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ABSTRACT
A critical step in P4 compilation is finding a feasible and efficient

mapping of the high-level P4 source code constructs to the physical

resources exposed by the underlying hardware, while meeting data

and control flow dependencies in the program. In this paper, we

take a new look at the algorithmic aspects of this problem, with the

motivation to understand the fundamental theoretical limits and

obtain better P4 pipeline embeddings, and to speed up practical P4

compilation times. We report mixed results: we find that P4 com-

pilation is computationally intractable even in a severely relaxed

formulation, and there is no hope for a tractable approximation

of arbitrary precision, while the good news is that, despite its in-

herent complexity, P4 compilation is approximable in quasi-linear

time with a small constant bound even after removing most of the

relaxations from the model.

CCS CONCEPTS
• Networks→ Network algorithms; •Hardware→ Network-
ing hardware.

KEYWORDS
reconfigurable switches, packet programs, pipeline embedding, P4

compilation, algorithmic complexity, constant approximations
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1 INTRODUCTION
Future computing applications critically depend on more efficient,

reliable, flexible, and observable networks [13]. Accordingly, pro-

gramming reconfigurable switch pipelines using a high-level domain-

specific language like P4 [4] is increasingly being adopted in di-

verse application areas, like large-scale disaggregation, in-network

computation [6], telemetry [12], load-balancing [11, 14], etc. With

applications booming, we witness dataplane programs growing in

complexity, including more and larger match-action tables, diverse

header parse graphs, table–action dependency relationships, and

match and action types [2]. At the same time, new generations

of programmable switch ASICs [3] feature even more dataplane

resources and pipeline stages.

Dataplane programming adopts a top-down approach: the re-

quired behavior of the network is described in a declarative P4

program, which is then mapped to the underlying hardware by a

P4 compiler. The compiler must analyze the P4 program and, given

an abstract model of the hardware target including limits on the

available memory space, width, and types, the number of process-

ing stages, and the supported level of concurrency at each stage,

find the best encoding of the match-action tables into the target

switch pipeline so that control and data dependencies in the P4 pro-

gram are reproduced in a semantically correct way. Here, the “best”

encoding may be such that it minimizes the number of required

stages or the associated power consumption. We call this task the

pipeline embedding problem.

The seminal paper [10] sets the stage for P4 program compila-

tion, proposing an abstract model to describe the resource require-

ments and data-/control-dependencies of P4 programs as well as

the switch dataplane resources, and presents various algorithms

for pipeline embedding. In particular, an Integer Linear Program

(ILP) is proposed to obtain an optimal solution, but with possibly

exponential running time and/or memory footprint, and a greedy

heuristics is also presented to get quick embeddings but with a pos-

sibly unlimited optimality gap (margin from the optimal solution).

Unfortunately, the most important algorithmic questions related

to pipeline embedding have remained open since this seminal paper.

This is becoming increasingly troubling, with the trend of P4 pro-

grams getting ever larger and the underlying switch ASICs getting

more complex. Accordingly, P4 compilation times may easily grow

https://doi.org/10.1145/3426744.3431332
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Pipeline #nodes #arcs

ILP runtimes in [sec] for different gaps Greedy Gap (greedy

50% 30% 20% 10% 0% runtime #stages to opt.)

L3DC 11 13 1.29 1.32 1.34 1.35 1.30 0.055 14.2%

L2L3 simple 13 16 4.06 7.78 7.95 8.74 10.3 0.153 8.3%

L2L3 complex 24 35 293 703 2658 4315 4931 0.200 14.8%

Table 1: Running time of the ILP and a greedy algorithm of [10] for pipeline embedding on a commodity quad-core computer
with CPU@ 2.3 GHz and 8 GB RAM. The ILP was run using parallel B&C on 4 threads. While the greedy approach scales with
the network size, ILP runtimes expload.

beyond practical: Table 1 reports the typical pipeline embedding

times on some common-case P4 programs obtained using the frame-

work in [1, 10]. Indeed, finding the exact optimum may take more

than an hour for the ILP even on a moderate size P4 program of 24

match-action tables and 35 control flow dependencies. Anecdotal

evidence exists that it often takes several hours for a larger P4 pro-

gram to be compiled with commercial P4 SDKs and ILP solvers, and

sometimes even finding a feasible pipeline embedding is already

a huge computational challenge. This makes P4 (re)compilation

a painful and cumbersome process, complicating debugging, and

wasting programmer time. At the same time, the greedy heuristics,

which is guaranteed to run in polynomial time, may produce low-

quality embeddings, and it may easily conclude that there is no

feasible embedding even when there is one.

In this paper, we take the first steps toward obtaining a compre-
hensive algorithmic landscape of P4 pipeline embedding. To the best

of our knowledge, ours is the first principled approach to this end.

We take off from a heavily simplified model of a programmable

switch target (the INF-CAP model) on which pipeline embedding

maps to a well-known combinatorial optimization problem that

can be solved to optimality in linear time. Then, we re-introduce
additional degrees of complexity into the barebones model to obtain

increasingly more realistic and restrictive, P4 pipeline models, and

we give a comprehensive characterization of the respective computa-
tional complexity and approximation bounds and cast several open

problems. We stress that our main contribution is not suggesting
new tricks to improve P4 compilation/embedding efficiency, but

rather to characterize the algorithmic aspects of existing techniques
proposed in, e.g., [10].

Our results are summarized in Table 2. As the first practical

application, we find that the greedy pipeline embedding heuris-

tics proposed in [10] and implemented in [1] already provides an

approximation with a small constant gap in several models, pre-

senting an appealing choice when resource requirements are not

that stringent.

2 P4 PIPELINE EMBEDDING
In this section, we build a sequence of increasingly complex models

to characterize the resource requirement of realizing P4 programs.

For each model, we analyze the computational complexity of the

particular incarnation of the P4 pipeline embedding problem and,

using classical results in combinatorial optimization, we derive the

corresponding inapproximability (bad news) and approximability

(good news) bounds. In the main part of the paper, we focus on the

claims and present only simple sketches of the proofs; the details

are relegated to the Appendix.

2.1 INF-CAP: Mapping Concurrency
The real complexity of P4 pipeline embedding stems from the dif-

ficulty of assigning the elements of the match-action logic to the

physical resources of the switch pipeline so that the result is se-

mantically correct dataplane behavior that matches the intent of

the programmer. This difficulty, on the one hand, arises from the

fact that there are various control-flow dependencies, implicit or

explicit, in the P4 program that requires properly sequencing the

match-action stages in the switch pipeline; for instance, a packet

header field cannot be processed until a previous stage has finished

modifying it. On the other hand, dataplane resources are inherently

restricted in size and the type of operations supported; e.g., a TCAM
can store only a limited number of ternary match entries and only

of limited width. In this section, we concentrate on the first con-

stituent of this complexity only, and we relax the second: the task

is to correctly represent data- and control dependencies in a switch

pipeline of infinite resources.

In this model, one would naively try to map the entire P4 match-

action logic to the first stage (any large program fits into unlimited

memory after all), obtaining a massively concurrent embedding

with the smallest theoretically possible processing latency. This,

however, most probably would result in an incorrect embedding

due to the inherent control-flow dependencies in the P4 program:

e.g., whenever table 𝐴 modifies a field that table 𝐵 matches, table 𝐴

cannot be assigned to the same stage as table 𝐵 (match-dependency),

if both tables modify the same field then the one that is applied last

must be assigned to a later stage (action-dependency), etc.; see [10]

for the details.

From an algorithmic standpoint, such control-flow dependencies

can be represented using a Table Dependency Graph (TDG): given a

P4 program, the corresponding TDG𝑇 = (𝑉 (𝑇 ), 𝐴(𝑇 )) is a Directed
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Figure 1: Switch pipeline models.
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Model name INF-CAP 1D1R 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 2D1R 2D2R 2D2R-T/S 2D2R-PISA
New feature on

top of the

previous model

(mapping

concurrency

due to

dependency)

1D capacity/

demands

ℎ𝑠𝑝𝑙𝑖𝑡 (table

entries split

between

stages)

2D capacity/

demands

2 kinds of

resources per

stage

limited number

of tables per

stage

crossbar

constraints,

word packing,

etc.

Complexity P NPC NPC NPC NPC

NPC NPC

strongly NP-hard

Bad news:

(unless P=NP,)

Inapproximable

better than . . .

OPT 3/2∗OPT 5/4∗OPT 5/4∗OPT 5/4∗OPT ? ?

Good news:

Constant-appro- OPT 3∗OPT 2∗OPT 3∗OPT (5 to 8)∗OPT (6 to 9)∗OPT ?

ximable in. . . (*) (*)

Table 2: Overview of the main results. Bad news: the Pipeline Embedding Problem (PEP) is NP-Complete even with simple
precedence and resource constraints. Good news: the PEP is constant approximable in quasi-linear time even after removing
most relaxations from the model. (*) means the lower bound holds in certain natural conditions explained in Sec. 2.5.

Acyclic Graph (DAG) of 𝑛(𝑇 ) = |𝑉 (𝑇 ) | vertices representing logical
match-action tables (MATs), and𝑚(𝑇 ) = |𝐴(𝑇 ) | arcs representing
the different types of dependencies (match, action, etc.) that exist

between the MATs. The packet processing pipeline can be modeled

as a directed path with nodes 𝑠1, 𝑠2, . . . representing the pipeline

stages, so that the arcs (𝑠𝑖 , 𝑠𝑖+1) encode the succession of stage 𝑠𝑖
and 𝑠𝑖+1 in the pipeline. To simplify the developments, we assume

that the switch has infinitely many stages, so that the objective is

to minimize the number of stages used by the embedding.

As the simplest formulation of the P4 pipeline embedding prob-

lem (INF-CAP), below we require that the MATs𝑉 (𝑇 ) be embedded

in the switch pipeline such that the arcs of the TDG are “forward”;

i.e. for every (𝑙𝑎, 𝑙𝑏 ) ∈ 𝐴(𝑇 ), table 𝑙𝑎 is mapped to a stage 𝑠𝑖 and 𝑙𝑏 is

mapped to a stage 𝑠 𝑗 with 𝑖 < 𝑗 . However, we assume that all stages

are of unlimited processing capability (i.e., can perform all types of

matches and actions) and infinite size and “width” (resource limits

will be introduced in the next sections).

Claim 1. Pipeline embedding under the INF-CAP model can be
solved to optimality in linear time: 𝑂

(
𝑛(𝑇 ) +𝑚(𝑇 )

)
.

The proof is fairly trivial: under INF-CAP one can obtain a correct

embedding using topological sorting in polynomial time (in fact,

linear) as follows. Add a hypothetical MAT 𝐿 to the TDG with arcs

(𝐿, 𝑙𝑖 ) to all source nodes of the TDG, and for each 𝑗 embed each

MAT 𝑙𝑘 ∈ 𝑉 (𝑇 ) having a longest directed path of length 𝑗 from

𝐿 to stage 𝑗 . It is easy to see that this algorithm returns a valid

TDG embedding with the minimal theoretically possible stages (the

length of the longest directed path in the TDG).

In hindsight, when the task is only to encode the control-flow

dependencies but there are no resource limits, then the P4 pipeline

embedding problem is “easy”, which even a trivial greedy sorting

heuristic (quite similar to the one proposed in [10]) solves to opti-

mality rapidly. This finding is not particularly surprising: the types

of control-flow dependencies in a P4 program are very similar to the

dependencies occurring in general programming languages (read-

after-write, write-after-write, etc.), and basically any compiler can

routinely analyze (and optimize) such dependencies at large scale.

2.2 1D1R: Adding Simple Resource Constraints
Easily, INF-CAP yields an embedding with the maximum possible

concurrency. Unfortunately, this model is not too realistic since it

relaxes all types of resource constraints.

In our second model called 1D1R, we assume that each stage can
store only a limited number of table entries; i.e., each MAT has a

one-dimensional (“1D”) memory demand and each stage has a 1D

memory constraint; for simplicity, we assume that all stages have

the same capacity. For now, we presume that there is only a single

type of memory resource (“1R”) in the switch (TCAM or SRAM)

that can perform all match and action operations required by the

P4 program. Our main result for 1D1R is as follows.

Claim 2. Pipeline embedding under the 1D1Rmodel is NP-complete.
Bad news: the optimal number of stages cannot be approximated
better than 3/2 unless 𝑃 = 𝑁𝑃 . Good news: the optimum can be 3-
approximated in quasi-linear time1: 𝑂

(
𝑛(𝑇 ) log𝑛(𝑇 ) +𝑚(𝑇 )

)
.

Intuitively speaking, the hardness result appears since 1D1R con-

tains NP-hard problems as a special case, like EQUAL CARDINALITY
PARTITION or PARTITION; see Fig. 2 for a sketch of the construc-

tion required to obtain the intractability result. Inapproximability,

furthermore, can be proved by a similar construction: denoting the

number of stages with 𝐾 , consider𝑀 instances of the PARTITION
problem, where the sum of the numbers (representing the maxi-

mum number of entries in tables) is 2𝐾 . From every table in the

𝑘-th instance, there is an arc to every table in the (𝑘 +1)-th instance,
this way, the instances are placed in separate stages. By construc-

tion, if an instance has a solution, then it can be embedded in 2

stages, otherwise it needs at least 3 stages. This means that if all the

instances have a solution, then 2𝑀 stages are needed, but since the

PARTITION is NP-complete [9] one cannot give a solution that uses

less than 3𝑀 stages unless 𝑃=𝑁𝑃 . Finally, 3-approximability can be

stated constructively, using an algorithm similar to the one that in

the previous section solving INF-CAP (see Claim 7 in Appendx C).

1
Henceforth, for each table, we only store its starting stage and position, and its end

stage and position, resp. The actual embedding phase needs some more time that scales

with both the stage sizes and the optimal stage number.
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(b) The only possible scheme of a feasible embedding in case of stages having
maximal capacities of 𝐾 + 𝑘 entries

Figure 2: Sketch of proof of NP-completeness of the Pipeline Embedding Problem (PEP) variants 1D1R, 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 , 2D1R,
2D2R. A valid embedding is a polynomial witness for the decision versions. The pipelines can be embedded in stages nr. 0, . . . , 4
exactly if the EQUAL CARDINALITY PARTITION problem has a solution over {𝑠1, . . . , 𝑠2𝑘 }, which is NP-hard [9] to decide. Note that
due to construction, the ℎ𝑠𝑝𝑙𝑖𝑡 cannot be used in a valid embedding. Details in Appendix A.

The bottom line is that pipeline embedding, and hence P4 com-

pilation, becomes intractable and inapproximable with PTAS at the

instance we consider, however simple resource limits. On the other

hand, 3-approximability under 1D1R is particularly good news: one

can quickly develop a heuristic embedding using a variant of the

greedy heuristic in [10] and can be provably safe that the resultant

embedding will use at most 3 times the number of stages of the

optimal embedding.

2.3 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 : Table Splitting
In the 1D1R model, we require that each MAT is assigned to a

unique pipeline stage as a whole; the intractability of the related

pipeline embedding problem can then be viewed as a consequence

of the intricate combinatorial structure such packing constraints

typically introduce. However, it is not unusual for some MATs to

exceed the storage capacity of a single pipeline stage; e.g., a large

IP routing table may not fit into a single TCAM bank. To address

this challenge, [10] presents a technique to split MATs across mul-

tiple stages: one stores as many entries in the first stage as possible

and, should a match be found, jump to the next processing stage;

otherwise, matching falls back to the second (split) portion of the

MAT through a default “catch-all” rule. We call this operation a

horizontal split (or ℎ𝑠𝑝𝑙𝑖𝑡 ). Intuitively, permitting ℎ𝑠𝑝𝑙𝑖𝑡 renders

the embedding problem a bit easier, in that it allows a MAT to be

mapped “fractionally”, splitting it into multiple MATs placed consec-

utively in the pipeline, which relaxes the packing constraints from

1D1R. Next, we ask whether this relaxation renders the pipeline

embedding problem any more approachable computationally.

Formally, the 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 model we consider below is a version

of 1D1R where the compiler is allowed to perform horizontal splits

on MATs. Here, ℎ𝑠𝑝𝑙𝑖𝑡 is a specific transformation of the input

TDG whereby any MAT 𝑈 ∈ 𝑉 (𝑇 ) is substituted with two MATs

(𝐴, 𝐵) = ℎ𝑠𝑝𝑙𝑖𝑡 (𝑈 ) so that (i) 𝑈 is replaced with 𝐴 and 𝐵, (ii) both
𝐴 and 𝐵 inherit all arcs of 𝑈 , (iii) a new arc (𝐴, 𝐵) is created, and
finally (iv) the sizes of 𝐴 and 𝐵 sum up to the size of𝑈 . Note that

ℎ𝑠𝑝𝑙𝑖𝑡 can be applied recursively to split a MAT into more than 2

tables. Our complexity results on 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 are as follows:

Claim 3. Pipeline embedding under the 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 model is NP-
complete. Bad news: the optimal number of stages cannot be approxi-
mated better than 5/4 unless 𝑃 = 𝑁𝑃 . Good news: the optimum can
be 2-approximated in linear time: 𝑂 (𝑛(𝑇 ) +𝑚(𝑇 )).

Algorithm 1: 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 First Fit by Level

Input: TDG𝑇 (𝑉 (𝑇 ), 𝐴(𝑇 )) ; stage size 𝑐𝑠 ; node sizes 𝑒 (𝑣)
begin

1 [𝑣1, 𝑣2, . . . , 𝑣𝑛 ] := TopologicalOrdering(𝑇 (𝑉 (𝑇 ), 𝐴(𝑇 )))
2 for 𝑖 = 1, . . . , 𝑛 do
3 L(𝑖) := empty list

4 if 𝑣𝑖 does not have any in-arc then
𝑙 (𝑣𝑖 ) := 1

5 else
𝑙 (𝑣𝑖 ) := max{𝑙 (𝑣𝑗 ) | (𝑣𝑗 , 𝑣𝑖 ) ∈ 𝐴} + 1

6 append 𝑣𝑖 to L(𝑙 (𝑣𝑖 ))
7 𝐸 (0) := 0, 𝑖 := 1

8 while L(𝑖) ≠ ∅ do
9 𝐸 (𝑖) := 𝐸 (𝑖 − 1) + ⌈(∑𝑣∈L(𝑖 ) 𝑒 (𝑣))/𝑐𝑠 ⌉

10 for 𝑣 ∈ L(𝑖) do
11 Reserve space for 𝑣 continuously (using ℎ𝑠𝑝𝑙𝑖𝑡 ) in the next

free spaces in stages 𝑆 [𝐸 (𝑖 − 1) + 1], . . . , 𝑆 [𝐸 (𝑖) ]
12 𝑖 := 𝑖 + 1

13 return Embedding

Below, we sketch an algorithm to constructively obtain the 2-

approximation on 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 (see Alg. 1). This algorithm is moti-

vated by the design of the greedy heuristics of [10]; accordingly, the

approximability result can be applied to the generic greedy scheme

under 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 with minor modifications.

Theorem 1. The “First Fit by Level” (or simply, FFL) heuristic (Alg.
1) gives a 2-approximation for the pipeline embedding problem under
1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 in linear time: 𝑂

(
𝑛(𝑇 ) +𝑚(𝑇 )

)
.

Proof: Correctness: For any 𝑢, 𝑣 ∈ 𝑉 (𝑇 ), (𝑢, 𝑣) being a dependency

arc means 𝑙 (𝑣) > 𝑙 (𝑢) in the output, where 𝑙 (𝑤) denotes the stage
table 𝑤 is embedded. Thus, Alg. 1 returns a correct embedding.

2-approximation: The minimum number of stages needed for em-

bedding the TDG (OPT) is at least the number ℎ of used stages

which are not full after running the FFL since ℎ is at most the

length of the longest dependency chain in the TDG. On the other

hand, OPT is at least the number of stages fully utilized by FFL. Con-

sequently, FFL uses at most 2∗OPT stages. Complexity: At line 1 we
return a topological ordering, this can be done in 𝑂 (𝑛(𝑇 ) +𝑚(𝑇 )).
By pre-storing the in-arcs for each node (in 𝑂 (𝑛(𝑇 ) +𝑚(𝑇 ))), exe-
cuting lines 2–6 also takes 𝑂 (𝑛(𝑇 ) +𝑚(𝑇 )) time. Finally, at lines

8–11, 𝑂 (𝑛(𝑇 ) +𝑚(𝑇 )) operations are done again. □

The essence is that the additional degree of freedom introduced

by ℎ𝑠𝑝𝑙𝑖𝑡 does not eliminate intractability, which explains why the
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ILP fails to find an optimal embedding in reasonable time. At the

same time, 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 admits slightly more favorable approxima-

bility guarantees: we found that under 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 one can quickly

find an embedding that uses at most 2 times the number of stages in

an optimal embedding. Put it another way, the output of Alg. 1 can

be used as a good initial primal feasible solution to bootstrap the

ILP, which can then at most halve the number of the stages used.

Meanwhile, adoptingℎ𝑠𝑝𝑙𝑖𝑡 also reduces our best inapproximability

bound (from 3/2 to 5/4).

2.4 2D1R: Two-dimensional Resources
Up to this point, we have assumed that the stages can store a pre-

defined number of table entries, regardless of the width of these

entries. In reality, MATs have (at least) two size dimensions (number

of entries and header field match-width), and similarly, pipeline

memory has two-dimensional capacities. Obviously, pipeline em-

bedding should respect both size dimensions: given the number of

entries 𝑛𝑢 and the width 𝑙𝑢 of each MAT𝑢 ∈ 𝑉 (𝑇 ), neither the num-

ber of entries nor the total width of the MATs placed to any stage

can exceed the 2D capacity of that stage. Below, we consider the

simplest form of this model called 2D1R that is akin to 2D geometric

bin-packing [5]; we note that real ASICs typically exhibit several

additional subtle complexities, e.g., memory can be allocated only

in discrete blocks, MATs cannot be arbitrarily placed side-by-side,

etc.; we ignore these here for brevity. Further note that ℎ𝑠𝑝𝑙𝑖𝑡 is

still permitted.

As shown next, this second problem dimension makes pipeline

embedding slightly more complex:

Claim 4. Pipeline embedding under the 2D1Rmodel is NP-complete.
Bad news: the optimal number of stages cannot be approximated
better than 5/4 unless 𝑃 = 𝑁𝑃 . Good news: the optimum can be 3-
approximated in quasi-linear time: 𝑂

(
𝑛(𝑇 ) log𝑛(𝑇 ) +𝑚(𝑇 )

)
.

Here, only 3-approximability needs more explanation: we again

motivate this result with a (sketch of a) constructive proof. The

approximation algorithm for 2D1R is quite similar to Alg. 1 we

used for 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 , the only difference is in the packing of the

levels. Initially, inside each level 𝐿(𝑖), we sort nodes into a descend-
ing order of width. Without loss of generality, scale the widths

such that each stage is of width 1. First, MATs of width ≥ 1/2
are packed (in one column), then MATs of width in [1/3, 1/2) are
packed in two columns, etc. Generally, after packing of a set of

MATs of width [1/𝑘, 1/𝑘 − 1) is finished, a new set of MATs𝑉𝑤,𝑘 of

width [1/(𝑘 + 1), 1/𝑘) is packed in 𝑘 columns such that the length

of the columns is almost equal; and if the last row of 𝑉𝑤,(𝑘−1) re-
mains unfilled then we start packing 𝑉𝑤,𝑘 by assigning some of

its elements to the remaining space of the row. One can show that

with this modification Alg. 1 returns a valid pipeline embedding

in polynomial time that 3-approximates the number of the stages

in the optimal solution under 2D1R; roughly speaking, the idea is

that there are at most ≤OPT stages that are not at least halfway

full after Alg. 1 terminates (see Claim 8 in Appendix C for details).

2.5 2D2R: Both SRAMs/TCAMs Available
In most switch ASICs, there are multiple types of memory, each

optimized for different purposes [3]: TCAMs excel at prefix and

wildcard matches but come at a considerable power budget and

cost, while SRAMs are ideal for performing exact or range matches

or to store action code. Confusingly, someMATs may be assigned to

any type of memory (e.g., a TCAM can also perform exact matches).

We call the pipeline model with 2 resource types as 2D2R.

One easily concludes that, being a stronger model than 2D1R,

2D2R is also NP-complete and inapproximable below 5/4 (unless
P=NP). On the positive side, in Appendix C, we show a modification

of Alg. 1 that attains an 8-approximation under 2D2R. Note that

the width𝑤𝑇 of TCAMs might be different from the width𝑤𝑆 of

SRAMs (that is scaled to be 1), and if𝑤𝑇 ≥ 𝑤𝑆 , our algorithm is a

5-approximation. In the modified algorithm, we still embed levels

L𝑖 , 𝑖 ∈ 1, 2, . . . separately. For a level L𝑖 , 1) we embed those MATs

that can be mapped only to TCAMs, 2) if the width of SRAMs is

greater than the width of TCAMs (i.e.,𝑤𝑆 > 𝑤𝑇 ), we embed those

MATs that can be mapped only to SRAMs (due to their width being

> 𝑤𝑇 ), 3) we embed the remaining MATs to the remaining memory

of these stages, and, if needed, we open up additional stages
2
. In

all the previous three phases, the embedding is done following the

steps of the 2D1R version of Alg. 1, starting from the first stage

assigned to the level. The proof of 8- (and 5-) approximation can be

found in Appendix C as proof of Claim 9.

Hence, our results establish appealing approximation bounds of

greedy heuristics under 2D2R as well:

Claim 5. Pipeline embedding under the 2D2Rmodel is NP-complete.
Bad news: the optimal number of stages cannot be approximated
better than 5/4 unless 𝑃 = 𝑁𝑃 . Good news: the optimum can be
8-approximated in quasi-linear time: 𝑂

(
𝑛(𝑇 ) log𝑛(𝑇 ) +𝑚(𝑇 )

)
. If

𝑤𝑇 ≥ 𝑤𝑆 , it can be 5-approximated in the same complexity.

2.6 2D2R-T/S: Constrained Number of Tables
per Stage

In recent programmable switch ASICs [3] the number of MATs that

can be assigned to a single stage is limited by the capacity of the

memory chips and the crossbars connecting the stages. Below we

(re-)introduce this constraint to obtain the 2D2R-T/S model, and

we find that with this additional complexity, the problem becomes

strongly NP-hard.

Claim 6. Pipeline embedding under 2D2R-T/S is NP-complete and
NP-hard in the strong sense. Good news: the optimum can be 9-
approximated in quasi-linear time:𝑂 (𝑛(𝑇 ) log𝑛(𝑇 )+𝑚(𝑇 )). If𝑤𝑇 ≥
𝑤𝑆 , it can be 6-approximated in the same complexity.

Proof: Complexity: Consider the decision version of pipeline em-

bedding, where the question is whether the TDG can be embedded

into a given number of stages. Let all the stages and MATs have

equal width, thus the second size dimension can be ignored. Let

all the MATs be assignable to any of the resources, thus we can

characterize the size of each stage with only the number of table

entries it can accommodate. Let the pipeline have𝑚 stages of size

𝐵 ∈ Z+, each stage capable of storing at most 3 tables. Let the TDG

be embedded consist of 3𝑚 MATs of size in {𝐵/4, . . . , 𝐵/2}, without
any TDG dependencies. The sizes of the nodes add up to𝑚𝐵. Then,

the decision whether the TDG can be embedded into the pipeline

is equivalent to the 3-PARTITION problem, which is known to be

2
Note that, for each level, in a particular setting discussed in the Appendix we need a

fourth phase of our algorithm that affects two rows, possibly emptying a stage.
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strongly NP-hard [9, SP15]. A valid embedding is a polynomial

witness, completing the proof of NP-completeness.

9- (or even 6−) approximation:Weuse the greedy heuristic scheme

of version 2D2R, with the modification that wherever the number

of MATs assigned to the current stage would exceed the allowed

maximum 𝑐 we start a new stage. Then, one can show that there is

only OPT more stages needed for embedding under 2D2R-T/S than

under 2D2R, since the number of stages hosting exactly 𝑐 MATs is

≤OPT. Consult proof of Claim 10 in Appendix C for the details. □

2.7 2D2R-PISA: Fully-fledged PISA Model
The constraints incurred by a real switch go beyond our simplified

models; see [1, 10]. Incorporating all these operational constraints

into a (hypothetical) 2D2R-PISA model, we see that solving pipeline

embedding over 2D2R-PISA is at least as difficult as on 2D2R-T/S

as it contains that as a special case (strongly NP-hard). Designing

an efficient approximation for this model would exceed the limits

of this paper.

3 CONCLUSION AND FUTUREWORK
P4 pipeline embedding sits at the core of programmable dataplane

devices, as it is a crucial step for deploying P4 programs on real

targets. Given the stringent resource limits of such targets and

the size of P4 programs that must be deployed, achieving optimal

solutions to pipeline embedding is really important. In this paper,

we have taken a first look at the theoretical aspects of this problem,

characterizing its complexity and providing bounds for different

models. Our results will serve as a tool to judge the performance of

future P4 compilers, as well as guidance to build better compilers.

Higher level languages like 𝜇P4 [15] and Lyra [7] have been

recently proposed to raise the abstraction level for programmers

and make it easier to write portable programs that can run on

multiple platforms. Both these works have to solve the pipeline

embedding problem as a final step before deployment, and they

currently use greedy approaches.

Chipmunk [8] takes a different approach: it formulates pipeline

embedding as a program synthesis problem and uses Sketch to gen-

erate programs that fit the target constraints. To tame complexity,

Chipmunk breaks up the program into smaller pieces and com-

piles each part independently; this makes the program tractable

in the examples shown, but can result in globally sub-optimal out-

come.While Chipmunk outperforms Domino, a greedy compiler for

pipeline embedding, it does not claim optimality; in our future work,

we intend to analyze the optimality gap between Chipmunk and

other greedy approaches. Furthermore, we aim to tighten our lower

and upper bounds for the different pipeline embedding variants

and provide a clear picture of how far existing greedy approaches

compare to the optimal.
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APPENDIX
A NP-COMPLETENESS OF PEP VERSIONS

1D1R, 1D1R-𝐻𝑆𝑃𝐿𝐼𝑇 , 2D1R, 2D2R
By definition, the task in Pipeline Embedding Problem (PEP) ver-

sions in this paper is to find an embedding of the TDG that uses

the least stages possible. In other words, we are investigating the

minimization (optimization) version of the problems. The decision
version of these problems on the other hand ask if a given number

of 𝑘 stages is enough to embed a given TDG (or alternatively, if

a TDG can be mapped on a given switch architecture). We can

see that the NP-hardness of the decision version induces the NP-

hardness of the minimization version (by the hardness of deciding

whether a candidate number min of stages is the minimal possible).

In the followings, we will prove the NP-hardness of different PEP

variants through the NP-hardness of their decision versions.

Lemma 1. PEP versions 1D1R, 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 , 2D1R, and 2D2R are
in NPC.

Proof: Firstly, the decision versions of the problems are in NP,

since given a candidate embedding, one can easily check its validity

in polynomial time. This implies that the minimization versions are

also in NP. We will prove the NP-hardness of the decision versions

of the problems, which implies the NP-hardness of the minimization

version. Let each table in TDG 𝑇 have only exact matches. For this

part of the proof, let us assume that ℎ𝑠𝑝𝑙𝑖𝑡 is forbidden.

First, let us concentrate on the black-and-solid parts of Fig.

2: we have tables 𝑓1, . . . , 𝑓2𝑘 , 𝑠1, . . . , 𝑠2𝑘 , and 𝑙1, . . . , 𝑙2𝑘 to embed,

and stages 1, 2, 3, and 4 with number of maximum entries of 𝑘 ,

https://bitbucket.org/lavanyaj/switch-compiler/src/master/
https://bitbucket.org/lavanyaj/switch-compiler/src/master/
https://github.com/p4lang/switch/blob/master/p4src/switch.p4
https://www.barefootnetworks.com/products/brief-tofino-2
https://www.barefootnetworks.com/products/brief-tofino-2
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𝐾 + 𝑘 , 𝐾 + 𝑘 and 𝑘 , respectively. Each {(𝑓𝑖 , 𝑠𝑖 ), (𝑠𝑖 , 𝑙𝑖 )} ⊆ 𝐴(𝑇 ).
Since the number of maximum table entries are 𝑒 (𝑓𝑖 ) ≡ 𝑒 (𝑙𝑖 ) ≡ 1,

and

∑
𝑖∈{1,...2𝑘 } 𝑒 (𝑠𝑖 ) = 2𝐾 , due to the stage sizes, the only way

these tables can fit in the stages is if there exists a set of indexes

𝐼 ⊂ {1, . . . , 2𝑘}, |𝐼 | = 𝑘 such that for each 𝑖 ∈ 𝐼 , tables 𝑓𝑖 are

assigned to stage 1, 𝑠𝑖 are in stage 2, 𝑙𝑖 are in stage 3, while for

𝑗 ∈ {1, . . . , 2𝑘}, 𝑓𝑗 assigned to stage 2, 𝑠 𝑗 are in stage 3, 𝑙𝑖 are in

stage 4, and

∑
𝑖∈𝐼 𝑒 (𝑠𝑖 ) = 𝐾 . One can see that this kind of valid

embedding exists exactly if there exists such an 𝐼 (|𝐼 | = 𝑘) for which∑
𝑖∈𝐼 𝑒 (𝑠𝑖 ) = 𝐾 . This is an instance of the EQUAL CARDINALITY

PARTITION (ECP) problem, which is known to be NP-hard [9, ver-
sion of SP12].

Secondly, if we want to have stages with equal sizes, we can add

the "blue-and-dashed" parts of Fig. 2, namely, tables 𝐹 and 𝐿 with

𝑒 (𝐹 ) = 𝑒 (𝐿) = 𝐾 , (𝐹, 𝐿) ∈ 𝐴(𝑇 ), and we modify stages 1 and 4 such

that they have a size of 𝐾 + 𝑘 (just like stages 2 and 3). One can

see that, in this setting, 𝑇 can be embedded exactly if tables 𝑓𝑖 , 𝑠𝑖 , 𝑙𝑖
(𝑖 ∈ {1, . . . , 2𝑘}) are embedded as in the previous case, while tables

𝐹 and 𝐿 are associated to stages 1 and 4, respectively. Again, this is

solvable exactly if the the ECP problem has a solution with numbers

𝑒 (𝑠𝑖 ) (𝑖 ∈ {1, . . . , 2𝑘}).
Lastly, if we want to make the TDG a rooted connected DAG,

we can add the "red-and-dashdotted" parts of Fig. 2, namely, stage

0 with size 𝐾 + 𝑘 , table 𝑅 with 𝑒 (𝑅) ≤ 𝐾 + 𝑘 and arcs (𝑟, 𝑓𝑖 ), 𝑖 ∈
{1, . . . , 2𝑘} and (𝑟, 𝐹 ). For a valid embedding, 𝑅 should be embedded

in stage 0, while the rest of the tables have to be embedded the same

as before, thus this version is also equivalent to the ECP problem.

Thus, 1D1R is NPC.

If ℎ𝑠𝑝𝑙𝑖𝑡 is permitted, by adding (𝐹, 𝑠𝑖 ), (𝑠𝑖 , 𝐿), 𝑖 ∈ {1, . . . 2𝑘} (i.e.,
the green-and-dotted dependencies) to𝐴(𝑇 ), one can check that the
ℎ𝑠𝑝𝑙𝑖𝑡 cannot be used in a valid embedding, since it would cause not

to fully utilize the capacities of a stage from among stages 1, . . . , 4,

and by doing so, by lack of stage size, some fragments of some

tables could not be embedded in any stage. Thus, 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 is in

NPC.

One can observe that 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 can be polynomially reduced

to 2D1R by applying the followings: 1) taking a finite stage width

𝑤 , 2) replacing each table entry with a𝑤 wide string; thus, 2D1R is

in NPC. Speaking of 2D1R, it is clearly in NP. If all the tables have

to be matched to the same type of resource, the problems become

equivalent to 2D1R. Thus, 2D2R is also NPC. □

B INAPPROXIMABILITY OF PEP VERSIONS
1D1R, 1D1R-𝐻𝑆𝑃𝐿𝐼𝑇 , 2D1R, 2D2R

The main idea behind our inapproximability results is the follow-

ing. We take a pipeline embedding problem instance that can be

embedded in a given number of 𝑘 stages exactly if we can solve

an NP-hard problem (encoded in our instance); otherwise the em-

bedding inevitably uses at least (𝑘 + 1) stages. This means that the

optimal stage number cannot be approximated better than a ratio

of (𝑘+1)/𝑘. We note that any approximate solution (possibly given

by a PTAS) of the ecoded NP-hard problem is indifferent to this

inapproximability ratio, since only an exact solution enables the

embedding to use only 𝑘 stages. For PEP version 1D1R, this 𝑘 = 2,

while for 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 and 2D1R, 𝑘 = 4.

Lemma 2. PEP version 1D1R cannot be approximated better than
a ratio of 3/2, unless P=NP. This ratio holds both for small and large
optimal stage numbers.

Proof: Let the size of the stages be denoted by 𝐾 . We have 𝑀

instances of the PARTITION problem, where the sum of the numbers

(representing the maximum number of entries in tables) is 2𝐾 . From

every table in the 𝑘-th instance, there is an arc to every table in the

(𝑘 + 1)-st instance; this way the instances are placed in separate

stages. If an instance has a solution, it can be embedded in 2 stages,

and else it needs at least 3. This means that if all the instances

have a solution, 2𝑀 stages are needed for the TDG, but since the

PARTITION is NP-complete [9], one cannot give a solution that uses

less than 3𝑀 stages, unless P=NP. To make the TDG contain an

arborescence, one can add a table in front of the first instance, and

by𝑀 → ∞ the proof follows. □

Lemma 3. PEP versions 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 , 2D1R, and 2D2R cannot be
approximated better than a ratio of 5/4, unless P=NP. This ratio holds
both for small and large optimal stage numbers.

Proof: The proof is analogue to the proof of Lemma 2, but here

we take𝑀 instances of TDG-s depicted in Subfig. 2b but without

table 𝑅. We separate the stages of the instances as follows: for every

𝑘 ∈ 1, . . . , 𝑀 − 1 there is an arc from the 𝑙𝑖 ’s and 𝐿 of instance 𝑘 to

the 𝑓𝑖 ’s and 𝐹 of instance (𝑘 + 1). If an instance is solvable, it takes

4 stages, otherwise, it takes 5, and it is NP-complete to distinguish

between these two cases (see proof of Thm. 1). This means that if

all the instances have a solution, 4𝑀 stages are needed for the TDG,

but since the ECP is NP-complete [9], one cannot give a solution that

uses less than 5𝑀 stages, unless P=NP. To make the TDG contain

an arborescence, one can add a table in front of the first instance,

and by𝑀 → ∞ the proof holds for 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 .

It is easy to see that models 2D1R and 2D2R contain model

1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 as special cases. The proof follows. □

C APPROXIMABILITY BOUNDS
The basic idea behind our algorithms and proofs of constant ap-

proximations is the following. The TDG nodes are grouped in sets

L1,L2, . . . , such that every TDG arc is ‘forward’, i.e., for a TDG

arc (𝑎, 𝑏), 𝑎 ∈ L𝑖 and 𝑏 ∈ L 𝑗 means 𝑖 < 𝑗 . This way, nodes of each

set L𝑖 can be mapped to the same stages, dealing with most of the

precedence constraint issues. For all PEP versions, we prove that,

among the stages used in our embedding, with at most 𝑐1 ∗ OPT
exceptions, each stage is full at least in a ratio of 1/𝑐2 (where OPT
is the optimal stage number). This induces a (𝑐1 + 𝑐2)-constant
approximation.

Note that we only calculate a plan of the embedding. That is,

1) in case of PEP versions 1D1R, 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 , and 2D1R, for each

table, we only store its starting stage and position, and its end stage

and position, resp; and 2) in case of versions 2D2R, and 2D2R-T/S

we store these values for each table for both kind of resources.

Clearly, the actual embedding phase needs some additional time.

Since our outputs are constant approximations of the OPT optimal

stage number, this additional time scales linearly not only with the

stage sizes, but with OPT too.
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Claim 7. The optimum of 1D1R can be 3-approximated in quasi-
linear time: 𝑂

(
𝑛(𝑇 ) log𝑛(𝑇 ) +𝑚(𝑇 )

)
.

Proof:We add a hypothetical MAT 𝐿 to the TDGwith arcs (𝐿, 𝑙𝑖 )
to all source nodes of the TDG. For each 𝑗 , we call the set of MATs

𝑙𝑘 ∈ 𝑉 (𝑇 ) having a longest directed path of length 𝑗 from 𝐿 as a

level L 𝑗 . We embed levels L1,L2, . . . each after as follows. After

all levels preceding L 𝑗 were embedded, we start a new stage 𝑠𝑖 for

the MATs inL 𝑗 . We will embed the MATs ofL 𝑗 in decreasing order

of their size. We embed as many MATs in 𝑠𝑖 as possible (obviously,

if there is a MAT that is bigger than the stage capacities, then there

is no feasible solution), and if needed, we open up new stages for

the remaining MATs of the level. We claim that this gives a valid

embedding. The output uses at most 3∗OPT stages since 1) not

counting the last stages of the levels, each stage is at least half full

(this means ≤ 2∗OPT stages), and 2) the last stages of the levels are

at most ≤OPT.
Speaking of the complexity, the levels can be computed in𝑂

(
𝑛(𝑇 )+

𝑚(𝑇 )
)
, the orderings can be done in 𝑂

(
𝑛(𝑇 ) log𝑛(𝑇 )

)
total time,

then the computation of the embedding takes 𝑂
(
𝑛(𝑇 ) + 𝑚(𝑇 )

)
,

completing the proof. □

Claim 8. The optimum of 2D1R can be 3-approximated in quasi-
linear time: 𝑂

(
𝑛(𝑇 ) log𝑛(𝑇 ) +𝑚(𝑇 )

)
.

Proof: The proof of 3-approximation of the 2D1R FFL described

in the paper goes as follows. Let OPT denote the minimal number

of stages the TDG can be mapped to. Let ℎ denote the number of

levels in the TDG. For each level L(𝑖), let 𝑆𝑖 and 𝐸𝑖 denote the first
and last stage where nodes of the level are matched. We claim that

at least half of the memory of each row of each stage 𝑆𝑖 , . . . , 𝐸𝑖 −1 is

used. This implies

∑
𝑖∈{1,...,ℎ} 𝐸𝑖 − 1− 𝑆𝑖 ≤ 2 ∗OPT. Also, OPT ≥ ℎ,

since we need at least as many stages as the number of levels we

have. These induce 𝐸𝑖 ≤ 3 ∗ OPT. □
To decipher the complexity of the 2D1R FFL, we only analyse

the additional calculations which have to be done compared to

the 1D1R-ℎ𝑠𝑝𝑙𝑖𝑡 FFL (that runs in 𝑂
(
𝑛(𝑇 ) +𝑚(𝑇 )

)
by Theorem 1).

The ordering of tables in each level by their width can be done

in 𝑂 (𝑛(𝑇 ) log𝑛(𝑇 )) total time. For each table, we need constant

time to compute its start and end coordinates, meaning 𝑂 (𝑛(𝑇 ))
complexity. The proof follows. □

Claim 9. The optimum of 2D2R can be 7-approximated in quasi-
linear time: 𝑂

(
𝑛(𝑇 ) log𝑛(𝑇 ) + 𝑚(𝑇 )

)
. If 𝑤𝑇 ≥ 𝑤𝑆 , it can be 5-

approximated in the same complexity.

Proof: In the following, we prove that the 2D2R version of FFL

is an 8-approximation in general, then we will discuss why the

factor of the approximation decreases by 3 if𝑤𝑇 ≥ 𝑤𝑆 .
First, let us concentrate on a given level L𝑖 . Let OPT𝑖 denote the

optimal number of stages that L𝑖 can be mapped to. Similarly, let

ALG𝑖 denote the number of stages that the 2D2R FFL needs for this.

Let us recall that the last stage occupied by stage L𝑖 is denoted
by 𝑆 [𝐸 (𝑖 − 1)]. When embedding to TCAMs (also with the 2D1R

version of FFL), we scale the width unit to match the width of the

TCAM.

We state the followings. 1) those MATs that can be mapped only

to TCAMs, for some 𝑡𝑖 , occupy stages 𝑆 [𝐸 (𝑖 − 1) + 1], . . . , 𝑆 [𝐸 (𝑖 −
1) + 𝑡𝑖 ], that (apart from the last of them) have their TCAMs at

least half full. 2) if the width of SRAMs is greater that the width

of TCAMs (i.e. 𝑤𝑆 > 𝑤𝑇 ), those MATs that can be mapped only

to SRAMs due to their width, for some 𝑠𝑖 , occupy stages 𝑆 [𝐸 (𝑖 −
1) + 1], . . . , 𝑆 [𝐸 (𝑖 − 1) + 𝑠𝑖 ], that (apart from the last of them) have

their SRAMs at least half full. If no such MATs exist or 𝑤𝑇 ≥ 𝑤𝑆 ,
let 𝑠𝑖 = 1. 3) the remaining MATs are embedded to the TCAMs

of stages 𝑆 [𝐸 (𝑖 − 1) + 𝑡𝑖 ], 𝑆 [𝐸 (𝑖 − 1) + 𝑡𝑖 + 1], . . . and SRAMs of

stages 𝑆 [𝐸 (𝑖 − 1) + 𝑠𝑖 ], 𝑆 [𝐸 (𝑖 − 1) + 𝑠𝑖 + 1], . . . , stage-by stage in an

increasing stage number, and including the remaining free spaces

in TCAMs of stage 𝑆 [𝐸 (𝑖 − 1) + 𝑡𝑖 ] and SRAMs of stage 𝑆 [𝐸 (𝑖 −
1) + 𝑠𝑖 ]. We denote the last stage of this embedding of the level

𝑆 [𝐸 (𝑖 − 1) + 1 +max{𝑠𝑖 , 𝑡𝑖 } + 𝑙𝑖 ].
When filling up the TCAMof stage 𝑆 [𝐸 (𝑖−1)+𝑡𝑖 ] withMATs that

can be mapped to both memories in step 3, the last row 𝑟𝑜𝑤𝑇𝐶𝐴𝑀
used by step 1 may remain not half full (the same applies for SRAMs

last row in step 2). Together with the last stage of the level, there

can be three stages that are not completely half full. By replacing

some rows, we can eliminate one of them: if there is a half-full row

in the TCAM part of the last stage 𝑆 [𝐸 (𝑖−1) +𝑙𝑖 ], we replace it with
𝑟𝑜𝑤𝑇𝐶𝐴𝑀 . If there is no half-full row, then the last stage actually

contains only one short row, which can be added to 𝑟𝑜𝑤𝑇𝐶𝐴𝑀 (we

assume that TCAMs are filled up first in a new stage in step 3).

Note that these apply indifferently to the widths of the SRAMs and

TCAMs.

We can see by Claim 8 that 𝑡 =
∑
levels

(𝑡𝑖 −1) ≤ 2∗OPT (since at

least 𝑡 TCAMs are at least half full, and the optimum embedding has

to have enough TCAM capacity to store the TCAM-only tables), and

similarly,

∑
levels

(𝑠𝑖−1) ≤ 2∗OPT. This means

∑
levels

(max{𝑡𝑖 , 𝑠𝑖 }−
1) ≤ 4 ∗ OPT.

For similar reasons, tables that can be mapped to both TCAMs

and SRAMs, fill at most another ≤ 2 ∗ OPT stages at least half full

(i.e.

∑
levels

𝑙𝑖 ≤ 2∗OPT), meaning at most 6∗OPT stages in total up

to this point. For each level, we have not counted i) the last stage it

uses, and (maybe) ii) the last stage storing SRAM-only tables. Since

there are ≤ OPT levels, we can conclude that the algorithm uses at

most (6 + 2) ∗ OPT = 8 ∗ OPT stages.

We can observe that in case of𝑤𝑇 ≥ 𝑤𝑆 , 𝑠𝑖 ≡ 0 for all 𝑖 , and our

upper bound shrinks to 5 ∗ OPT, because then (implicitly) SRAM-

only tables do not exist, and thus they do not have to be taken in

count. □

Claim 10. The optimum of 2D2R-T/S can be 9-approximated in
quasi-linear time: 𝑂

(
𝑛(𝑇 ) log𝑛(𝑇 ) +𝑚(𝑇 )

)
. If 𝑤𝑇 ≥ 𝑤𝑆 , it can be

6-approximated in the same complexity.

Proof: Let the maximal number of tables per stage be denoted by

𝑐 . Let OPT2D2R-T/S denote the optimal stage number of 2D2R-T/S

for a given 𝑐 , and OPT2D2R denote the optimal stage number for

𝑐 = ∞, which is equal to the optimum of 2D2R by the problem

definition. We claim OPT2D2R ≤ OPT2D2R-T/S.

The output of 2D2R FFL can be transformed to a 2D2R-T/S-

compatible embedding by dividing each stage hosting a number

of 𝑘 > 𝑐 tables to ⌈𝑘/𝑐⌉ stages, each hosting ≤ 𝑐 MATs. Since

OPT2D2R-T/S is greater or equal to the number of stages hosting 𝑐

MATs, by Claim 9, this results into ≤ 8 ∗OPT2D2R +OPT2D2R-T/S ≤
9 ∗OPT2D2R-T/S. Furthermore, in case of𝑤𝑇 ≥ 𝑤𝑆 , also by Claim 9,

the approximation boundmodifies to ≤ 5∗OPT2D2R+OPT2D2R-T/S ≤
6 ∗ OPT2D2R-T/S, completing the proof. □
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