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ABSTRACT
Recent verification works have found numerous bugs in P4 pro-

grams. While it is obvious bugs are undesirable, it is currently not

known what effects these bugs have in practice? In this paper we

take a first look at the potential of exploitation for such bugs: we

first examine how three different targets behave when unspecified

behaviours are triggered, finding a range of potentially exploitable

behaviours; we use these to attack two concrete programs. We find

that the security impact of such exploits can be high, but that the

severity of the attack depends on the target.
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1 INTRODUCTION
Following the trend towards network programmability, languages

such as P4 [1] or Broadcom’s NPL [2] allow programming data-

planes that can run at line rate in production networks, disproving

the decades-old mantra that the network is either flexible or fast.

Programmable switch deployments have already started, and are

expected to continue: Barefoot’s Tofino switches are used in pro-

duction, and Tofino2 will be shipping soon; Broadcom recently

announced Trident 4, a new programmable chip (shipping in 2020).

Making dataplanes easily programmable enables unprecedented

network flexibility, but it may come at the cost of robustness. A

recent array of verification works has examined existing P4 pro-

grams [3]–[6], finding many categories of bugs in most of them.

A common bug is to access invalid headers (headers which the

current packet does not have, but which are syntactically in scope),

but many others exist. Verification work can pinpoint such bugs as

long as the programmer specifies a snapshot of the table rules [4]

or invariants that will be obeyed by the table rules [3]. With this

feedback, it should be relatively simple for programmers to remove

bugs from P4 programs. Unfortunately, eliminating bugs may be

more complicated in practice. Such tools require significant input
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from the programmer and a degree of verification expertise, and

are still research prototypes.

In this paper we take a first step at understanding to what extent

these bugs are exploitable in practice. We first code a series of

simple, buggy programs to observe the actual behavior of targets, in

those cases where the standard leaves it undefined. We tested three

targets: the bmv2 software switch, P4-NetFPGA and Barefoot’s

Tofino switch. Then we examine a simple NAT implementation in

P4 to see if it contains any exploitable bugs, as well as as switch.p4,

the most complex P4 program publicly available today. We find that

exploiting these two P4 programs is possible by powerful attackers

(that know the program, the table rules and are directly attached

to the switch) and that the exploit depends on the target. We then

discuss the implications of our findings to network security.

2 BUGS IN P4 PROGRAMS
P4 enables programmers to specify how packets should be processed

by a switch. A P4 program has a few parts, as shown in Figure 1:

• A parser which dictates how the packet is transformed from

bits into headers. The parser specifies all possible header

combinations the P4 program will accept. After the parser

executes, the header fields are accessible as “global” variables

(where each header is a structure containing several fields)

which the rest of the program can access.

• Match-action tables than can match on arbitrary header

fields and packet metadata, and that can execute user-defined

actions upon a match. Actions can modify header fields or

metadata, can add or remove headers and decide the packet’s

fate (e.g. clone, drop, forward).

• A control block which specifies how the packet will be

matched against the tables; typically there are two control

blocks, one for the ingress and one for the egress pipeline.

• A traffic manager which handles buffering, schedules pack-

ets on egress ports, drops the ones which are marked for

dropping, implements prioritization and available AQM al-

gorithms. This component is given by the target and can be

typically configured but not programmed.

• A deparser that specifies how the active headers are laid out

on the wire (if not provided, the parser is also used for this

purpose).

A P4 architecture defines how these parts are connected and the

interfaces between them. A P4 target is a device which supports one

or more architectures and can run programs written for those archi-

tectures. Example architectures include simple switch and simple

router (implemented by bmv2), Tofino Network Architecture (TNA)

supported by the Tofino switch and Portable Switch Architecture

(or PSA, supported by multiple targets including bmv2 and Tofino).

It is important to note that the P4 program only partially specifies
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Figure 1: P4 program example: simple NAT
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Figure 2: Packets used to explore target
behaviour.

the packet-processing functionality: the full functionality also in-

cludes the table entries provided at runtime by a controller running

on the switch or in a centralized location. The table entries specify

which packets will match and what action should be applied.

In the NAT example, packets first match the if_info table which
sets metadata that tracks the packet’s ingress interface and can

decide to drop the packet. Next, all packets match the nat table

which decides to forward the packet in case of a hit, or send it to the

controller otherwise. The packets that must be forwarded and have

positive TTL match the lpm and forward tables before they reach

buffering. After buffering, packets are either sent to the controller

or on the wire, using the send_to_cpu and send_frame tables.
Prior verification work [3]–[6] has identified classes of bugs that

P4 programs can exhibit. We are interested in those bugs which

involve undefined behaviors, such as:

• Accessing fields from invalid headers (headers that are not

valid for the current packet).

• Reading fields from uninitialized headers or metadata.

• Out-of-bounds header stack accesses.

And bugs which involve architecture-specific behaviors:

• The possibility to create infinite loops, where the same packet

is repeatedly resent to the beginning of the pipeline.

• Unintentionally processing dropped packets.

• Implicit forwarding decision for certain packets.

Existing verfication works can in principle find all instances of

such bugs, even in complex P4 programs, but to do so they require

the programmers to carefully describe the type of table rules that

might be inserted in the program at runtime; for p4v [3] and p4-

assert [6] this is a controller specification (700 line specfication for

the switch.p4 program), while for Vera [4] this is a representative

snapshot of the table entries. Both approaches require a lot of

programmer effort, but do identify all bugs using this effort; it

remains to be seen if such techniques are adopted.

Consider this code snippet taken from our simple NAT:

if (meta.do_forward == 1 and ipv4.ttl > 0){
apply(ipv4_lpm);
apply(forward); }

This code assumes the ipv4 packet is valid for the current header

at this point in the program. With certain values in the NAT tables,

this assumption is incorrect: a packet without an IP header can reach

this point, and the target will read the ttl from the invalid ipv4

header. Furthermore, the ipv4_lpm matches on the IP destination

address, resulting in an unpredictable forwarding decision.

We are interested in understanding what would happen in prac-

tice if such programs were deployed. The ideal behaviour would

be for the switch to raise an exception: the packet is ejected from

the pipeline and the controller is informed of the exception; this is

the equivalent of a hardware trap in commodity processors when

unmappedmemory is accesed. Exceptions, however, are very expen-

sive to implement in hardware; we thus expect that such packets

will be processed, and the effects of writing or reading invalid

headers will depend on the target. We explore target dependent

behaviours in detail next.

3 BUGS ON REAL TARGETS
To understand the effects of P4 bugs on real targets, we wrote simple

P4-14 and P4-16 programs and ran them on the three most popular

P4 targets today:

• BMV2 software switch with the simple_switch [7] target is a

favourite for early development and simple testing, however

it is not meant for production deployment. It offers all the

functionality of a P4 target, but its performance is subpar

(30Kpps [8]).

• P4-NetFPGA [9] toolchain that compiles P4 programs into

bitfiles that can be run on the NetFPGA SUME board (four

ports at 10Gbps) [10].

• The Barefoot Tofino switch is the only production-grade

programmable switch today; it’s also fast, with up to 65

ports running at 100Gbps.

For the bmv2 target, we use a virtualized environment where

we deploy a P4 program, inject packets with Scapy and explore

the returning packets with tcpdump. For the Tofino, we deploy the

program and then use one connected host to generate packets (with

Scapy) and examine the results. For NetFPGA, we used P4-NetFPGA

to produce bitfiles and deployed them on the Sume board, as well

as in the cycle-accurate Vivado simulator.

3.1 Reading invalid headers
Wewrote a program that executes an action for all incoming packets

which copies the IPv4 header checksum over the Ethernet ethertype

field (both 2B wide), and sends the packet back out on the same

interface.

We then sent several Ethernet/IPv4 packets to the target followed

by a packet containing only the Ethernet header, which triggered

the target to read the invalid IPv4 header checksum field.
1
. All

packets were padded to 64 bytes (the minimum Ethernet frame

size) with arbitrary bytes. We then examined the contents of the

ethertype field in the Ethernet-only packet as it left the target.

1
We term as faulty such fault-triggering packets
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Both the P4-NetFPGA and the Tofino returned packets with ether-

type of 0, suggesting that the invalid IPv4 header access yielded

value 0. The bmv2 simple_switch target, however, returned pack-

ets with ethertype set to the value of the previous Ethernet/IPv4

packets, thus exfiltrating data from previous packets that were

forwarded by the switch.

To confirm these results, we ran another test where we defined

one header called Explore which has the same fields as IPv4. Explore
follows Ethernet when the ethertype is 0x809, as shown in Figure 2;

Explore and IPv4 are mutually exclusive with regards to the parser.

The P4 program will simply send IPv4 packets through unchanged;

explore packets, however, are faulty and trigger an action that

copies over all but one of the fields of the invalid IPv4 header into

the fields of the valid Explore header; only the protocol number is

set to a constant that does not exist in the IPv4 header.

We again injected multiple IPv4 packets followed by one explore

packet and checked the resulting Explore header. For the bmv2

target, this header echoes values from the previous IPv4 packets,

resulting in a reliable data exfiltration attack from the switch. For

the P4-NetFPGA, the Explore is all zeros except the protocol field,
consistent with the previous results.

For Tofino, the behaviour is different: the explore header is un-

changed, except for the protocol field which is set to the expected

value. This behaviour happens with or without a check for ipv4

not valid before applying the copy action. There are two possible

explanations for this behaviour: the first is that actions which in-

volved invalid headers are not executed on the Tofino; this however

contradicts our previous findings where reads return 0. Another

explanation is that the compiler maps the two mutually exclusive

headers (explore and ipv4) at the same starting address, therefore

the ipv4.tll and explore.ttl field are stored at the same memory lo-

cation, making the copying a no-op. Further experiments seem to

confirm this hypothesis.

So far, we only read invalid headers in actions. Is the behaviour

similar when an invalid header is read in the control block? To find

out, we used a program which tests all possible values of the IPv4

flags field and triggers a unique action for each value:

if (ipv4.flags==0) apply(flags0);
else if (ipv4.flags==1) apply(flags1);
else if (ipv4.flags==2) apply(flags2);...

Each flagsY table has a single action which is applied to all

packets, setting the ethertype field to 0x80Y. As previously, we send

Ethernet/IPv4 packets followed by one Ethernet/Explore packet

and examine the value of the ethertype of the return packet to

understand what value is read by the control block.

We find that the bmv2 target reads the flags value from previous

IPv4 packets, the P4-NetFPGA reads 0 and the Tofino reads the

value of the Explore flags field, further confirming that the compiler

overlaps these headers in memory.

We wondered if table lookups using invalid headers yield the

same result. We used a single table with as many actions as pos-

sible values for the IPv4 flags field, where actionY set the value

of ethertype to 0x80Y, as above. The behaviour of P4-NetFPGA

and the Tofino is consistent with our previous observations (0 and

Y read from the explore field), however the bmv2 target behaved

differently: 0 was matched in the table, not the values of previous

IPv4 headers as seen in previous tests; this seems to be because of

a special case in the bmv2 code that clears the key before lookup.

Finally, we explored what concrete values are obtained in other

cases which are left unspecified by the standard (e.g. uninitialized

variables). We found that all targets, even bmv2, yield sane defaults

such as 0 or "the first defined value" (for enum and error types).

Our findings are summarized in Table 1.

3.2 Writing invalid headers
To gain further insight on target behaviour with invalid headers, we

wrote a program that sets all the fields of the invalid IPv4 header

to predefined constants, then checks if any of these writes has

succeeded; if so, the ethertype field is changed to a predefined value.

The P4_16 standard explicitly allows writes to invalid headers to

modify undefined state in the system (section 8.21).

Both the bmv2 simple_switch and the P4-NetFPGA targets ex-

ecute the write to the invalid header and then the read succeeds,

implying that the invalid header lives in its own memory area, and

the write is not conditioned on the header being valid.

Tofino also executes the writes and reads the written value;

however, writing to the invalid IPv4 header results in changes to

the Explore header. This is because the header layout in memory

can vary quite a lot for similar headers. For instance, if we change

the Explore header by adding one dummy field at the end (see Figure

2), IPv4 and Explore either do not overlap anymore, or partially

overlap, depending on the size of the dummy field.

3.3 Loops
To understand looping behaviour, our aim was to understand what

effects infinitely looping packets have on other packets in the

pipeline. We coded a P4 program that behaved differently depend-

ing on the type of packet received: it always looped one type of

packet infinitely (using one of the recirculation options available),

it looped another type of packet just once, and finally allowed other

packet types through. The SimpleSumeSwitch architecture used

on P4-NetFPGA does not support recirculation, so we do not test

loops there.

The behaviour also depends on how loops are implemented. In

case of the resubmit primitive, we observed that in BMV2, infinitely

resubmitted packets essentially block the ingress pipeline, drop-

ping all subsequent packets. However, due to hardware and safety

reasons, on Tofino a packet may only get resubmitted once; it gets

dropped if resubmitted again.

Another way to implement loops is to use egress to egress clone

operations. We created a program that clones IP packets on the

egress pipeline to egress and also retains packet metadata. Our

results indicate that both BMV2 and Tofino infinitely loop packets

through the egress pipeline effectively sending a clone to the con-

figured egress port, and also looping the packet to the beginning of

the egress pipeline. This way, a single ICMP echo request resulted

in (millions of) packets being continuously sent to the destination.

As creating infinite loops is possible on some targets, program-

mers need to take care in avoiding them whenever they employ

recirculation primitives. P4 architectures have special metadata

fields whose values indicate the path taken by a packet (normal,
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BMV2 NetFPGA Tofino

read from invalid header

action previous valid value 0 0

control previous valid value 0 0

table key 0 0 0

read from uninitialized

header 0 0 0

variable 0 0 0

out param 0 0 0

write to invalid header changes undefined state changes undefined state changes undefined state

out-of-bounds runtime indexes runtime indexes runtime indexes

header stack access unsupported unsupported unsupported

infinite loop

resubmit blocks processing unsupported max one resubmit

e2e clone destination flooding unsupported destination flooding

ressurecting packets set egress port set egress port set egrees port and mark undropped

implicit forwarding port 0 drop drop

Table 1: Concrete behaviors on tested targets

resubmitted, recirculated etc.). These can be used to avoid resub-

mitting a packet more than once. Alternatively, one can implement

a TTL field in user-defined metadata (conserved by resubmission)

and write the checks and changes necessary to manage this field, a

recommendation that can also be found in the PSA documentation.

3.4 Resurrecting dead packets
Dropping a packet simply involves changing some metadata to

mark the packet as dropped, without stopping its processing: it

is simply too expensive to eject the packet from the pipeline. The

dropped packet will then continue through the pipeline until buffer-

ing where it should be dropped; however, the drop decision may

be accidentally cancelled, resurrecting the packet. In P4-14, the

function to mark the packet for dropping was confusingly called

drop, which could trick programmers into assuming the packet

gets dropped straight away; P4-16 leaves dropping mechanisms

completely architecture-specific.

Certain architectures make it easier to accidentally resurrect

packets marked for dropping. The v1model architecture is such a

case because it uses the standard metadata field egress_spec both

for unicast routing and drop marking. When a packet is marked to

be dropped, the target sets the egress_spec metadata to a prede-

fined value (511). When a dropped packet triggers an action that

sets the egress_spec to the value of an egress port, that packet

will be revived instead of being dropped.

The Portable Switch Architecture uses a special metadata field

to mark dropped packets. Thus, the only way to resurrect a previ-

ously dropped packet is to set the egress port and also unmark the

packet for drop. The latter action makes the programmer’s intent

unambiguous. It is clear that he did not accidentally, but rather
intentionally, revive a packet.

The SimpleSumeSwitch architecture also uses a special metadata

field to mark dropped packets, but the field is currently marked

“deprecated”; the documentation explicitly indicates that dropping

should be marked by setting the dst_port metadata to 0, making

it easy to resurrect packets.

3.5 Implicit forwarding behaviour
What happens to a packet whose output port was not set? Is it

dropped or does it get forwarded in a target specific manner? Our

exploration shows that in simple_switch, whenever the egress_spec

metadata is unset at the end of the ingress pipeline, the packet is

sent out to port 0. This is dangerous, since, under the right circum-

stances, a malicious user could flood clients connected to port 0

with traffic of its own choosing, while at the same time bypassing

ACLs.

As far as hardware targets are concerned, we observe that the

Tofino safely defaults to dropping a packet which doesn’t specify a

valid egress port. P4-NetFPGA also defaults to dropping a packet,

which is consistent with the fact that uninitialized fields are set to

zero (including the dst_port metadata); zero is not a valid port as

P4-NetFPGA uses a one-hot encoding for ports.

4 EXPLOITING P4 PROGRAMS
Our experiments have revealed how multiple targets implement

behaviors left undefined (or architecture-defined) by the P4 stan-

dard and they hint to possible exploits against such targets. In this

section we provide an initial exploration of possible attacks and

their effects for generic programs, as well as looking in detail at

two P4 programs.

We note that bugs in P4 programs are reminiscent of similar bugs

in general-purpose programming languages such as C: reads from

invalid headers are similar to use-after-free attacks and writing

invalid headers are similar to writes through dangling pointers.

However, despite many similarities between P4 and C, the attacks

possible on P4 targets are inherently weaker than those possible

on buggy C programs for multiple reasons:

(1) While the C standard states that the behaviour of programs

that read or write invalid memory locations is undefined, the P4

standard is more restrictive: only the resulting value is undefined

(for reads) or the location of the write (for writes), not the behaviour

of the program after the fault.

(2) The P4 code is immutable once deployed, so classical code-

injection attacks have no equivalent in the P4 world.

(3) The P4 program cannot directly control the next instruction to be

executed, since the control flow is immutable; there is no equivalent

of a “jmp addr” or a “ret addr” in the P4 world. This means that code

reuse attacks, such as Return Oriented Programming attacks [11],

[12] are not possible and that control-flow integrity is provided

automatically [13].
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Most attacks against P4 programs can be classified as Data Flow

Integrity attacks [14] where the attacker can read or write data

that the programmer had not intended. We explore these after we

discuss possible attackers.

Attacker model. There are two dimensions which determine the

strength of an attacker: target knowledge and connectivity.

The strongest P4 attackers have full knowledge: they know the P4
program deployed on the target, the target type, have information

about intrinsic metadata and know the currently configured table
entries. This is the strongest attacker possible; weaker attackers
include those that know only the P4 program and target type but

not the table entries, those that do not even know the target, etc

(partial knowledge).

Another dimension is how the attacker is connected to the target.

The strongest attacker is directly connected to the target (direct),
which means it can inject packets with exotic headers, including

at layer 2. The second strongest attacker is in the same LAN with

the target, and it can create exotic headers at layer 3 and above,

for instance our Explore header. An even weaker attacker is one

that lives in another internal network, being forced to create well-

formed IP packets to get them to the target, but unencumbered by

Internet ACLs. The weakest attacker is one in the public Internet,
and it can reach the target only subject to checks from various

stateful firewalls (e.g. that allow only outbound connectivity).

Next, we assume that the attacker has full knowledge of the

target and discuss where the attack can be mounted from; weaker

attacker types are subject of future work.

4.1 Possible attacks on buggy P4 programs
Based on the concrete behaviors of the tested targets, we employ a

STRIDE [15] analysis to group possible threats for a P4 dataplane.

STRIDE is a widely used security model consisting of six threat

categories designed to cover most attacks observable in practice.

Spoofing. Reading arbitrary values (either from previous packets,

zeros or from the same packet at different offsets), resurrecting

dropped packets and implicit packet processing behaviour can help

the attacker bypass ACLs the P4 program is trying to enforce. An

attacker can craft a packet whose provenance (ingress port, layer

2/3 host etc.) will be mistaken or overwritten by the program, such

that later sections of it interpret it differently.

Tampering. All targets keep some global state in registers which

is updated conditionally on the values in the packet. If the program

has bugs, the attacker can exploit these to pollute such global state,

making it unreliable — for instance, dropped packets counted by

the ACL before they are resurrected by the attack would affect the

integrity of such logging mechanisms, which could confuse the

network operator and make the attack go undetected for longer.

Repudiation. With regards to a programmable dataplane as our

considered system, we do not see how repudiation threats are ap-

plicable.

Information disclosure. Possibly the worst attack against P4 pro-
grams is snooping on other traffic by forcing the switch to read from

invalid headers. Buggy tunneling code is particularly vulnerable as

the outer header is copied to the inner header; if the outer header is

invalid yet the tunneling action is executed, the inner header may

still be emitted.

A BMV2 simple_switch target running buggy programs is vul-

nerable to this threat, as the invalid reads will return values from

previous packets, allowing an attacker to snoop on other traffic go-

ing through the switch. When a vulnerability exists, mounting this

attack locally and in the LAN is feasible, from the internal network

it may be possible, and difficult from the public Internet. From our

experience so far, snooping on other traffic with this approach is

not possible for the Tofino or P4-NetFPGA targets.

Denial-of-service. A particularly disruptive attack is denial-of-

service. By sending a single packet to the BMV2 target we can

make it black-hole all other traffic (exploiting a resubmit loop).

Sending an ICMP packet to a Tofino or BMV2 target running a

vulnerable P4 program that clones on egress results in a stream of

packet copies being emitted at output indefinitely; such an attack

could bring down the target network / machine. This attack can be

mounted by local, LAN, and internal attackers, and could even be

mounted by public attackers under the right circumstances.

Elevation of privilege. The same factors that can lead to spoofing

(reading arbitrary values, resurrecting dropped packets, implicit

packet processing behavior) enable privilege escalation attacks, in

which the attacker can send a specially crafted packet that could

bypass security filters. While the severity and effectiveness of such

attacks remain to be established, we show below that these are

possible in two P4 programs that we have examined in more detail.

We now assume the strongest possible attacker (full knowledge,

local) against a BMV2 target and explore concrete attacks that are

possible in this scenario.

4.2 Attacking a simple NAT
Our first attack uses the Simple Nat code available as part of P4

tutorials. We also built a simple controller application which adds

NAT table entries to previously unknown connections. We perform

our attack against the simple_switch target of BMV2. The setup

includes three hosts: an internal host (I), an external one (E) and a

rogue host (R) (the attacker), all directly connected to the target.

Bypassing ACLs with revived packets. The first observation is

that reviving dead packets may lead to security issues (such as ACL

bypass). In this example, the if_info table maps ingress ports to

their nature: internal or external and additionally serves as a per-

interface ACL. The controller correctly sets up I as an internal host

and E as an external one. Furthermore, the controller marks packets

from R’s interface to be dropped. The packet continues through the

pipeline and encounters the NAT table. If the attacker guesses an

existing NAT mapping, he can get his packet past the NAT table to

the IPv4 routing table. Here, the egress_spec is overwritten and the

packet is resurrected.

DoS. Another exploit is having the controller forcibly populate the

nat table with entries of the attacker’s choosing. Assume that R

knows a class of IP addresses for which NAT is allowed. Then, he

may send out TCP packets originating from distinct IP source/TCP

source port into the NAT box. Note that the per-interface ACL

should filter R’s requests and no traffic should ever go out of the P4

program. Nevertheless, the drop rule in the if_info is equivalent
to marking the packet for being dropped while at the same marking
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the port with a default nature. In the p4-14 spec, metadata are

implicitly assigned the value zero, which corresponds to an internal

port. The NAT table cannot distinguish between a packet received

from I and one received from R which is marked for dropping. Since

R knows the IP addresses which may get natted, he can force a

NAT miss and have its packet redirected to the controller. If the

controller is "dumb" (as in our example), it will add a new entry to

the table and allow the packet to pass. This is a DoS attack where

the NAT table is flooded with connections of the attacker’s choosing.

Privilege escalation. We have investigated a third kind of exploit,

which leverages the special CPU header. In our example, a special

kind of header was envisaged for communication between the CPU

and the P4 dataplane. This header sits below the Ethernet header

and is identified by a preamble of 64 zero bits. It contains several

metadata fields; most importantly, the ingress_port. Whenever the

P4 program receives such a packet, it assumes it came from the

CPU and uses the information inside the header to overwrite the

ingress port.

Armed with this information, R may forge such a packet and

completely bypass all ACLs by simply pretending to have come

from a different port. The egress pipeline will ensure that the CPU

header gets popped and a correct IPv4 packet egresses the switch.

Programs that handle special packets which bypass most data-

plane logic should include necessary checks for the origin of these

packets, in order to prevent such attacks. The P4 program should

be aware of a particular port meant for communication to and from

the CPU and should reject any packet with a CPU header received

from another port. The PSA architecture defines a special macro

(PSA_PORT_CPU) for this port; v1model does not, but a programmer

could make a definition of their own.

The previous tests show that even programs implementing sim-

ple tasks, such as simple_nat may be subject to security issues when

the controller is "dumb" and that additional checks are needed to

safeguard against such issues. We now turn our attention to a more

complex and well engineered example, switch.p4.

4.3 Attacking switch.p4
switch.p4 is the reference P4 dataplane program. It provides sup-

port for many commonly used network protocols and may serve

as a data center ToR router implementation. For our tests, we use

the open-source version of switch.p4
2
and its underlying drivers -

switchAPI, switchSAI and switchlink.

We have set up a simple source IPv4 ACL rule which blocks

traffic from a given address (A). We tried to break this ACL using

IPv4/IPv6 packets sourced at A, but failed in doing so.

We give it to the clean levels of abstraction which sit on top of

switch.p4 (switchAPI and switchSAI). Our observation is that, for

complex dataplane programs, it is unfeasible to directly populate

table entries without introducing bugs. Thus, abstraction helps

preserve safety invariants while keeping flexibility and performance

guarantees.

However we were able to perform a privilege escalation attack.

We observe that, much like simple_nat, switch.p4 also has a header

destined to ensure communication between the CPU and the P4

dataplane. If we forge such a headerwith the proper bypass flags and

2
https://github.com/p4lang/switch

an internal IPv4 packet with source A, we manage to effectively

bypass the ACL set up in switch.p4 and have the switch flood

packets to the outside, thus breaking the ACL.

This happens because there is no extra sanitization step to ensure

that packets bearing the CPU header are actually originated at the

CPU. An attacker leveraging this observation would thus be able

to bypass almost all checks enforced therein.

5 RELATEDWORK
While there is a wide body of literature discussing the security

of traditional programming languages, there are very few works

which look at the security of programmable dataplanes. Schmid

et al. provide a high-level overview of security of programmable

dataplanes [16], drawing a parallel to security in software-defined

networks (e.g. Openflow). Our work is complementary as it provides

a detailed analysis of the risks introduced by P4 and ways in which

they may be exploited. Ang Chen et al. [17] look at functional

correctness of P4 dataplanes, trying to infer the normal distribution

of packets to code paths via symbolic execution and then use it to

detect attacks that deviate from this behaviour. This class of DoS

attacks is also complementary to our work as it does not use any

bugs in the P4 dataplane.

6 DISCUSSION
Asmost software, programmable data planes can exhibit bugswhich

may be exploited by attackers. The most vulnerable target is the

bmv2 software switch which leaks information from previous pack-

ets; P4-NetFPGA and Tofino do not leak such information, but may

be vulnerable to other attacks. We acknowledge that the bmv2 soft-

ware switch is meant as a quick means of P4 prototyping and is not

expected to be deployed in production; nevertheless it is a popular

target and such data leaks must be fixed.

Bugs that originate from accessing undefined values (such as in-

valid or uninitialized headers) are easy to prevent. There already are

several [3], [4] existing solutions capable of automatically detecting

such bugs.

From the target manufacturer point of view, it seems that some

behavioral alternatives are better than others, with respect to the

ease with which bugs could be exploited. For example, marking

a separate metadata field for dropped packets (as is the case for

Tofino) makes it hard to resurrect dead packets "by mistake", simply

by setting the egress port.

Our attacks on simple_nat demonstrate how dataplane bugs,

coupled with a lack of coordination between the dataplane and

control plane lead to dataplane misuse and security issues. The

well-engineered switch.p4 lacks this kind of miscoordination, but

the absence of some necessary checks means it can still be exploited

by a powerful attacker. Our experience shows the need for programs

to always sanitize packets which may lead to privilege escalation

and only allow them from trusted agents (such as the CPU).

Nevertheless, these attacks require very strong attackers and

appear difficult to mount from the Internet. In future work we

will scrutinize more programs and use weaker attackers to fully

understand whether P4 poses meaningful security risks compared

to fixed-function switches.
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