Networking Performance
The path that packets follow from a ClickOS vm through

the Xen networking system and eventually to the NIC is
complex and involves a number of components (recall fig-
ure 2). The first throughput measurements we conducted
were rather disappointing: only about 1% of our 10Gb card
for maximum-sized packets.

In order to identify where the bottlenecks were, we began
with a single ClickOS vm with one CPU core assigned to
it running a simple Click configuration 6 that creates pack-
ets as fast as possible and drops them. The first issue was
with Click’s packet generation: after several modifications
to InfiniteSource that we leave out due to space restric-
tions, we were able to bump its rate from 8.4 Mp/s to 13.2
Mp/s, almost enough to saturate a 10Gb link for all packet
sizes. This allowed us to investigate other problems with the

6InfiniteSource→EtherEncap→Discard

0 50 100 150 200 250 300 350 400
Virtual machine ID

0

50

100

150

200

250
Vi

rt
ua

l m
ac

hi
ne

 b
oo

t t
im

e
(m

s)

Figure 4: Time to create and
boot 400 ClickOS virtual ma-
chines on a single server.

64 128 192 256 320 384
Virtual machine ID

6
8

10
12
14
16
18
20
22

Vi
rt

ua
l m

ac
hi

ne
 s

ta
rt

 ti
m

e
(m

s)

Figure 5: Time to instantiate
processing in a ClickOS vm once
other vms are running.

0 20 40 60 80 100 120
Number of VMs

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

C
um

ul
at

iv
e

Th
ro

ug
hp

ut
 (M

p/
s)

64 bytes
128 bytes
256 bytes
512 bytes
1024 bytes
1500 bytes

Figure 6: Aggregated through-
put when 128 ClickOS virtual
machines are active.

knowledge that the bottlenecks would not come from Click
and the configuration.

Next we added a ToNetfront element to the previous con-
figuration in order to test the netfront driver’s performance;
the throughput was a dismal 8 Kp/s for maximum-sized
packets. A number of modifications (e.g., turning the driver
from an interrupt-driven one to a polling one and re-using
the grants that Xen uses to allow domains to share memory
and thus packets) resulted in a significant improvement, up
to about 360 Kp/s.

The next component in the transmit path is the netback
driver. As a quick test, we replaced it with a minimalistic
version that does nothing more than take packets from the
netfront driver (via the Xen ring API), count them and drop
them, without ever interacting with the vif. This set-up
resulted in a rate of 950 Kp/s for maximum-sized packets
(greater than line rate) but only 1.5 Mp/s out of a possible
14.8 Mp/s for minimum-sized ones.

At this point the remaining bottleneck was coming from
the drivers’ reliance on the Xen ring API, including their
use of slow interrupts (known as events) to synchronize ac-
cess to the packets. To push rates further up, we overhauled
the Xen network backplane (figure 3), getting rid of the net-
back driver and replacing the software switch with a fast one
based on VALE.

These modifications resulted in a significant performance
improvement (figure 6). The graph shows, for various packet
sizes, an increasing number of ClickOS vms residing on the
same server and sending packets through a shared 10Gb NIC
onto another server which measures the aggregate through-
put. In this experiment we used all 8 CPU cores in our
server, assigning 3 of them to the driver domain that hosts
the ClickOS switch and assigning the remaining 5 cores to
the vms in a round-robin fashion. As can be seen, our low-
cost server can run as many as 128 ClickOS vms who in
turn are able to fill up the 10Gb pipe for most packet sizes.
In a separate test not shown due to space constraints, we
confirmed that all vms were (roughly) equally contributing
to this throughput. Further tests when receiving packets
yielded line rate for all packet sizes of size 256 bytes and
greater, and up to 4.8 Mp/s for minimum-sized ones.

4. RELATED WORK
In order to create a tiny system for network processing

we could have relied on any number of existing minimalistic
OSes [14, 28, 15], but they neither provide good device driver
support nor the advantages of a fully virtualized system such

as isolation and migration. Instead, we build ClickOS on top
of MiniOS, a minimalistic OS aimed at creating small Xen-
based vms.

Many virtualization technologies besides Xen exist [7, 25,
17]. We settled on Xen because it enables us to have excel-
lent driver support (through its Linux-based dom0 domain
and its split-driver model) while still allowing us to run a
tiny virtual machine (a combination of MiniOS and Click).
OpenVZ, for instance, does not support running an OS other
than Linux. KVM supports MINIX, but the latest version
is marked as crashing. The work in [24] introduces a new
thin virtualization system aimed at increasing the overall
security of a virtualized system.

Beyond minimalistic OSes and hypervisors, previous work
has looked into optimizing the performance of Xen’s data
plane. One of the techniques consists of reducing the cost
of packet copies by having the NIC directly place packets
in guest memory [19, 22, 13]; we use this general concept
in conjunction with the netmap framework [20] in order to
speed up Xen’s underlying network system. Some of the gen-
eral optimization techniques used in the netmap framework
and our netback and netfront drivers such as batching and
polling previously appeared in other works such as Route-
Bricks [4].

Another optimization [19, 22] consists of making efficient
use of memory grants (Xen’s mechanism for allowing do-
mains to share memory); we apply a similar approach to
optimize MiniOS’ netfront driver. The work in [9] optimizes
Xen’s scheduler and the Linux bridge that Xen relies on to
direct packets to guest domains. We go one step beyond, en-
tirely replacing the Linux bridge (or in the latest releases of
Xen Open vSwitch [16]) with a modified version of the fast
VALE switch [10]. One final technique available in Xen and
other virtualization systems is passthrough, where a vm is
given direct access to the NIC in order to improve network-
ing performance. The problem is that this technique forces
vms to host device drivers, binds the device to a single vm,
and complicates vm migration.

There are a few other projects that have looked into creat-
ing small virtual machines. The Denali [27] isolation kernel
was able to run large numbers of concurrent virtual ma-
chines, but had limited support for device drivers and guest
OSes. The work in [12, 11] is similar to ours in that they
also create tiny, Xen-based virtual machines, though their
focus is on extending the Objective Caml language to gen-
erate different kinds of vms (e.g., they evaluate a vm with
SQLite running in it) that are defined at compile-time. In-

stead, ClickOS can change configuration at run-time and the
work further focuses on optimizing its boot times and net-
working performance. The work in [5] is similar, creating
small, Erlang-based virtual machines on Xen.

With regards to commercial offerings, Cisco developed a
single-tenant virtualized router that can run on VMware
ESXi or Citrix XenServer [2]. However, it is not clear how
extensible it is (it is based on IOS), how large its images
are, how it performs nor how much it costs. Vyatta [26] has
open-source software that can run on a number of virtualiza-
tion platforms and that implements middlebox functionality.
Unlike ClickOS, it is based on Debian, and so its images are
large.

5. CONCLUSION
We presented ClickOS, a tiny, Xen-based virtual machine

that can instantiate middlebox processing in milliseconds
while achieving high performance, allowing for a truly pro-
grammable SDN data plane. Beyond the preliminary through-
put experiments presented in the paper, we are in the pro-
cess of optimizing and testing ClickOS’ network performance
when carrying out middlebox processing.

One of the main contributions of ClickOS is that it allows
consolidation of very large number of vms in a single server:
hundreds in our tests, and potentially even thousands since
we can quickly put idle vms to sleep; contrast this with anec-
dotal evidence of only 10-30 vms in current deployments. We
take the view that ClickOS might enable scenarios not possi-
ble today: per-customer firewalls, dynamically instantiated
load balancers to cope with load, per-flow IDSes, and on-
the-fly customizable software BRASes (Broadband Remote
Access Server) providing on-demand premium services, to
name a few. We believe ClickOS to be a step towards a
much more dynamic, programmable SDN data plane.

6. ACKNOWLEDGMENTS
This work was partly funded by the EU FP7 CHANGE

(257422) project.

7. REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In Proc. ACM SOSP, 2003, New York, NY,
USA, 2003. ACM.

[2] Cisco. Cisco Cloud Services Router 1000v Data Sheet.
http://www.cisco.com/en/US/prod/collateral/routers/ps12558/
ps12559/data_sheet_c78-705395.html, July 2012.

[3] Click Modular Router. Click Elements.
http://read.cs.ucla.edu/click/click, March 2013.

[4] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
Routebricks: exploiting parallelism to scale software routers. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, SOSP ’09, pages 15–28, New
York, NY, USA, 2009. ACM.

[5] Erlang on Xen. Erlang on Xen. http://erlangonxen.org/, July
2012.

[6] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley,
and H. Tokuda. Is it still possible to extend tcp? In Proc.
ACM IMC, 2011.

[7] A. Kivity, Y. Kamay, K. Laor, U. Lublin, and A. Liguori. Kvm:
The linux virtual machine monitor. In Proc. of the Linux
Symposium, 2007.

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Transactions on
Computer Systems, August 2000, 2000.

[9] G. Liao, D. Guo, L. Bhuyan, and S. R. King. Software
techniques to improve virtualized i/o performance on multi-core

systems. In Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems,
ANCS ’08, pages 161–170, New York, NY, USA, 2008. ACM.

[10] Luigi Rizzo. VALE, a Virtual Local Ethernet.
http://info.iet.unipi.it/~luigi/vale/, July 2012.

[11] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. S. T.
Gazagnaire, S. Smith, S. Hand, and J. Crowcroft. Unikernels:
Library operating systems for the cloud. In Proc. of
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2013.

[12] A. Madhavapeddy, R. Mortier, R. Sohan, T. Gazagnaire,
S. Hand, T. Deegan, D. McAuley, and J. Crowcroft. Turning
down the lamp: software specialisation for the cloud. In
Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing, HotCloud’10, pages 11–11, Berkeley, CA,
USA, 2010. USENIX Association.

[13] K. Mansley, G. Law, D. Riddoch, G. Barzini, N. Turton, and
S. Pope. Getting 10 gb/s from xen: safe and fast device access
from unprivileged domains. In Proceedings of the 2007
conference on Parallel processing, Euro-Par’07, pages 224–233,
Berlin, Heidelberg, 2008. Springer-Verlag.

[14] Minix3. Minix3. http://www.minix3.org/, July 2012.

[15] MIT Parallel and Distributed Operating Systems Group. MIT
Exokernel Operating System.
http://pdos.csail.mit.edu/exo.html, March 2013.

[16] Open vSwitch. Production Quality, Multilayer Open Virtual
Switch. http://openvswitch.org/, March 2013.

[17] OpenVZ. Welcome to OpenVZ Wiki.
http://wiki.openvz.org/Main_Page, July 2012.

[18] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and S. Rixner.
Achieving 10 gb/s using safe and transparent network interface
virtualization. In Proc. ACM VEE, 2009, VEE ’09, 2009.

[19] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and S. Rixner.
Achieving 10 gb/s using safe and transparent network interface
virtualization. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual
execution environments, VEE ’09, pages 61–70, New York, NY,
USA, 2009. ACM.

[20] L. Rizzo. netmap: A novel framework for fast packet i/o. In
Proc. USENIX Annual Technical Conference, 2012.

[21] L. Rizzo, M. Carbone, and G. Catalli. Transparent acceleration
of software packet forwarding using netmap. In A. G.
Greenberg and K. Sohraby, editors, INFOCOM, pages
2471–2479. IEEE, 2012.

[22] J. R. Santos, Y. Turner, G. Janakiraman, and I. Pratt.
Bridging the gap between software and hardware techniques for
i/o virtualization. In USENIX 2008 Annual Technical
Conference on Annual Technical Conference, ATC’08, pages
29–42, Berkeley, CA, USA, 2008. USENIX Association.

[23] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratsanamy,
and V. Sekarl. Making middleboxes someone else’s problem:
Network processing as a cloud service. In Proc. ACM
SIGCOMM, 2012.

[24] U. Steinberg and B. Kauer. Nova: a microhypervisor-based
secure virtualization architecture. In Proceedings of the 5th
European conference on Computer systems, EuroSys ’10,
pages 209–222, New York, NY, USA, 2010. ACM.

[25] VMware. VMware Virtualization Software for Desktops, Servers
and Virtual Machines for Public and Private Cloud Solutions.
http://www.vmware.com, July 2012.

[26] Vyatta. The Open Source Networking Community.
http://www.vyatta.org/, July 2012.

[27] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
performance in the denali isolation kernel. SIGOPS Oper. Syst.
Rev., 36(SI):195–209, Dec. 2002.

[28] Wikipedia. L4 microkernel family.
http://en.wikipedia.org/wiki/L4_microkernel_family, July
2012.

http://www.cisco.com/en/US/prod/collateral/routers/ps12558/ps12559/data_sheet_c78-705395.html
http://www.cisco.com/en/US/prod/collateral/routers/ps12558/ps12559/data_sheet_c78-705395.html
http://read.cs.ucla.edu/click/click
http://erlangonxen.org/
http://info.iet.unipi.it/~luigi/vale/
http://www.minix3.org/
http://pdos.csail.mit.edu/exo.html
http://openvswitch.org/
http://wiki.openvz.org/Main_Page
http://www.vmware.com
http://www.vyatta.org/
http://en.wikipedia.org/wiki/L4_microkernel_family

	Introduction
	ClickOS Architecture
	Building ClickOS
	ClickOS Networking

	Evaluation
	Middlebox Instantiation
	Networking Performance

	Related Work
	Conclusion
	Acknowledgments
	References

