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Abstract

Various full bisection designs have been proposed for
datacenter networks. They are provisioned for the worst
case in which every server wishes to send flat out and
there is no congestion anywhere in the network. How-
ever, these topologies are prone to considerable under-
utilization in the average case encountered in practice.
To utilize spare bandwidth we propose GRIN, a simple,
cheap and easily deployable solution that simply wires
up any free ports datacenter servers may have. GRIN
allows each server to use up to a maximum amount of
bandwidth dependent on its available network ports and
the number of idle uplinks in the same rack. This design
can be used to augment almost any existing datacenter
network, with little initial effort and no additional main-
tenance costs.

1 Introduction

FatTree [1] and VL2 [3] are recently proposed datacen-
ter network topologies that are being deployed into pro-
duction networks and offer full-bisection bandwidth: a
high profile example is Amazon’s EC2 Infrastructure-as-
a-Service cloud that utilizes a 10Gbps FatTree network
for its more powerful cluster-compute instances, and a
topology resembling VL2 for their other instances[8].
Other major players are using or deploying similar net-
works.

Full-bisection bandwidth networks are appealing be-
cause they allow datacenter operators and application de-
signers to be mostly agnostic of network topology when
deciding how to run distributed algorithms or where to
place data. In theory, congestion can only appear on the
host access links - by design, the network core should
never become a bottleneck. For data intensive algorithms
(such as the shuffle phase of map-reduce computation),
a full-bisection network offers the best possible perfor-

mance. On the downside, full-bisection networks incur a
larger cost than oversubscribed networks.

Datacenters heavily rely on the concept of resource
pooling: different applications’ workloads are multi-
plexed onto the hardware, and any application can in
principle expand to utilize as many resources as it needs
as long as there is capacity anywhere in the datacenter.
In effect, the resources are pooled in time (when differ-
ent users access the same machine at different times) and
in space (where distributed applications can scale up and
down as needed). Also, mechanisms are put in place to
ensure their fair use.

Measurement studies [3, 6] show that datacenter net-
works are underutilized. Many links are running hot for
certain periods of time, while even more links are idle,
which results in an underutilized core. In this paper we
set out to extend the resource pooling principle to data-
center networks. Our goal is simple: when a host wants
to send flat-out, it should be able to use as much of the
idle capacity of the network as it needs. It should be
possible to leverage capacity from everywhere: any flow
should be able to fill any part of the network, as long as
it wants to do so and the network is underutilized. The
effect such network pooling could bring is very appeal-
ing: either the network core is fully utilized or there is no
application that is bottlenecked by the network. In both
cases, the network is providing the best possible perfor-
mance to the applications.

Achieving this goal is clearly not feasible in today’s
datacenters where hosts connect using a single gigabit
link to the network; this link becomes the bottleneck
when hosts want to send flat-out. The question we an-
swer in this paper is how should datacenter topologies
change to achieve resource pooling?

We seek solutions that are both cheap and deployable
in today’s production networks, and apply to any full-
bisection network, not just FatTree or VL2. Solutions
should preserve the same worst-case bandwidth guaran-



Figure 1: Enhancing a VL2 topology

tee provided by full bisection networks, and should en-
sure that hosts and applications are properly isolated.

Our proposed solution is very simple: any free port 1

existing in any server should be randomly connected to
a free port of another server in the same rack. Servers
can then communicate using a path provided by the orig-
inal topology, or via one of the servers they are directly
connected to. To be able to utilize multiple paths simul-
taneously, and to advertise additional paths, the servers
use Multipath TCP [7]. Our solution can function seam-
lessly over existing datacenter networks.

The best case benefits are obvious: for every addi-
tional port used, a server can send 1Gbps more traffic
if the neighbour’s uplink is not utilized at that point in
time. Our simulation experiments with synthetic traffic
patterns and 2 additional ports show that when 30% hosts
are active the throughput increase is between 70% and
170%, depending on the traffic matrix used.

There are also potential caveats: servers must route
traffic for other servers and this can impact their perfor-
mance. Unlike other topologies such as BCube[4], our
design ensures that a server never forwards more than
2Gbps of traffic. Our experiments show that this will
only utilize at most 10% of a single core at full speed,
when dealing with MTU-sized packets.

2 Problem Statement

We want to change existing topologies to allow hosts to
utilize idle parts of the network when other hosts are not
active. Good solutions share the following properties:

Ability to scale: cost is a major factor that determines
what is feasible to deploy in practice. Using more
server ports should increase performance and incur
little to no additional costs.

Fairness and isolation: access to the shared resource
pool must be mediated such that each server gets

1A quick study shows that between 1 to 3 free ports should be com-
monly available in servers today, as all major equipment vendors pro-
vide either dual-port or quad-port gigabit NICs in their default blade
configurations.

a fair share of the total bandwidth. Misbehaving
servers should be penalized, and they should not ad-
versely affect the performance of the network.

Widely applicable: it should be possible to apply the
solution to existing or future networks.

Incrementally deployable: it should be possible to de-
ploy the solutions on live datacenter networks with
the least possible disruption. This implies hardware
or software changes to the network core (including
routing algorithms) are out-of-scope. Further, up-
grading only an existing subnet should bring appro-
priate benefits.

Full-bisection networks offer multiple paths between
any pair of servers. In the VL2 network shown in Fig.1.a
there are at least four paths between any pair of servers
in different racks. Datacenter networks2 give every host
a single IP address and leave to the network the task of
mapping traffic onto the available paths. The network
runs an intra-domain routing algorithm such as OSPF
on the aggregation and core switches (effectively these
are routers). The algorithm’s output consists of multi-
ple equal-cost routes towards servers. When forwarding
traffic, the switches use Equal Cost Multipath (ECMP) to
hash each connection onto one of the available paths 3

Multipath TCP is an evolution of TCP currently being
standardized by the IETF: it takes a TCP connection and
splits it across multiple paths, while offering applications
the illusion they are still working over TCP. MPTCP has
already been proposed as a replacement for TCP in dat-
acenters [7]. Its biggest benefit for VL2 and FatTree is
avoiding collisions caused by ECMP when multiple con-
nections are placed onto the same congested path, despite
the existence of idle capacity elsewhere in the network.

Any solution we devise will have to use multiple NICs
at servers. TCP is unable to split a flow across multi-
ple interfaces, so adding more NICs will bring signifi-
cantly less performance benefits. MPTCP allows a trans-

2at least as seen from Amazon’s EC2 cloud
3VLANs are another popular solution to expose multiple paths to

hosts. Hosts will have as many addresses as possibly paths, and will
implement flow placement on paths.
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port connection to grow beyond the 1Gbps offered by
one NIC port. It also provides by design some of the
goals we require - in particular it enforces fairness across
collections of links [11].

3 Solutions

3.1 Multihoming
Barring extensive changes to the original topology, the
most straightforward solution is to multihome servers by
using additional TOR switches. We add a TOR switch
for every additional server port (see Fig.1.b), so that each
server is connected to each of the multiple TOR switches
from its rack. In order to keep the rest of the topology
unchanged, we evenly divide the uplinks of the original
TOR switch between all the local TOR switches. The
resulting topology is oversubscribed, but now each server
can potentially use much more bandwidth.

Multihoming brings additional costs in terms of
switching equipment, rack-space, energy usage and
maintenance. As every additional server port could re-
quire an additional switch, this solution does not scale
well with the number of server ports used. Moreover,
for a topology such as VL2, adding TOR switches will
leave some of their 10Gbps ports unused, even though
they contribute to the total cost of the network.

Each server must receive an additional IP address for
every new link. After addresses are assigned, MPTCP
and ECMP are enough to utilize the network: servers
only have to choose the destination address for each sub-
flow, and the routing will do the rest.

3.2 GRIN
Another solution is to interconnect servers directly us-
ing their free network ports, while keeping the original
topology unchanged. Each pair of servers that are di-
rectly connected in this manner become neighbours. In-
tuitively, when a server does not need to use its main
network interface, it may allow one or more of its neigh-
bours to ”borrow” it, by forwarding packets received
from them (or packets addressed to them) to their final
destination. This solution is depicted in Figure 1.c.

When a server wishes to transmit, it can use both the
uplink and the links leading to its neighbours. Con-
versely, the destination can be reached through both its
uplink and via its neighbours. We call the links used to
interconnect servers horizontal or GRIN links, and those
that connect servers to the original topology uplinks.

Which servers should we interconnect? It is best to
connect those servers that usually do not need to access
the network at the same time, otherwise interconnec-
tion will not bring major gains beyond improving local

throughput. Many distributed applications have work-
loads that correlate the idle and busy periods across all
the servers they are running on, as do the shuffle or data-
output phases of map-reduce computations. These appli-
cations tend to distribute their work across many racks to
acquire sufficient servers and to improve fault tolerance.
Ideally, we would know beforehand which nodes run
which applications and we would interconnect servers
running different applications in the hope that the usage
peaks from the different applications are spread out in
time. However, this is not possible as the same server is
assigned different tasks over short timescales.

Instead, we make the simplifying assumption that
servers in the same rack use their uplinks independently.
If this holds true, it is sufficient to randomly interconnect
servers in the same rack, which is very easy to cable.
Otherwise, we have two options: either connect servers
from different racks, which increases cabling complex-
ity, or change the application schedulers to spread servers
across racks as much as possible 4.

Once links are in place, how should we use them?
There are a number of options to consider when choosing
a path between two random servers, A and B:

• we may choose one of the paths available in the
original topology

• a path may consist entirely of GRIN links

• we may choose any number of intermediate servers,
and form a path using the concatenation of all inter-
mediate paths

In order to keep the routing scheme fairly simple and
the number of hops relatively small, we are only going
to consider paths that contain at most one segment of the
first kind. Our experiments have shown that one of the
better routing solutions is a random scheme, similar to
ECMP. We also found that there is no real improvement
if we allow traffic to be forwarded via more than two
GRIN links (one following A and one before B).

Whenever server A wishes to connect to server B,
it will start by establishing a MPTCP connection as it
would have done in the original topology. After this ini-
tial phase, server B may advertise the existence of its
other interfaces and the address associated with the up-
link of the corresponding neighbour. These advertise-
ments are made using a specific feature of the MPTCP
protocol called address advertisement. Server A will
now be aware of an address set that contains the original
address of B, together with addresses of B’s neighbours.

To start a new subflow, server A will randomly pick
an intermediate source between itself and all of its neigh-
bors, and an intermediate destination from B’s advertised

4The Multihomed topology also relies on the same assumption
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Figure 2: Simulation results

address set. Each packet is addressed to the intermediate
destination, and the real destination address is recorded
as an IP option. The packets will be routed from server
A to the intermediate source simply by putting them on
the appropriate horizontal link. Whenever a server re-
ceives a packet which is not addressed to it on one of its
horizontal links, that packet will simply be forwarded to
the uplink, because all horizontal path segments have a
maximum length of one hop. If a packet destined for an-
other server (according to the real destination) is received
from the uplink, the server will simply forward it to its
appropriate destination via a GRIN link.

Since local routing is done over at most one hop, it
does not make sense to interconnect two servers with
more than one link. As each server has a single uplink,
doing so would only waste available server ports without
providing additional bandwidth.

GRIN Properties GRIN links can be assigned local,
non-routable addresses; these addresses are not adver-
tised in the original topology reducing deployment costs.
GRIN scales seamlessly with the number of server ports,
because it does not require additional switching equip-
ment, power or rack space. GRIN is agnostic of the
topology used—it can be applied to any topology where
servers have unconnected network ports.

There are two primary concerns raised by GRIN: the
overhead caused by server forwarding and fairness in the
use of neighbours’ uplinks. One-hop forwarding restricts
the maximum amount of traffic each server may be re-
quired to forward to twice the speed of its uplink, i.e.
2Gbps. Fairness means that a server should have priority
while using its own uplink. When sending, this can be
achieved simply by forwarding local packets first. When
receiving, the server can selectively drop packets to con-
trol the amount of bandwidth available to foreign flows.

4 Evaluation

We expect both Multihomed and GRIN topologies to per-
form significantly better than the original topology on

average, and at least as well in the worst case. While
traffic patterns usually found in datacenter networks are
too complex to be covered by a handful of traffic ma-
trices, we chose a few that should provide at least some
insight regarding how will our approach behave in a real-
life scenario. Intuitively, we are going to see the greatest
improvements when either a small number of servers are
using the network, or there are a lot of servers transmit-
ting to only a handful of receivers.

Our experiments are based on a simulated VL2 topol-
ogy consisting of 120 servers, with 20 servers in each
rack. Increasing network size up to sixfold didn’t lead
to any sensibly different results. Using the htsim simu-
lator, we measured the average data rate of each active
receiver and compared it to the maximum possible value
for the original topology. Each multipath connection is
long lived and uses 16 subflows. This number was cho-
sen in order to make sure the random routing scheme will
explore as many of the relevant paths as possible, and to
mitigate the effect of collisions in the VL2 topology.

We tested three GRIN topologies, using 1 - 3 addi-
tional server ports, and one multihomed topology that
uses one additional server port. They are referred to as
GRIN1, GRIN2, GRIN3 and Multihomed, respectively.
Multihomed requires the same total number of ports as
GRIN2, and costs arguably more, while also requiring
additional rack space.

We used four traffic matrices in our tests: permutation,
group, all-to-all and random. For each traffic matrix,
we varied the percentage of active servers or the num-
ber of connections per server. We evaluated 20 random
instances of every case. Given the small size of the net-
work, we only allow connections between servers from
different racks for permutation and all-to-all matrices. In
much larger networks, random connections would sel-
dom end up being local. We assume that the network in-
terface is the only limiting factor for the amount of data
that can be sent or received by any server.

In a permutation traffic matrix, each active participant
transmits to a random destination, and each destination
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Figure 3: Experimental setup to test forwarding overhead

receives from a single source. As illustrated in figure 2a,
lower percentages of active servers lead to significantly
better results for GRIN topologies. The performance
of these topologies, however, degrades quicker than that
of Multihomed, which provides better throughput when
25% and 40% of servers, respectively, become active.

The group connection matrix simulates scatter-gather
communication. It randomly assigns every server to a
certain group, such that all groups have the same num-
ber of members. Within each group, one random server
will be the destination, and all others will act as sources.
This is the most favorable situation for GRIN topologies,
because the large number of sources will fill every link
of the receiving server. As seen in figure 2c, the per-
formance benefit starts out at a minimum for the small-
est group size, and then increases to near the maximum
value relatively quick.

The all-to-all simulation (figure 2d) offers no surprise;
the best results are found for the smallest number of ac-
tive servers, and then gradually decline. The results for
Multihomed decline slower, but start at a significantly
lower value compared to GRIN2 or GRIN3.

Our final experiments were made for the random traf-
fic matrix. Each case consists of a number of connections
(expressed as a percentage of the number of servers), and
for each connection we choose at random both the source
and the destination. The results, seen in figure 2b, resem-
ble those found in the permutation case.

4.1 Forwarding Performance
If traffic forwarding interfered with other server tasks it
could potentially decrease the performance of the data-
center as a whole, defeating the purpose of this work.
That is why in this section we conduct a preliminary
study to test just how costly forwarding is in practice.

We used the setup shown in Fig.3; all three servers
have 2 dual-core Xeon processors running at 2.66GHZ.
We installed the Linux MPTCP stack on servers S and D
and tested throughput by running iperf. The forwarder
runs FreeBSD and the netmap [9] architecture, allowing
very fast packet processing in user context.

iperf manages to transfer 1.86Gbps of goodput from
S to D. Forwarding MTU-sized packets at 1Gbps is rela-
tively cheap: server R spends only 6% of one of its cores
for this task. This is the common case where bulk trans-
fers are relayed over neighbouring idle uplinks. If traffic

is forwarded in both directions the load increases to 10%
of one core. We also tested the forwarder with minimum
sized packets, to seek an upper bound for CPU usage.
We found that R can forward 1.5Mpps running one of its
cores at 25% utilization.

Even a load of 6% on one core can interfere with other
server tasks when the server is running at 100% utiliza-
tion. The forwarder can increase the loss rate on the for-
warded traffic, which will automatically reduce the traf-
fic rate, or it can even switch off forwarding entirely - the
traffic will simply use another path to the destination.

5 Related Work

Various solutions have been proposed for increasing core
utilization in full bisection networks, such as MPTCP
[7] or Hedera [2]. These, however, aim to make full-
bisection topologies behave like a non-blocking switch
by routing flows in the network to avoid collisions.

Other approaches, such as Flyways [5] or C-Through
[10], are based on augmenting an oversubscribed net-
work with additional communication channels that can
be used to improve throughput between different groups
of servers when the initial latency is not an issue. They
try to create the illusion of full bisection in oversub-
scribed networks; however, the network activity of a sin-
gle server is still limited by its uplink to 1Gbps.

Server forwarding is also used in topologies such as
BCube, where the forwarding effort is much greater, as it
increases with each additional connection. GRIN’s rout-
ing scheme inherently limits the amount of traffic for-
warded by each server.

6 Conclusions

Wiring up server ports within the same rack with GRIN
is a simple yet powerful solution to utilize available core
bandwidth in the likely occurrence that not all datacen-
ter hosts are using their uplinks at the same time. This
solution is cheap and feasible to implement over any
full-bisection topology. The improvement is significant
for idle networks, with every additional connected port
bringing 1Gbps more throughput; benefits gradually de-
cline with each server that becomes active. Further, prac-
tical tests show that the forwarding overhead is almost
negligible for today’s datacenter servers. GRIN offers
better peak performance, is cheaper, easier to deploy and
scales better than the Multihomed topology.

Our initial exploration in this paper leaves many in-
teresting open questions. Practical testing, together with
understanding fairness and isolation properties of GRIN
with regards to existing traffic are issues that stand out.
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If a latency-sensitive flow ends up going through one
or more horizontal links, its completion time may suffer
an unacceptable delay caused by the additional hops and
the fact that each server has priority using its own uplink.
Moreover, long flows can significantly increase network
utilization, which in turn will have a negative impact on
the the overall perceived latency. There are a number of
possible solutions to these issues, such as never choos-
ing a path with horizontal segments for latency-sensitive
flows and employing the DiffServ architecture. In order
to do this, however, we must find a way to differentiate
between long and short flows with reasonable accuracy.

Finally, there are unexplored routing possibilities,
some of which require the ability to use horizontal paths
greater than one hop in length. This may bring additional
throughput benefits, but at the same time can consider-
ably increase server routing effort.
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