
Towards automatic exploitation of programmable
networks

Mihai-Valentin Dumitru
University Politehnica of Bucharest

Bucharest, Romania
mihai.dumitru2201@upb.ro

Dragos Dumitrescu
University Politehnica of Bucharest

Bucharest, Romania
dragos.dumitrescu@cs.pub.ro

Costin Raiciu
University Politehnica of Bucharest

Bucharest, Romania
costin.raiciu@cs.pub.ro

Abstract—P4 verification works have found numerous bugs
in programs of various sizes. While existing tools are efficient
in finding bugs such as invalid header accesses, little effort
has been put in understanding the potential impact of these
bugs against the network. In this paper, we investigate whether
these bugs can expose security vulnerabilities similar to those
studied extensively for commodity CPUs. This work presents the
design and implementation of HackP4 – a tool which makes
use of static and dynamic analysis techniques to assess security
properties of P4 dataplanes. HackP4 discovers vulnerabilities
in P4 programs and automatically generates security exploits if
they exist; otherwise, it provides guarantees of their absence.
We present the results of running HackP4 against several P4
programs and show the kind of vulnerabilities it is able to
capture. Finally, we discuss best practices for mitigating bugs
and minimizing the impact of vulnerabilities.

Index Terms—p4, security, automatic exploit generation

I. INTRODUCTION

Following the trend towards network programmability, lan-
guages such as P4 [1] or Broadcom’s NPL [2] allow pro-
gramming dataplanes that can run at line rate in production
networks, disproving the decades-old mantra that the network
is either flexible or fast. Programmable switches are available
from all major vendors (Intel’s Tofino and Tofino2, Broad-
com’s Trident 4, Mellanox’s Spectrum 2) and being rolled out
in production.

Making dataplanes easily programmable enables unprece-
dented network flexibility, but may come at the cost of
robustness. A substantial number of verification works has
examined existing P4 programs [3]–[7], finding multiple bugs
in most of them, such as invalid header accesses. Whether
these bugs can be turned into exploitable vulnerabilities is still
an open question. This paper is the first attempt to understand
the security impact of bugs in P4 dataplanes.

The security characteristics of dataplanes have been difficult
to assess so far, with few studies available [8], [9]. This is
because fixed-function dataplanes are essentially black-boxes,
making it difficult to systematically test or verify for exploits.
Programmable network devices have the advantage of being
auditable in terms of security.

Existing work in P4 program verification reports unsafe
behavior, but does not reason about the effects of these bugs at
runtime; [10] documents the results of experiments designed
to uncover how such bugs manifest on real targets, i.e. are the

corresponding packets dropped or do they leave the switch?
This helps us distinguish benign bugs from vulnerabilities.

Our goal is to automatically discover whether a bug is
exploitable. To this end, we develop HackP4, a tool which
uses both static and dynamic analysis techniques to find certain
classes of vulnerabilities in buggy P4 programs. If vulner-
abilities are found, HackP4 is able to produce packets to
automatically exploit them; otherwise, it provides guarantees
about their absence.

We believe this tool is useful for P4 developers, as an
extra step in the deployment pipeline. It can be used to
harden dataplanes via bug triage, much like Automated Exploit
Generation (AEG) for traditional software [11]–[15]: given
multiple bugs and limited resources for fixing them, the ones
that can actually be exploited by attackers should be fixed first.
Every reported bug is accompanied by the concrete bytestring
of a packet that triggers it, enabling manual exploration and
filtering of false positives (e.g. bugs that depend on some table
entries that the control plane can guarantee will not occur).

Additionally, with a little manual intervention, HackP4
can be configured to verify arbitrary application-specific con-
straints (see §IV-A), such as “a packet with a source port X
is never forwarded with destination port Y ”.

Our starting point consists of the existing verification works
that can statically find bugs in P4 programs [3]–[7]. Such tools
stop when finding a bug, but this is not how actual targets
behave. The exploration in [10] serves as a reference for the
way in which such bugs manifest on existing targets. To decide
whether a bug is exploitable and to generate an exploit, our
work bridges the gap from current state of the art, providing
the following contributions:

• We build HackP4, the first P4 verification tool that
models P4 undefined behavior on real targets.

• We show how HackP4 can automatically build exploits
for real-life programs with thousands of lines of code.

• Finally, we describe a set of attacks which demonstrate
HackP4’s exploit-generation capabilities on P4 programs
and provide a set of mitigation strategies.

II. BUGS AND EXPLOITS IN P4

P4 enables programmers to specify how packets should be
processed by a switch. While P4 is relatively simple and
its instructions have well-defined semantics [16], programs

2024 IEEE 10th International Conference on Network Softwarization (NetSoft)

979-8-3503-6958-8/24/$31.00 ©2024 IEEE 109

20
24

 IE
EE

 1
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 N
et

w
or

k
So

ftw
ar

iz
at

io
n

(N
et

So
ft)

 |
97

9-
8-

35
03

-6
95

8-
8/

24
/$

31
.0

0
©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

N
et

So
ft6

09
51

.2
02

4.
10

58
88

99

Authorized licensed use limited to: Universitatea de Vest din Timisoara. Downloaded on September 29,2025 at 06:40:25 UTC from IEEE Xplore. Restrictions apply.

written in it are not exempt from bugs – as evidenced by
verification works such as [3]–[7].

The P4 standard defines the general language constructs
syntactically and semantically, but there are also some be-
haviors that are intentionally not defined: architecture-specific
behaviors and undefined behaviors.

In this paper, we use the term “bug” to refer to undefined
behaviors and to some problematic architecture-specific be-
haviors.

Architecture-specific behaviors A P4 program must be writ-
ten for a specific switch architecture, which specifies the pro-
grammable blocks and their interactions, available externs,
mechanisms for dropping/forwarding/cloning packets etc.

For example, to forward a packet in the ingress block under
the v1model architecture, one needs to set a metadata field
to some particular 9-bit integer value. To drop a packet, the
same field must be set to a special value. Combined with the
fact that there is usually no “early return/exit” from a control
block, it becomes possible for a forwarding decision to revert
an earlier drop decision, effectively “resurrecting” the packet.

On the Tofino Native Architecture, a similar mechanism is
used for forwarding. But dropping requires setting a separate
flag, making accidental packet resurrection unlikely.

We are concerned with two possibly-problematic-behaviors
on the v1model architecture (and any others that employ sim-
ilar mechanisms): packet resurrection and implicit forwarding.

In short, packet resurrection refers to the cancelling of a
drop decision further down the processing pipeline; implicit
forwarding refers to what happens to the packet when no
explicit forwarding or drop decision has been made.

Undefined behaviors Some instructions’ behavior is explicitly
mentioned as being undefined by the standard.

In this paper we focus on: undefined reads (from invalid
headers or uninitialized variables), writes to invalid headers
and out-of-bounds accesses to register arrays/header stacks.

Unlike the infamous concept of Undefined Behaviors (UB)
in C, where “everything can happen”, the effects in the
P4 world are much tamer. A read from an invalid field is
guaranteed to produce some value of that type; it can’t crash
the program, or change control flow etc.

Vulnerabilities It is possible that some bugs can occur without
any observable effect; by this, we mean that no packet
which leads to triggering the bug is forwarded, resubmitted
or recirculated. We call these “benign bugs”.

Bugs that can be triggered by packets that are then emitted
by the switch, represent vulnerabilities, because the packets
affected are then visible in the network and could have
negative effects on it.

We use the term exploit to describe a packet whose pro-
cessing triggers a bug and results in a packet being emitted.

The aim of HackP4 is to filter out benign bugs and
discover vulnerabilities, then automatically generate exploits
that trigger them.

III. REAL TARGET BEHAVIORS

In this paper, we focus on two P4 targets:

Aliasing

TTL

Source Address

IPv4 header

IPv6 header

Physical registers
(PHVs)

Fig. 1: A scenario in which the IPv4 TTL field overlaps with
the last byte of the IPv6 source address.

• BMv2 software switch with the simple switch [17] target,
using the v1model architecture

• The Intel Tofino Switch [18] - the only production-
grade P4 switch available today, using the Tofino Native
Architecture (TNA)

Experiments in [10] show what are the actual, observable
effects of triggering undefined behavior on real targets. We
summarize here the results relevant for the design and imple-
mentation of HackP4, providing extra details obtained from
additional experimentation.

A. Reading from invalid headers

One of the most common bugs discussed in P4 verification
literature is accessing fields from invalid headers. The discov-
ered behaviors are representative for the trade-offs performed
by each target in order to optimize performance.

On Tofino, both header and metadata fields are zeroized
before every packet; generally, reading from an invalid header
yields a zero. However, a different value can be obtained from
an invalid read, because no further zeroization takes place in
cases where a header is invalidated during packet processing,
or when a value is written to an invalid header (see the
next section on invalid writes). Furthermore, headers that are
mutually-exclusive from a parsing point-of-view can overlap
in memory; reading from an invalid header can then produce a
value from a valid, overlapping header. Assuming the scenario
in Figure 1, reading the ipv4.ttl field of packets with an
IPv6 header would yield the last byte of their source address.

On BMv2, header zeroization only occurs when fields are
used as part of a table key; in other cases, an invalid header
(i.e. that wasn’t populated by the parser) will contain values
from the last packet processed for which that header was valid.

B. Writing to invalid headers

The P4 16 standard [16] explicitly allows writes to invalid
headers to modify undefined state in the system (section 8.25).
As expected, both on BMv2 and on Tofino, writing a valid to
an invalid header field will cause future invalid reads from that
field to yield that value.

Because of the memory overlapping that can occur on
Tofino between two mutually-exclusive headers, writes to an
invalid header can modify defined state – fields, or parts
of fields, of a valid, overlapping header. In the scenario of
Figure 1, trying to decrement the ipv4.ttl field of an IPv6

2024 IEEE 10th International Conference on Network Softwarization (NetSoft)

110
Authorized licensed use limited to: Universitatea de Vest din Timisoara. Downloaded on September 29,2025 at 06:40:25 UTC from IEEE Xplore. Restrictions apply.

packet would result in changing the source address of the
packet.

C. Resurrecting dead packets

Dropping a packet involves changing some metadata to
mark it as dropped; the processing doesn’t stop, there is
no early exit. The dropped packet will continue through the
pipeline until buffering, where it should be dropped; however,
the drop decision may be cancelled, resurrecting the packet.

The precise dropping mechanism is architecture-specific,
with some architectures making it easier to accidentally resur-
rect packets marked for dropping. v1model uses the same
metadata field both for unicast routing and drop marking.
When a packet is marked to be dropped, the target sets that
field to a special drop value. When a dropped packet triggers
an action that sets the metadata field to a valid port ID, that
packet will be revived instead of being dropped.

However, TNA (and the Portable Switch Architecture) uses
a separate flag to mark dropped packets. The only way to
resurrect a previously dropped packet is to set the egress port
and also unmark the packet for drop. The latter action makes
the programmer’s intent unambiguous: it is clear that they did
not accidentally, but rather intentionally, revive the packet.

D. Implicit forwarding behavior

The mechanism of forwarding a packet is also architecture-
dependent; so is the behavior resulting from not explicitly
taking a forwarding decision. The packet could be dropped
or forwarded in some particular manner.

On the v1model, whenever the egress_spec metadata
is unset at the end of the ingress pipeline, this is equivalent
to forwarding the packet on “port 0”, which can be a valid
port identifier. This is dangerous, since, under the right cir-
cumstances, a malicious user could flood clients connected to
port 0 with traffic of its own choosing, while at the same time
bypassing ACLs.

On TNA, packets with no explicit forwarding decision are
dropped.

IV. IMPLEMENTING HACKP4

HackP4 consists of a static verification component and an
enumerative packet generator.

To implement the first component, we choose as starting
point an existing verification tool, bf4 [7]. We inherit its
bounded model checking approach and extend it by enhancing
its instrumentation step to model target behaviors, as well
as equipping it with a packet generation algorithm. Figure 2
shows the complete flow of HackP4.
bf4 itself is implemented as a p4c compiler backend and

aims to detect certain classes of bugs without any manual
annotations. It first instruments the code by inserting assertions
at potentially buggy locations, then generates reachability
conditions for each bug and invokes Z3 to check which ones
are reachable.

In the next section, we describe the particular instrumen-
tation performed by HackP4; this allows us to continue

analysis past the point where a bug is triggered, laying the
groundwork for modelling concrete target behaviors (§IV-B).
In §IV-C we present our algorithm for obtaining concrete
packet bytestrings from reachability formulas. Finally, §IV-D
describes the motivation for the enumerative packet generator,
as well as the implementation details.

A. Checking for vulnerabilities

For each possibly-buggy line of code, we add a preceding
validity check; for example, if the instruction involves reading
from a header field h.f, we add before it a check for
!h.isValid(). On the then branch, we set a location
tracking variable to a unique location ID.

For each control and parser block, we declare a new
metadata field to store the location ID of a bug. The special
value -1 is reserved to mean that no bug was encountered. At
the beginning of the parser/control block, its corresponding
location variable is initialized to this value.

The following instruction in the ingress control block:

hdr.eth.etherType = hdr.fph.etherType;

is instrumented as:

if (!(hdr.fph.isValid() && hdr.eth.isValid()))
meta.ingress_track = 0x79e;

hdr.eth.etherType = hdr.fph.etherType;

This type of conditional location tracking is added not just
for assignments, but also before:

• if statements with possible bugs in their condition
• apply statements for tables whose keys contain header

fields, array accesses, slices, or any other expression
whose reading could be a bug

• header stack or array access to check for out-of-bounds
indices

• invocations of extern functions which take possibly in-
valid/uninitialized fields as arguments

To detect out-of-bounds accesses, we determine the size of
the indexed variable and add a guard to check if the index
is lower. For example, given a Counter bd_stats with a
declared size of 1024, the instruction:

bd_stats.count(meta.bd_stats_idx);

is instrumented as:

if (meta.bd_stats_idx >= 1024)
meta.ingress_track = 0x84;

bd_stats.count(meta.bd_stats_idx);

Because we are strictly interested in packets that trigger
a bug and are also forwarded by the switch, we need a
mechanism to filter out dropped packets. For the ingress
control block, we create a flag that shows whether a packet
was passed or not to the traffic manager. At the beginning of
ingress, we set meta.pass_ingress = false. At the
very end, we set the flag only if the packet was not dropped.
For example, on the v1model architecture, the check is:

if (standard_metadata.egress_spec != DROP)
meta.pass_ingress = true;

2024 IEEE 10th International Conference on Network Softwarization (NetSoft)

111
Authorized licensed use limited to: Universitatea de Vest din Timisoara. Downloaded on September 29,2025 at 06:40:25 UTC from IEEE Xplore. Restrictions apply.

Original P4
program

Instrumented
P4 program

Instrumentation

P4 program
for target

Target-dependent
behaviors

Define
vulnerability

P4 program
+ vulnerability

Sample
packet

Exploit
found

No exploit
foundModel-

checker

Packet
solver

Fig. 2: Steps taken by HackP4. In orange, differences from bf4

At the end of the egress control block, we are interested only
in buggy packets that will be emitted; we filter out those that
were dropped during ingress processing. We also need to filter
out the packets dropped during egress processing. Finally, we
focus on those that triggered a bug in any block:

if ((meta.pass_ingress == true &&
standard_metadata.egress_spec != DROP) &&

(meta.ingress_track != -1 ||
meta.egress_track != -1 ||
meta.parser_track != -1))

bug();

We then use bounded model checking to check for reach-
ability of the bug instruction. This will decide whether there
are any vulnerabilities possible in the program.

Note that we can easily enhance this condition to focus on
bugs that are only triggered by certain types of packets. For ex-
ample, adding && hdr.tcp.isValid() to the condition,
will only find buggy packets that have a TCP header.

This kind of modification must be manually performed in
an intermediate instrumentation stage, but could easily be
automated: HackP4 could read a specification file describing
packet constraints and translate them into such a condition.

B. Modelling concrete target behaviors

Undefined reads and writes on v1model. On the v1model
architecture, in almost all contexts, reading from an invalid
header field would yield the last value that a valid header
contained for that field at the end of the control block. The
only exception is reading from an invalid header as part of a
key lookup in a table, which yields the value zero.

We overapproximate this by allowing for any possible value
to be the result of an undefined read. By “possible”, we mean
one that fits the correct type of the invalid expression and is
otherwise completely unconstrained.

Undefined reads and writes on TNA. Due to limited space
for storing headers, the Tofino compiler can map multiple
different headers onto the same memory region, as long as
it can infer that these headers are mutually exclusive in the
parser (i.e. there is no possible packet for which more than
one such header is valid), like in Figure 1.

We model this behavior by mapping all header fields onto a
single flat virtual memory space and replacing all header field
access with one to this virtual memory.

During compilation, the Tofino compiler backend outputs a
mapping of header fields to parsed-header values (PHVs), a
set of hardware registers which are used to hold parsed packet
data; the relevant information for us is:

• name of the header field
• slice of header field (represented by a most-significant-bit

field and a least-significant-bit field)
• PHV index
• slice of PHV (represented by a most-significant-bit field

and a least-significant-bit field)
We then map all the PHVs onto a single flat memory

space, concatenating them in increasing order of their in-
dex. During instrumentation, we add a large bitfield (big
enough to contain all possible PHVs) to the ingress metadata:
"bit<MEM_SIZE> mem;".

We modify the ingress parser such that, after every header
extraction, we copy the header fields into the corresponding
flat memory region, based on the field-to-PHV mapping of the
compiler and our mapping of PHVs onto the flat memory:

packet.extract<ipv6_t>(hdr.ipv6);
...
meta.mem[1763:1756] = hdr.ipv6.hopLimit;
meta.mem[831:800] = (hdr.ipv6.srcAddr &

0xffffffff);
meta.mem[3331:3300] = ((hdr.ipv6.srcAddr &

0xffffffff000000000000000000000000) >> 96);
...

The mapping itself is arbitrary; PHV size varies, so we just
consider a bitwidth larger than the largest PHV (maxwidth)
and map the PHV with index x at offset x * maxwidth.

In the parser and ingress, we replace each header field rvalue
occurrence with the corresponding slice (or a combination
of slices) from the flat memory. E.g. the table key element
“ethernet.srcAddr : ternary;” becomes:
meta.mem[81:50] << 16 & meta.mem[31:16]: ternary;

Because the result of a bitwise & or << cannot be an lvalue,
we replace all assignments whose lvalue is a header field with
a block of assignments: the first one copies the right hand side
of the assignment into a new auxiliary metadata field, which
is then properly split into the memory slices associated with
the field. This is also true for fields which were passed as
out or inout parameters to any action or external object.
Of course, we need to declare all these auxiliary variables as
metadata fields.

As an example, the following assignment:

hdr.ipv4.diffserv = hdr.inner_ipv4.diffserv;

is instrumented as:

meta.mem_lhs_8 = meta.mem_25623_25616;
meta.mem_203_200 = meta.mem_lhs_8 & 0xF;
meta.mem_207_204 =(meta.mem_lhs_8 & 0xF0)>>0x4;

2024 IEEE 10th International Conference on Network Softwarization (NetSoft)

112
Authorized licensed use limited to: Universitatea de Vest din Timisoara. Downloaded on September 29,2025 at 06:40:25 UTC from IEEE Xplore. Restrictions apply.

(In this case, hdr.ipv4.diffserv is mapped on the
slice [207:200] and hdr.ipv4.diffserv is mapped
on the slice [25623:25616] of the flat memory).

In order to maintain inter-block program semantics, at the
very end of a control block we restore the header field values,
by copying into them their corresponding memory slices.

...
hdr.erspan_t3_header.vlan = meta.mem[315:304];
hdr.ethernet.dstAddr = meta.mem[463:432] << 16

& meta.mem[5715:5700];
hdr.ethernet.srcAddr = meta.mem[431:400] << 16

& meta.mem[5731:5716];
hdr.ethernet.etherType = meta.mem[511:496];
...

After this step, there are no header field references left
(except after the extract instruction in a parser and at the
very end of a control block).

For the case of invalid reads from areas that are not
overlapped with some other valid field, the value yielded seems
to be consistently zero. We model this by zeroing out the entire
mem metadata field, right before the parser.

Slice Busting Unfortunately, bf4 cannot handle slices in the
analysis step, so we add an extra instrumentation step to
perform slice busting. Here, we aim to replace flat mem-
ory slices with variables, while preserving aliasing seman-
tics. We cannot simply replace mem[100:0] with a new
variable mem_100_0, because a more specific slice (e.g.
mem[48:32]) might be used somewhere else and we would
lose aliasing information.

We thus need to look at all mem slices in the code and
compute the set of atomic intervals (i.e. those which are never
split into more specific components); for each atomic interval
(h, l), we declare a new metadata field mem_h_l. We then
replace each slice in the program with a bitwise AND of its
atomic components, properly shifted.

Thus x = meta.mem[12:6]; is changed into:

x = meta.mem_9_6 & (meta.mem_12_10 << 4);

After this step, there are no slices left in the program.

Header overlap exploit To illustrate the kind of vulnerabilities
that require modelling header overlap, we sketch an IPv4/IPv6
forwarding program which exhibits bugs that can be employed
to work around an ACL check. In the ingress control block,
each packet first goes through an L3 ACL which works on
either IPv6 packets or IPv4 packets; it is configured to drop
all packets originating from the IPv6 address X .

table acl {
key={
ipv4.isValid(): exact; ipv4.srcAddr: lpm;
ipv6.isValid(): exact; ipv6.srcAddr: lpm;

} actions = { drop(); allow(); }
}

The packet then goes through a table that should perform
the necessary rewrites – most importantly, decreasing the TTL
for IPv4 packets.

action rewrite_ipv4() {

...
ipv4.ttl--; }

table rewrite {
key = { ipv4.isValid(): exact;

ipv6.isValid(): exact; }
actions = { rewrite_ipv4(); rewrite_ipv6();}}

At the end of the egress control block, we check if it is
possible for an IPv6 packet from address X to be emitted by
this dataplane, by manually modifying the check presented in
§IV-A, abbreviated here by the expression in angle brackets:

if (<buggy packet was not dropped>
&& hdr.ipv6.isValid() && hdr.ipv6.src == X)

bug();

We compiled this program such that the IPv4 TTL overlaps
the eighth byte of the IPv6 source address (because the
IPv4 and IPv6 headers are mutually exclusive). Knowing this
memory layout, an attacker can craft a packet with the blocked
address as source, but with the eighth byte incremented by 1.
The address will not match on the ACL table, so the packet
will go on undropped, reaching the rewrite table which, by
decrementing the TTL field of the invalid IPv4 header, will
decrement the eighth byte of the IPv6 source address, later
emitting a packet from that blocked source.

The vulnerability we introduce is a controller misconfigura-
tion: the rewrite table is set to do its IPv4 rewriting when
the IPv6 header is valid and the IPv4 header invalid. HackP4
then successfully generates an IPv6 packet originating from
the blocked address with the eighth byte altered, as well as
the control plane misconfiguration required for triggering the
necessary rewrite.

Even though this example seems contrived, triggering this
kind of bug is plausible in practice. Consider a 6to4 tunneling
setup where IPv6 packets from an internal port are prepended
an IPv4 header and forwarded externally, whereas IPv4 pack-
ets from an external port have the IPv4 header popped and
are sent out on the internal port. The parser specification could
identify the IP headers as mutually exclusive and map them to
the same physical memory location. Whenever an IPv6 packet
comes in from an internal port, rewriting inside the IPv4 packet
produces side-effects into the original IPv6 packet.

Default forwarding decisions. On the v1model, packets are
forwarded from the ingress by setting the egress_spec
value from the standard_metadata field to a specific
port; a special value, 511, is used to mark packets for dropping.

The egress_spec field is initialized by default with the
value zero. If no assignment is done during ingress processing,
the packet will be forwarded out of port 0.

This is easy to model for our solver, by making the
initialization explicit. However, we also want to treat the lack
of an explicit assignment as a bug, because default forwarding
is very likely not an expected behavior.

We introduce to the ingress block a new flag
track_egress_spec, initialized to false. Whenever the
egress_spec is set in code, the flag is set. At the end of

2024 IEEE 10th International Conference on Network Softwarization (NetSoft)

113
Authorized licensed use limited to: Universitatea de Vest din Timisoara. Downloaded on September 29,2025 at 06:40:25 UTC from IEEE Xplore. Restrictions apply.

the ingress control block, if the flag is unset, we explicitly
assign 0 to egress_spec and mark a new bug location.

On TNA, packets are dropped by default, if no explicit
forwarding decision takes place.

C. Reachability with packet processing

As our goal is to automatically generate exploits for network
devices, an important capability of HackP4 is to reason about
and produce packets which can be later input into a real target
in order to trigger the discovered vulnerabilities.

Ignoring packet-level constraints may lead to false positives;
dealing with them is difficult because off-the-shelf SMT
solvers have limited support for variable-width bit vectors.
Workarounds that model packets using the theory of sequences
with boolean elements or large bit vectors don’t scale.

To address this, we have implemented an efficient packet
reasoning and generation algorithm which enriches and lever-
ages the capabilities of Z3 [19] to produce a variable-length
packet. Our algorithm is faster than using a large bit-vector
representation or using the theory of sequences as imple-
mented in Z3. Our procedure rewrites all P4 packet processing
primitives into a set of basic instructions, then solves the
resulting packet equations.

Rewriting packet processing primitives. P4 architectures
define a set of packet processing primitives which are used
to enable parser and deparser programmability.

We convert these packet processing primitives into a set of
basic instructions, that don’t exhibit side effects and explicitly
return their results. Table I lists these instructions and explains
their meaning. Here, P represents the set of packets, while Bn

the set of bitvectors of size n.
We start by instrumenting all deparsers to follow their

intended append logic. Then, we replace all extract and
emit instructions which operate on headers with a list of
fixed size extractn and emitn, one for each header field.
The last step is replacing all emitn instructions as follows:
emitn(p, y) → concat(reversen(y), p). The resulting P4 pro-
gram only contains extractn, reversen, concat and empty
packet-processing instructions.

extractn : P → P× Bn extract n bits from a packet and
shifts input packet right

reversen : Bn → P reverse the bit vector and convert
it into a packet

concat : P× P → P concatenate the two input packets
empty :→ P return a zero-length packet
emitn : P× Bn → P append header to input packet

TABLE I: Basic packet processing primitives

Checking bug reachability. Our decision procedure starts
from the bug reachability formula computed by bf4 and feeds
it to Z3. If the solver says that no bug is reachable, we deem
the program correct and the procedure ends; otherwise, we
have a candidate bug.

The SMT solver is capable of producing a model - an
example of variable bindings which makes the bug reachable.

The model corresponds to an instruction trace through the
program that reaches the bug. Of these instructions, we are
only interested in packet processing ones.

All packet constraints are equations that need to be satisfied
for the packet to go along that particular program path. We
pass these equations to our solving procedure; it produces a
set of supplementary constraints to ensure packet equations
are satisfied. These constraints are ranged over packet header
fields which are fixed width bitvectors and thus supported by
Z3. If the set of constraints is empty, this means that the
current model completely satisfies the packet constraints and
the procedure returns Satisfiable.

If all constraints are Satisfiable, then the resulting model
satisfies packet primitives along the way. We then generate a
binding of packet variables to bit strings as described by the
model and return Satisfiable.

Solving packet equations. All packet processing constraints
are equations between packet terms, that can be solved by
a unification procedure similar to that described in [20]. To
simplify the procedure, we observe that all packet processing
equations are of the form x = y, where x is a packet variable
and y is either a variable, the constant empty(), or a term of
the form concat(z, t) (with either z or t a variable) and that
there are no cyclic dependencies between variables.

Once the packet equation solving procedure ends, if the
result is Satisfiable, Z3 will produce a model which binds
variables to concrete values. We use the results produced to
generate concrete packets for targets running P4 and examine
the outcomes.

D. Guessing the missing packet bits
Some bugs can only be triggered if a particular table action

is applied. While the static verifier cannot know the concrete
table entries, it may determine that there is some entry which,
if matched, invokes an action whose body would trigger a
bug. To trigger such a bug, we need the rule to be present in
the table at runtime and we need to guess the concrete fields
involved in the match part the rule.

The static component of HackP4 can output a “packet
template”: the bits of a packet, together with some holes
(in our example, it would output a non-TCP IPv4 packet
with the destination address as a hole); the packet enumerator
bruteforces all possible values in those holes, trying to stumble
over a problematic packet. The performance of this can be
greatly improved by domain-specific knowledge.

The packet enumerator takes two inputs:
1) a bytestring of a packet model generated by HackP4 as

described in the previous section; all relevant fields of
the packet are set to the values needed in order to trigger
the bug, while the other fields have arbitrary values.

2) a specification file which contains a list of bitslices to
enumerate

The result is a simple “packet generator” with no knowledge
of header layout and/or structure. It starts with a template
(generated by bf4), then backtracks over all the bitslices
specified, emitting a packet for each value.

2024 IEEE 10th International Conference on Network Softwarization (NetSoft)

114
Authorized licensed use limited to: Universitatea de Vest din Timisoara. Downloaded on September 29,2025 at 06:40:25 UTC from IEEE Xplore. Restrictions apply.

The specification file is needed because HackP4 is not able
to automatically deduce the minimal set of fields which need
to be fuzzed. We list this as a current limitation in our quest for
automatic exploit generation and leave it as future research.

V. EVALUATION

We ran HackP4 on a number of P4 programs, such as
the tutorials, the switch.p4 [21] for BMv2 and its Tofino
variant, as well as the programs listed in the bf4 article [7].

We evaluated HackP4 on a machine with a 2.2GHz AMD
Ryzen 5 CPU and 32GB of memory. The most complex
program analyzed was the BMv2 version of switch.p4;
HackP4 finished its run in around four and a half minutes,
using 6GB of memory. For most other (much smaller) pro-
grams, the time and memory consumption are negligible.

We present a few exploits on real programs that showcase
HackP4’s ability to statically find bugs based on some speci-
fication, generate a concrete packet to trigger the bug and use
packet enumeration to deal with nondeterminism stemming
from table entries. We also illustrate using HackP4 to get
correctness guarantees.

A. Attacking a simple NAT

Our first attacks focus on the “simple NAT”1 depicted in
Figure 3.

§4.2 of [10] describes three attacks against this program,
manually discovered and investigated. We now show how
HackP4 is able to detect the relevant vulnerabilities and
generate concrete packets needed for two of these attacks2.

NAT overview Packets first match an if_info table which
sets metadata that tracks the packet’s ingress interface and can
take a drop decision. Next, the nat table is applied, which
decides to forward the packet in case of a hit, or send it to
the controller otherwise. Packets that must be forwarded and
have positive TTL then match the lpm and forward.

To assess potential security problems, we also built a simple
controller application which adds NAT table entries to previ-
ously unknown connections and re-sends the packet back into
the processing pipeline. Our attacks target the simple switch
architecture implemented in BMv2.

Attack setup. The scenario in Figure 4, shows four targets
connected to the switch: two normal targets, Alice and Bob,
are connected to an internal and external port respectively,
the controller program connected via the CPU port and the
attacker Trudy connected to a port in the internal network.
We assume that Trudy is connected to a known troublesome
port and thus, an entry is included in the if_info table to
drop any packet coming from this port.

Bypassing ACLs with revived packets. Given the fact that
port 2 maps to the drop action in table if_info, it raises
the expectation that all packets coming in from port 2 are

1https://github.com/p4lang/p4c/blob/main/testdata/p4 14 samples/simple
nat.p4

2The Denial-of-Service attack described in [10] relies heavily on issues
with the controller, so we ignore it.

dropped. We use HackP4 to check whether it is possible for
such packets to bypass the port filter.
(1) We start by asking HackP4 for examples where the
input port is 2, action drop is chosen from table if_info
and constrain the packet to be output on a regular port. We
achieve this by adding the following snippet to the end of the
ingress block:

if (standard_metadata.ingress_port == 2 &&
if_info.action_run == drop &&
standard_metadata.egress_spec != DROP_PORT)

bug();

(2) HackP4 answers Satisfiable and outputs a sample packet
and an instruction trace. Clearly, the trace entails hitting an
internal to external NAT mapping.
(3) HackP4 is analyzing only the dataplane, so it cannot know
what table entries exist at runtime; it only tells us that the
exploit works if there exists an internal-to-external mapping
and the packet is matched on it. However, bruteforcing a NAT
5-tuple is not feasible; the search-space is 96 bits wide (two
IPv4 addresses, two TCP ports). This is where our selective
fuzzing strategy described in section IV-D comes into play.

We use additional information about the network to reduce
the search-space. We assume the attacker knows the internal
network’s /24 address and may guess a likely pair of desti-
nation address and port (e.g. HTTP connections to a popular
search engine). Thus, the attacker only needs to guess the last
byte of the source address and the TCP source port.

We have tested this scenario on a single machine. We
populate the NAT table with a randomly generated entry
and start HackP4’s packet enumerator, using the template
resulting from static analysis and a manually defined list of
fields to bruteforce.

The BMv2 simple_switch target was able to process
packets at a rate of around 46 Kpps, completing the attack
in an average of 357 seconds (with a packet hitting the entry
within 139 seconds) over five runs.

Privilege escalation. In addition to Ethernet and IPv4, a
packet can have a CPU header, designed for communication
between the CPU and the P4 dataplane. This header sits above
the Ethernet header and is identified by a preamble of 64
zero bits. Whenever simple_nat receives such a packet,
it assumes it came from the CPU and uses the information
inside the header to overwrite metadata such as the ingress
port. Armed with this information, the attacker may forge a
packet with this header to completely bypass all ACLs by
simply pretending to have come from a different port.

We use HackP4 to check for this situation and instrument
in a similar manner as for the previous bug. This time, we
constrain the verifier to only look for packets whose original
input port is different from that used throughout the program:

if ((bit<8>)standard_metadata.ingress_port
!= meta._meta_if_index10)

bug();

2024 IEEE 10th International Conference on Network Softwarization (NetSoft)

115
Authorized licensed use limited to: Universitatea de Vest din Timisoara. Downloaded on September 29,2025 at 06:40:25 UTC from IEEE Xplore. Restrictions apply.

Ingress Pipeline

m.forward &&
ipv4.TTL>0

Bu
ffe

r

Egress Pipeline

IN OUT
ipv4_lpm

10/8 0

D
EP

AR
SE

R

PA
RS

ER

0/0 1

forward

0 0a:…
1

daddr nhop dmacnhop

bf:…true

if_info

0 0
1 1

if_index is_ext
nat

ext ipv4.valid tcp…

false

m.forward

…. 0 or 1

send_to_cpu

* cpu_encap

send_frame

0 141.85…
1

rewriteegress_
port

10.0.

m.instance_
type==0

true

false

Fig. 3: P4 program example: simple NAT

P4 switch
simple_nat

Controller

CPU port 0

Internal
port 1

External
port 2

Attacker
port 3

Alice Bob

Trudy

Fig. 4: Simple NAT attack setup

B. Attacking switch.p4 on BMv2
Among other standard forwarding functionality,

switch.p4 implements ACLs – a key security function
enforced in the dataplane. Adding an ACL rule requires
significant control-plane processing before getting mapped
into a set of P4 table entries. Is there a way to trick the
dataplane into bypassing such an ACL?

We set up a simple source IPv4 ACL rule which blocks
traffic from address 192.168.1.1. We try to break this ACL
using IPv4 packets sourced at this particular address. We use
the following query at the end of the ingress pipeline:

if (fabric_present == false
&& standard_metadata.egress_spec != DROP_PORT
&& hdr.ipv4.isValid()
&& hdr.ipv4.version == 4 && hdr.ipv4.ttl >= 1
&& hdr.ipv4.srcAddr == 0xc0a80101)
bug();

The checks on the IPv4 version and TTL are there to ensure
that the generated packet is “valid” according to the rules
installed in other tables; otherwise the packet is considered
to have a malformed IPv4 header and processing would not
reach this table.

First, we check whether we can break the ACL when
no undefined behavior is present and then we look for an
undefined behavior to trigger this policy violation. HackP4
provides no witness in either of the situations depicted above.
We can thus conclude that switch.p4 is resilient to ACL
bypass attacks even in the presence of undefined behaviors.

While this finding is expected for a well-crafted program
such as switch.p4, it does show the value of HackP4 in
offering strong dataplane security guarantees. We believe that
using HackP4 continuously against the running P4 dataplane
as a means to assess critical features (such as ACLs) is an
appropriate deployment model easily amenable to automation.

Privilege escalation. In the previous example, the query at
the end of ingress constrains the fabric_present boolean
to be false. As shown in §4.3 of [10], it is possible to use
the fabric header to bypass the ACL, in a way similar to the
vulnerability of simple_nat.

The packet produced by HackP4 has the following headers:
Ethernet, fabric_header, IPv4 with source address
192.168.1.1. The fabric_header is designed to en-
sure communication between the CPU and the P4 dataplane.
Forging such a header with the proper bypass flags, we manage
to effectively bypass any ACL set up in switch.p4 and have
the switch flood packets to the outside.

VI. RELATED WORK

The problem of Automatic Exploit Generation has been
successfully addressed in multiple works concerning x86
software [11]–[15]. Due in part to the difference in scope,
HackP4 does not employ any of the novel techniques pre-
sented in these works, but it is similar in principle.

There are very few works which look at the security of
programmable dataplanes. Agape et al. provide a high-level
overview of their security landscape [22], drawing parallels
to security in software-defined networks. Our work is com-
plementary as it provides a detailed analysis of the risks
introduced strictly by the P4 dataplane and ways in which
they may be exploited.

Ang Chen et al. [23] look at functional correctness of P4
dataplanes, trying to infer the normal distribution of packets
to code paths via symbolic execution and then use it to detect
attacks that deviate from this behavior. This class of DoS
attacks is also complementary to our work as it does not use
any bugs in the P4 dataplane.
HackP4 is, at its core, inspired by P4 verification tools [3]–

[7], but goes further than state of the art in verification
by moving into the uncharted territory of automatic exploit
generation tailored for P4 programs.

Shukla et al. [9] describe a reinforcement-learning based
fuzzer which exercises P4 bugs. HackP4 uses a simpler
template-based approach to packet enumeration based on the
output of a static analysis tool.

In a previous paper [10], we ran experiments on three
targets in order to document the actual manifestation of
undefined behavior. This forms the basis for the modelling of
target behavior described in §III. We also presented bugs on
simple nat.p4 and switch.p4, which were discovered and ana-
lyzed manually; they serve as a baseline for the kind of bugs
HackP4 should be able to detect and exploit automatically.

VII. CONCLUSIONS

In this paper, we make the case for AEG as a means
of assessing the security of programmable dataplanes. We
present the design and implementation of HackP4, a tool that
finds certain classes of bugs in P4 programs (or guarantees
their absence) and helps distinguish between benign bugs and
vulnerabilities by generating concrete attacks if possible. Mod-
elling concrete target behaviors enables HackP4 to examine
the processing of a packet as a whole; this allows for manual
intervention to define application-specific safety properties.

2024 IEEE 10th International Conference on Network Softwarization (NetSoft)

116
Authorized licensed use limited to: Universitatea de Vest din Timisoara. Downloaded on September 29,2025 at 06:40:25 UTC from IEEE Xplore. Restrictions apply.

Limitations. Our initial goals for HackP4 were to auto-
matically generate exploits starting from known undefined
behaviors. However, we face limitations which prevent it from
supporting all types of exploits automatically. At this point, the
following steps still require human input:

• describing vulnerabilities
• deciding which packet fields need fuzzing
The former is quite tricky to automate in the absence of

explicit specification. Most of the time, though, instrumenting
for vulnerabilities may be achieved by testing compliance to
higher level goals – e.g. in the ACL example in §V-B, a
high-level spec of the ACL would have sufficed for checking
ACL security compliance. These high-level goals could then
be automatically translated into P4 assertions or directly into
SMT formulas or axioms.

Understanding what packet fields need to be “guessed” by
HackP4’s fuzzer starting from the P4 program requires a more
involved analysis to reason about unconstrained header fields
[24] resulting from the reachability procedure.
HackP4 also inherits some limitations from its underlying

verification tool, bf4, in terms of the types of bugs and
vulnerabilities it can detect. Our evaluation of HackP4 used
somewhat simplified program scenarios to clearly demonstrate
its exploit-generation capabilities in realistic conditions.

Vulnerability mitigation. Based on our comparison of ex-
isting targets’ concrete behaviors, as well as observations on
common habits and mistakes in P4 programs, we propose
several measures to reduce exploitability risks.

For P4 programmers the goal is to discover and elimi-
nate code that exhibits underspecified behavior, or surprising
behavior (behavior that, even though well-defined, is implicit
or otherwise unintuitive). We believe a tool such as HackP4
serves as a useful step in the deployment pipeline, to help
detect and assess the gravity of such issues.

Secondly, target manufacturers and architecture design-
ers can harden their platforms to reduce the harmful effects
of buggy code. Architecture design should avoid overloading
the meaning of the same metadata field - as is the case for the
egress_spec metadata field in the v1model architecture.
This usually results in confusion and sometimes in exploitable
vulnerabilities - such as reviving dead packets. Another im-
portant design decision is the default forwarding action. A
packet for which no explicit forward decision is taken should
be dropped by the switch.

We may distinguish a third entity involved in the de-
ployment and functioning of a P4 dataplane, namely the
administrator. In regards to the implicit forwarding bug, an
administrator could diminish its harmful effects by leaving the
“default” port unconnected, or making it the CPU port.

REFERENCES

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, July 2014.

[2] Broadcom, “NPL: Open, High-Level language for developing feature-
rich solutions for programmable networking platforms,” 2019.

[3] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soule,
H. Wang, C. Cascaval, N. McKeown, and N. Foster, “p4v: Practical
verification for programmable data planes,” in Proceedings of ACM
SIGCOMM 2018.

[4] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu,
“Debugging p4 programs with vera,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’18, (New York, NY, USA), pp. 518–532, ACM, 2018.

[5] A. Nötzli, J. Khan, A. Fingerhut, C. Barrett, and P. Athanas, “P4pktgen:
Automated test case generation for p4 programs,” in Proceedings of
the Symposium on SDN Research, SOSR ’18, (New York, NY, USA),
pp. 5:1–5:7, ACM, 2018.

[6] M. Neves, L. Freire, A. Schaeffer-Filho, and M. Barcellos, “Verification
of p4 programs in feasible time using assertions,” in Proceedings of the
14th International Conference on Emerging Networking EXperiments
and Technologies, CoNEXT ’18, (New York, NY, USA), pp. 73–85,
ACM, 2018.

[7] D. Dumitrescu, R. Stoenescu, L. Negreanu, and C. Raiciu, “bf4: towards
bug-free p4 programs,” in Proceedings of the Annual conference of
the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer
communication, pp. 571–585, 2020.

[8] A.-A. Agape, M. C. Danceanu, R. R. Hansen, and S. Schmid,
“Charting the security landscape of programmable dataplanes,” CoRR,
vol. abs/1807.00128, 2018.

[9] A. Shukla, K. N. Hudemann, A. Hecker, and S. Schmid, “Runtime
verification of p4 switches with reinforcement learning,” in Proceedings
of the 2019 Workshop on Network Meets AI and ML, NetAI’19, (New
York, NY, USA), p. 1–7, Association for Computing Machinery, 2019.

[10] M. V. Dumitru, D. Dumitrescu, and C. Raiciu, “Can we exploit buggy
p4 programs?,” in Proceedings of the Symposium on SDN Research,
SOSR ’20, (New York, NY, USA), p. 62–68, Association for Computing
Machinery, 2020.

[11] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-
based exploit generation is possible: Techniques and implications,” in
2008 IEEE Symposium on Security and Privacy (sp 2008), pp. 143–157,
IEEE, 2008.

[12] S. Heelan, Automatic generation of control flow hijacking exploits for
software vulnerabilities. PhD thesis, University of Oxford, 2009.

[13] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and
D. Brumley, “Automatic exploit generation,” Communications of the
ACM, vol. 57, no. 2, pp. 74–84, 2014.

[14] S.-K. Huang, M.-H. Huang, P.-Y. Huang, C.-W. Lai, H.-L. Lu, and W.-M.
Leong, “Crax: Software crash analysis for automatic exploit generation
by modeling attacks as symbolic continuations,” in 2012 IEEE Sixth
International Conference on Software Security and Reliability, pp. 78–
87, IEEE, 2012.

[15] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in 2012 IEEE Symposium on Security and
Privacy, pp. 380–394, IEEE, 2012.

[16] The P4 Language Consortium, P4 16 Language Specification, 5 2023.
v1.2.4.

[17] P4 language consortium, “Designing your own switch target with bmv2,”
2019.

[18] “Intel® tofino™ series.” https://www.intel.com/content/www/us/en/
products/network-io/programmable-ethernet-switch.html.

[19] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proc.
TACAS’08.

[20] T. Liang, A. Reynolds, N. Tsiskaridze, C. Tinelli, C. Barrett, and
M. Deters, “An efficient smt solver for string constraints,” Formal
Methods in System Design, vol. 48, pp. 206–234, 2016.

[21] “Switch P4.” https://github.com/p4lang/switch.
[22] A.-A. Agape, M. C. Danceanu, R. R. Hansen, and S. Schmid,

“Charting the security landscape of programmable dataplanes,” CoRR,
vol. abs/1807.00128, 2018.

[23] Q. Kang, J. Xing, and A. Chen, “Automated attack discovery in data
plane systems,” in Workshop on Cyber Security Experimentation and
Test, 2019.

[24] M. Jonáš and J. Strejček, “On simplification of formulas with uncon-
strained variables and quantifiers,” pp. 364–379, 08 2017.

2024 IEEE 10th International Conference on Network Softwarization (NetSoft)

117
Authorized licensed use limited to: Universitatea de Vest din Timisoara. Downloaded on September 29,2025 at 06:40:25 UTC from IEEE Xplore. Restrictions apply.

