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Abstract
Clouds offer an opaque I/O API to their customers : details
of the underlying resources (network topology, disk drives)
or their current load are kept hidden. Tenants can profile the
I/O performance in their VMs and optimise accordingly, but
the side effect is increased load. Certain cloud providers try
to discourage profiling by enforcing strict I/O isolation, at
the cost of reduced utilisation in the average case. In this
paper we challenge this status quo and propose CloudTalk,
an API that allows tenants to communicate with the cloud
provider and receive hints used to optimise their workloads.

We have built a distributed implementation of CloudTalk
that scales to hundreds of machines and provides significant
performance benefits in many cases. Further, we have imple-
mented changes to Hadoop and HDFS that use CloudTalk to
decide which machines to use for task placement and replica
selection. Our experiments in a local cluster and on Amazon
EC2 show that CloudTalk helps improve performance by as
much as two times for a wide range of scenarios.

1. Introduction
Data center applications can be optimised by using network
topology, link or server load knowledge to choose the best
endpoints to place tasks [5, 20], or to harmonize multiple
computing frameworks running on the same cluster [7, 8,
12]. When sizes are known, one can approximate shortest-
job first scheduling [2, 13] for short flows, and load balance
long flows across multiple paths to avoid collisions [16, 21].
These optimisations and others have been designed for, and
used in, private clouds where the data center owner runs
both the apps and the infrastructure, bringing performance
improvements up to orders of magnitude better.
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Unfortunately, some optimisations are almost impossible
to implement in public clouds today. That is because clouds
offer a rather opaque API to their customers: clients do not
know the underlying network and storage topology and its
current load. Providers have no insight into tenant work-
loads, and no control over the stack they use.

The standard techniques by which clients can glean in-
frastructure information are probing and topology discovery,
but they both come with major issues. Probing is both costly
and unreliable when performed independently by multiple
tenants. Topology discovery only works for a handful of
applications, and limits the cloud provider’s flexibility in
matching virtual machines to physical servers. Cloud users
are seemingly stuck: optimising their distributed applica-
tions requires in-depth infrastructure knowledge and real-
time I/O information that providers are understandably re-
luctant to give away. Cloud providers are not in great shape
either: protocols such as Multipath TCP benefit long flows,
and PFC (Priority Flow Control) [9] is great for short scatter-
gather communication. The providers could enable them for
their customers, but they don’t know the traffic type.

In this paper we propose CloudTalk, a novel cloud-tenant
API that enables application and infrastructure optimisations
while preserving provider flexibility in VM placement. Ten-
ant apps use CloudTalk to express the traffic pattern they
wish to run, together with possible endpoints for the different
flows. The cloud provider runs a CloudTalk server on each
hypervisor that uses topology and live traffic information to
answer client queries with near-optimal endpoint placement.
Additionally, the CloudTalk server can configure lower-layer
protocols such as PFC to optimise client traffic. The main
contributions of our paper include:

• A measurement analysis of Amazon EC2 to check whether
profiling is feasible and data center applications can be
optimised using the derived information.

• The design of the CloudTalk language (see §4.1).
• A fast and fully distributed CloudTalk prototype that scales

to hundreds of servers or more (§4).
• Implementing CloudTalk support in apps such as dis-

tributed filesystems (HDFS), and map/reduce (Hadoop).



We have run our solution both in a local cluster containing
20 servers, as well as on 100 Amazon EC2 servers. The
results show that CloudTalk improves performance by 1.15-
2 times for tested applications.

2. Motivation and requirements
Our goal is to enable joint app/network optimisation of
tenant distributed applications running over public clouds.
Tenants run apps without network information, while cloud
providers run their networks without explicit information
from apps regarding demands, and no control over tenant
software, including network stacks.

Many possible optimisations have been proposed that do
not work across the VM API, including [2, 5, 7, 8, 12, 13, 16,
20, 21] to name a few. To implement any of these we need
cloud providers and tenants to share information. Consider
the optimisation proposed by Chowdary et al. [5] to select
the placement of HDFS replicas based on congestion infor-
mation in the network. The experiments show performance
improvements of up to 2x compared to the baseline. Imple-
menting this in a public cloud is near impossible today: the
tenant runs the distributed filesystem and has the ultimate
say in where data resides, but the provider alone knows the
load of its links.
Optimising reducer placement. Another example is the
popular map/reduce paradigm. Where should the relatively
few reducers be placed? Our experiments show that choos-
ing an unloaded server can double performance.
Optimising web-search. We ran Apache Solr on 100 Ama-
zon EC2 instances to implement web search on a snapshot of
the .uk domain. By using topology information when plac-
ing aggregators, we can improve query response times by an
order of magnitude (see §5.4).

At the other end of the cloud API, providers have few op-
tions to optimise their infrastructure without tenant support.
As we show in §3, EC2 appears to have a fully provisioned
core network. To fully utilise this capacity, there are a num-
ber of challenges to address.
Utilising full bisection networks is no easy task: hashing
flows to random paths can lead to wasting 60% of capacity
because of collisions [1]. The best solutions involve chang-
ing the end-host stacks to spread high-throughput elephant
connections over multiple paths [16, 21], but they adversely
affect short flow completion times. If cloud providers knew
which flows are elephants and would benefit from redirec-
tion, they could deploy optimised stacks in the hypervisor
and proxy the traffic.
Enabling network features selectively. Even when band-
width is plentiful, tenant apps might still suffer from pecu-
liar traffic patterns, such as incast. The provider could en-
able PFC, a layer two mechanism that uses pause messages
to prevent loss and completely eliminate incast-related prob-

lems. PFC cannot be enabled for all tenants, though, because
it reduces throughput for elephant flows.
Requirements. We need a deployable mechanism that has
the following properties:

• Flexibility to support a wide range of application or in-
frastructure optimisations.

• Scalability to large public clouds and many tenants.
• Fast response times: the new API should respond to

queries as quickly as possible, to enable benefits for both
batch and real-time applications.

• Security. The API should not enable tenants to launch
DoS attacks against the cloud or other tenants.

3. Probing and optimizing in the cloud
Cloud providers such as Amazon EC2 or Microsoft Azure
do not disclose any network topology details. Nevertheless,
a great deal of information can still be inferred by running
measurements on cloud instances. Is this sufficient to opti-
mise tenant applications? We discuss active probing and its
limitations in the context of Amazon EC2. There are two
types of data that can be collected: topology information,
which is relatively static, and performance-related data, such
as the available network or local storage bandwidth.

3.1 Probing the EC2 network
We reverse-engineered the topology of Amazon EC2’s us-
east-1d data center by acquiring many instances and using
well known network diagnosis tools such as ping, traceroute,
and the iperf bandwidth measurement tool. To understand
the evolution of the EC2 network, we reran measurements
on the same data center periodically, starting from 2011 to
October 2015.

Figure 1 shows the topology as inferred from our 2011
measurements. By using the traceroute number of hops and
reported IP addresses, we were able to cluster VMs on the
same physical host (1 hop in traceroute, via the hypervisor),
and in the same rack (two hops via two hypervisors). To
make sense of the topology at higher levels in the hierarchy
we used ping -R (record route) to generate the possible
paths between any two VMs. Next, we used IP aliasing [3]
to figure out which addresses are on the same routers. Fi-
nally, we used iperf measurements to infer the (likely) max-
imum capacity of the links. While we cannot be absolutely
sure that Figure 1 ever was 100% accurate, it correctly ex-
plains the behavior we noticed during our tests, as well as
anecdotal information gathered from Amazon employees.
The topology is similar to VL2 [11].

We also measured the bandwidth available to each VM
and found it varies across instances, with extremes between
100Mbps and 1Gbps. It appears no shaping was performed,
and all VMs on the same physical host shared its gigabit link.
Other EC2 measurements around that time found similar
performance characteristics [17, 21].



Figure 1: EC2 US-EAST Availability Zone D Topology as
inferred by measurements in December 2011.

More recent measurements (2015) reveal an effort from
Amazon to hide its network details, as follows:

• The IP aliasing techniques stopped functioning straight
after we shared with Amazon a copy of our preliminary
work in 2012.

• Ping with record route is no longer allowed.
• Traceroute reports addresses with no obvious structure.

Most likely Amazon has moved to a tunneled architecture
where tenant traffic is encapsulated and decapsulated in
Dom0, similar to VL2. This allows EC2 to offer the illu-
sion of a virtual LAN to all tenants by tunneling L2 traffic
encapsulated at L3, as well as to hide its network configu-
ration details.

• The throughput experienced by VMs is very stable regard-
less of time of day, and only depends on instance type (e.g.
500Mbps for c3.large).

However, we can still get information from traceroute and
ping data. In particular, ping times are correlated with the
number of traceroute hops, indicating whether two machines
are on the same host, rack or subnet.
Optimising applications. The EC2 network was fairly open
in 2011, and tenants could use both capacity probing and
topology information to improve their apps; a number of
works proposed to use profiling to optimise VM place-
ment [10, 14, 17].

Unfortunately, capacity probing is inefficient when used
at large scale. Continuous, frequent network and storage
measurements constitute pure overhead from the cloud
provider’s viewpoint, and can negatively influence the per-
formance of tenants not doing probing. Further, probing
costs increase linearly with the number of tenants wishing
to optimise their applications, and will not scale to a large
cloud. Finally, probes from different tenants could overlap
in time leading to incorrect inferences about the available
capacity. While we can’t know for sure, these considerations
are likely to have played a role in Amazon’s decision to per-

form strict isolation of bandwidth between tenants on most
of its VMs, sacrificing aggregate utilisation in the process.
Topology information is very difficult to completely hide,
and can be used to optimise delay-sensitive applications such
as web-search, as we show in our evaluation (see §5.4).
Static topology information is, however, insufficient to opti-
mise apps like HDFS or Hadoop: in full-bisection networks
there are no bottlenecks in the core, and all hotspots form at
the server access links.

3.2 Towards a solution
Applications should collaborate with the cloud to reap mu-
tual benefits: the status quo is suboptimal for all parties. The
strawman solution is to have the data center operator reveal
the real network topology, together with accurate load infor-
mation. This violates our security requirement, and as such
has no chance of adoption.

We could adopt ideas from IETF ALTO (application-
layer traffic optimisation) Working Group [23]. ALTO aims
to help network operators and endpoints communicate to en-
able provider-friendly peer-to-peer replica selection. ALTO
servers run by the operator provide requesting applications
with a network map and a cost map. The network map is a
clustering of IP addresses performed by the operator accord-
ing to its own routing policy, and the cost map provides rout-
ing costs between clusters. The applications use this infor-
mation to select the most desirable peers. The ALTO model
offers better confidentiality than the strawman, but it fails to
capture many-to-one or many-to-many traffic patterns, and
does not include dynamic load information.

Cloud providers will never disseminate load information
to tenants for fear of compromising security. Instead, we
need a mechanism that can guide apps to make the right
scheduling decisions without giving them actual load mea-
surements. For this system to work, apps must announce
their intended operations via an API.

4. CloudTalk Architecture
CloudTalk enables optimisations by shifting to the provider
a part of the client-side decision making process involved in
distributed scheduling. A tenant does not ask specific ques-
tions about the environment, but rather describes a scenario
where multiple options are available, and expects the cloud
provider to suggest the best one. Consider the example in
Figure 2 where virtual machine 1 wants to read file f that is
replicated on VMs 2 and 3. The client application will for-
mulate a query which describes this communication pattern
to the cloud, and the reply will suggest the best replica to
read from.

Queries are written in the CloudTalk language (§4.1) and
answered using a distributed architecture. CloudTalk runs
two services on every physical machine in the data center,
as shown in Figure 2. The client facing CloudTalk server
receives queries via local TCP connections from tenants,



processing them and returning an answer. The status server
gathers information about disk and network interface usage
and relays it to the CloudTalk server upon request.

After receiving and parsing a query, the CloudTalk server
builds a reply which contains the best endpoint placement
with respect to the problem instance. This has two phases:
first, the CloudTalk server identifies all the VM IP addresses
that appear in the query and locates the respective status
servers, which are then interrogated (step (2) in Figure 2).
UDP is used as transport, to minimize incast related prob-
lems. During step (3), the CloudTalk server aggregates all
the status information pieces, by waiting for a predefined
amount of time, or until all responses arrive. If nothing is
received from a status server, we assume that a particular
address is under heavy I/O load.

The CloudTalk server has now all the information needed
to generate an answer. Next, it solves an optimisation prob-
lem where possible answers are evaluated to find the one
that minimizes the client’s job completion time. Trying out
all possible answers becomes intractable when the client
queries are moderately complex. We have designed a scal-
able heuristic algorithm that offers near-optimal results for
many popular queries (see §4.2).

To estimate flow completion times, CloudTalk offers two
options to its clients: a packet level simulator and a flow level
estimator. The first is very accurate and captures packet-level
effects such as incast, but it is also quite slow when many
packets are involved, because it can accurately model trans-
fers at the network and transport layers. It cannot capture
effects caused by the operating system, or the applications
themselves, but this usually does not lead to significant inac-
curacies. The flow-level estimator arithmetically allocates a
rate to each flow using the assumption that bottleneck links
are shared equally (while also taking any restrictions into
account), similar to [1]. The algorithm iteratively computes
flow rates until they stabilize. It is accurate for large transfers
and much faster than the packet level simulator, but doesn’t
work very well for short flows. When clients submit a query,
they are also able to select which evaluation method should
be used to determine the best placement.

Moreover, the client can specify whether the query should
be evaluated while taking dynamic load information (data
provided by status servers) into account. This is usually the
case, but there are also situations where static information
is sufficient. For example, Section 5.4 presents the optimisa-
tion of a web-search application deployment, which uses the
packet-level simulator and static information to find out the
best server placement, before the entire framework is started.

The CloudTalk architecture can, in principle, scale arbi-
trarily, but there are two possible practical limitations:

• When a query targets hundreds or thousands VMs, the
CloudTalk server will ask all the associated status servers,
resulting in a large overhead. We show, via analytical sim-
ulation and EC2 experiments, that it is enough to randomly

A	 B	 C	VM	1	 VM	2	 VM	3	
Read(f)	

CloudTalk		
server	

(1)		
Read	264MB		

from		
VM2	or	VM3?	

Dom0	
Status	

SSD	 SSD	

Status	 CT		

(2)	Tell	me		
your	I/O	load	 (3)100%	

(3)25%	

(4)	VM2	

CT		

Figure 2: CloudTalk architecture: tenant apps query
CloudTalk for the best way to perform their work.

ask a fixed subset of servers while still achieving near-
optimal answers (§ 4.3).

• Is local monitoring of the I/O usage enough to ensure
a globally-optimal answer? For full-bisection topologies,
such as Amazon’s, the answer is yes: the topology core is
provisioned in such a way that bottlenecks can only appear
at the end-hosts links.

4.1 Language
There are many dataflow programming languages already
available, but none of those we considered present all the
characteristics we desire for CloudTalk. Our language is
specifically tailored towards describing flows generated dur-
ing common I/O tasks, such as disk and network transfers.
We employ a restricted but expressive set of flow properties,
which allows us to model a wide range of application com-
munication scenarios. This is enabled by the presence of re-
strictions and flow interdependencies, that can be expressed
in a concise manner using attribute reference semantics.

Distributed applications rely on data flows—disk access
and network transfers— to perform their work. An applica-
tion task typically consists of multiple such flows, perhaps
with dependencies among them, and the task finishes only
when the last flow does. A CloudTalk query contains the
representation of an entire set of flows, called a problem in-
stance. In the CloudTalk language, each flow abstracts a data
transfer. For network transfers, a flow represents an unidi-
rectional transport connection, and each endpoint stands for
a server (physical or virtual machine) which is identified by
an IPv4 address. For disk transfers, a flow represents the pro-
cess of reading or writing data to a local disk. Below we
show a query for the example in Figure 2.

A = (vm2 vm3)

f1 A -> vm1 size 256M

A CloudTalk query consists of one or more statements,
separated by a semicolon when they appear on the same line.
The exact syntax of the language is given in Table 1. Each
flow has an optional name (f1 in this case), a source, a desti-
nation as well as a description composed of static or dynamic
attributes. The endpoints of a network connection can be lit-
eral IP addresses (which refer to a particular server such as



vm1), or variables. In the example above, the variable A can
take as values the IP addresses vm2 or vm3. We employ the
convention of using lower case for literals and upper case for
variables. There is also the special disk keyword, that can be
used as endpoint, and identifies flows which describe disk
I/O instead of network transfers. It represents local disk ac-
cess, assuming each VM has a single local disk.

Variables embody the actual client request: each one has
an associated set of values (IP addresses), and signifies that
a particular endpoint can be placed on any of those servers.
The CloudTalk server will respond with a binding of vari-
ables to values that represents the best recommendation in
terms of endpoint placement.

Flow size is a static attribute and is set to 256M in our
example. A static attribute is one that never changes over the
lifetime of a flow, once its value is set or becomes apparent.
This category contains the start and end times, and the size
of a flow (expressed in bytes). A static attribute might remain
unknown (for example, an endless flow has no size), but if
it can be determined at some point, it will keep that value
forever. A typical example is the end time, which is not
usually known in advance, but will be set as the flow finishes.
A dynamic attribute can change its value during a flow’s
lifetime. There are two such attributes: the instantaneous
transmission rate and transfer, a monotonously increasing
function that tells how much data has been successfully
transmitted up to the respective point in time.

Attributes can specify a wide range of flow properties
when restricted. If a flow description does not mention one
attribute, then it is unrestricted. Restrictions depend on each
particular attribute: for start time and size, restrictions are
used as the attribute’s value, i.e. the flow will start at that
particular time. If there is nothing said about this attribute,
then the flow is assumed to start right away (as in our exam-
ple above). A restriction on size determines how much data
can be sent until the flow ends. If the size attribute is not re-
stricted in any way, and neither is the end time, the flow is
assumed infinite (and will not count towards overall termi-
nation). Consider below a refinement of our example where
we take the disk into account too, and capture the fact that
the flow may be bottlenecked by the disk or the network:

A = (vm1 vm2 ... vmn)

f1 disk -> A size 100M rate r(f2)

f2 A -> vm1 size sz(f1) rate r(f1)

There are n possible data sources and server vm1 is the
reader. We split the communication pattern in two flows,
both of which start immediately: flow f1 reads data from
disk and f2 sends it over the network.

A flow depends on another flow if one or more of its at-
tributes are restricted by an expression that contains refer-
ences to the other flow’s attributes. In our example, flows f1
and f2 are interdependent, because they must have roughly
the same rate: data cannot be sent faster that it is read from
disk, and it will not be read at a higher speed than the net-

Variable A variable has a set of possible values (IP addresses
or disk), and the job of the CloudTalk server is to
bind each variable to the value that minimizes task
completion time.

var = (val1 val2 · · · valn)
Flow Defines a flow between two endpoints. The flow has

an optional name, a source, destination and a descrip-
tion.

[name] src� > dst description

Description Defines a flow’s attributes.
[start val] [end val] [size val] [rate val] [transfer val]
Values In the context of a flow description, values can be

numeric literals, references to an attribute of another
flow (specified by name or identifier) or the result of
an operation which involves other values.

val := LITERAL | REF | val OP val | (VAL)
REF := st(f ) | e(f ) | sz(f ) | r(f ) | t(f )
OP := + | - | * | /
Attributes start and end are given in seconds relative to current

time. size and transfer are given in bytes. rate is given
in Bps and specifies the maximum instantaneous rate
for this flow.

Table 1: The CloudTalk language elements.

work send rate. The presence of a buffer at the sender can be
modeled with transfer restrictions, but this is more concise
and paints a similar picture in most cases. A rate restriction
means that a flow can never transmit faster than the specified
value. Even if the rate is not explicitly constrained, it is still
limited by network conditions. Our two restrictions mandate
that the rates of the two flows will be the same. The ref-
erences that can be used to establish flow dependencies are
represented by the REF placeholder from Table 1. Reference
can be made to all five flow attributes: st (start time), e (end
time), sz (flow size), r (instantaneous rate), and t (amount of
data transferred so far).

Now consider a pattern known as daisy-chaining. It is
used, for example, when writing data to an HDFS file sys-
tem. We have an initial sender (server a) and three other
servers (B, C and D). Server a sends some data to B, which
is stored locally but also forwarded to C. In turn, C does
the same thing to D, which is just a receiver and doesn’t
send anything further. We assume that local storage is much
faster than the network, so the disk related operations are not
described in the query.

B = C = D = (s1 s2 ... sn)

f1 a -> B size 100M
f2 B -> C size sz(f1) transfer t(f1)

f3 C -> D size sz(f1) transfer t(f2)

We could use the rate attribute to specify the dependen-
cies between these flows, but it would miss local buffering
effects: server A might send to B at a high rate initially, but
then its rate could drop due to congestion. At the same time,
B could start by slowly forwarding data towards C, and then
ramp up to line rate when its link frees up. We use the trans-
fer attribute in this case, which restricts the number of trans-
ferred bytes to always be lower than, or equal to the specified
threshold, regardless of the instantaneous flow rate.



It is noteworthy that B, C and D will be bound by
CloudTalk to different servers despite sharing the same pool
of possible values. This is the default behaviour, because
many of the multi-variable use cases we encountered re-
quired identifying different endpoints for replica placement,
but can be overridden by the client when necessary.

4.2 Query evaluation algorithm
A CloudTalk query contains both variable declarations and
flow definitions, which define the entire set of possible task
placement scenarios. How can we find the best placement?
It is easy to prove that query evaluation is NP-hard in the
general case, but we omit the proof for space reasons.

To answer CloudTalk queries we could evaluate all possi-
ble bindings and select the best result, but the solution space
is often intractably large. One heuristic that works very well
in practice is to simply pick the n-best servers for each query,
where n is the number of variables. This heuristic proved to
work very well for the use cases we considered, so it became
the query evaluation method of choice for all our experi-
ments, except for the web search optimisation presented in
Section ?? (which uses the packet-level simulator, together
with static information).

The algorithm examines the type of operation each vari-
able is involved in (for example, sending data over the net-
work), and picks the server whose I/O availability is best
suited for that scenario. Listing 1 contains the pseudo-code
for the relevant parts of the algorithm. Execution begins with
evaluateQuery: every variable has two associated sets, to
and from, where we record the set of endpoints that send
to, or receive data from it. By removing the disk endpoint (if
present) from these, we build the network-only tx and rx

sets. Does the order in which we bind variables matter? The
following scenario sheds some light onto this issue:

X = Y = Z = (a b c)

f1 X -> Y size 100M
f2 Z -> a size 100M

Here, any optimal value selection must include the bind-
ing Z  a, because this way f2 runs locally on a server and
doesn’t use network resources at all. If variables are bound
to values in a random order, we risk using a for a different
endpoint, which prevents the aforementioned optimal bind-
ing. At the same time, if disk I/O were used, the choice is
not obvious; server a’s local disk could be so slow that it is
better to read data over the network instead. Here, f1 and f2
have the same size; for the task to finish quickly both flows
must be placed on a high capacity link.

Our heuristic always assumes all flows are equally impor-
tant, so it is highly desirable to bind a variable to an endpoint
that it directly communicates with. This applies only when
the variable communicates with at most one endpoint, and
that endpoint is one of its possible values. In the pseudocode,
line 8 tests this condition for data reception, while line 9
does it for transmission. If at least one condition is met, we

1 evaluateQuery

2 for f in flows

3 to[f.dst].insert(f.src)

4 from[f.src].insert(f.dst)

5 for v in vars

6 tx[v] = to[v] \ {’disk’}

7 rx[v] = from[v] \ {’disk’}

8 if size(rx[v]) == 1 && rx[v] ✓ values[v]

9 || size(tx[v]) == 1 && tx[v] ✓ values[v]

10 assignValue(v, values(v) \ used_values)

11 vars.remove(v)

12 for v in vars

13 assignValue(v, values(v) \ used_values)

14
15 assignValue(var, possible_values)

16 bestScore = 0

17 for v in possible_values

18 score = min(netRx(var, v), netTx(var, v),

19 diskRead(var, v), diskWrite(var, v))

20 if(score >= bestScore)

21 best = v

22 bestScore = score

23 bind(var, best)

24 used_values.insert(var)

25
26 netRx(var, ip)

27 if to[var] == {ip} || from[var] == {ip}

28 return MAX

29 if size(rx[var]) == 0

30 return MAX

31 return evalRx(ip)

32
33 diskRead(var, ip)

34 if ’disk’ not in to[var]

35 return MAX

36 return evalDiskRead(ip)

37
38 evalRx(ip)

39 d = data[ip]

40 return d.net.rxCap - d.net.rxUse / W

Listing 1: Query evaluation algorithm pseudocode.

prioritize the variable for value assignment. Using priorities
ensures that we can still check for disk bottlenecks and value
availability. After high priority variables are bound, the as-
signment method is applied to the remaining ones.

The assignValues function is responsible of picking a
value for a given variable, out of a predefined set of possibili-
ties. A score is assigned to each candidate value, and the best
is selected at the end. The overall score represents the least
available resource used by the flow which involves that par-
ticular variable. The individual score calculation procedures
are quite similar, so we only present the netRx and diskRead
functions. The former estimates the network receive fitness
of an endpoint, with respect to the given variable. On line
27 we check if the previously described single local end-
point condition is met, and return a maximum score if that
is the case. The same score value is used when the variable
is not involved in any network traffic reception (line 29). If
neither of the previous conditions are met, the score is eval-
uated based on available status information (line 31). Things
are similar for netTx, diskRead, and diskWrite, but the last
two no longer include any check for a local endpoint.

All the status information evaluation functions are sim-
ilar; the data parameter is the only difference. The evalRx
method only cares about network receive capacity and net-
work receive usage. The data[ip] element contains informa-



tion received by the CloudTalk server from that particular
machine. In its simplest form, the result of evalRx is the
difference between maximum capacity and usage. However,
there is also the selectable weight W (implicitly 2), which
can be used to change the relative importance of maximum
resource capacity versus contention.

In order to get a better picture of how the heuristic op-
erates, let us return to the previous example. There are
three variables (X , Y , and Z), and three common possi-
ble values (a, b, and c). We have tx[X]= ;, rx[X]={Y},
tx[Y]={X}, rx[Y]= ;, tx[Z]= ;, and rx[Z]={a}. Z
is the only variable that fulfills at least one of the conditions
from lines 8 and 9, so it will be assigned a value first. The
score of a (for Z) is equal to the maximum value, for both
tx and rx. Moreover, disk operations and network receive
status are not relevant for Z, so the overall score will be the
maximum value, meaning Z will be bound to a. The other
two variables, X and Y , will be bound last, in that order.
For X , the heuristic will pick from b and c the endpoint
with the most outgoing capacity, and Y will be bound to the
remaining server.

The execution of the heuristic takes place after all end-
point related information has been gathered from the status
servers. Let m be the number of flows, n the number of vari-
ables, and p the maximum number of possible values for any
given variable. All score related calculations run in asymp-
totically constant time, so the assignValue function finishes
in O(p) steps. In evaluateQuery, lines 3 and 4 are executed
m times, and assignValue is called n times, so the entire al-
gorithm terminates after O(max(m, np)) steps.

This heuristic can be seen as a hybrid of classical first-fit
and best-fit strategies. In our context, a pure first-fit approach
would not work well, because a variable can be bound to any
of its possible values (it “fits” anywhere), which amounts to
random placement. At the same time, the heuristic is not a
best-fit either, as this would entail binding variables to end-
points that can both accommodate their communication re-
quirements, and overshoot the necessary capacity by as little
as possible. We did not fully pursue this strategy because it
increases computational complexity; chained variables can’t
be assigned in isolation anymore, as the strongest restriction
propagates via dependencies. A significant disadvantage of
the previous heuristic is the loss of time as a dimension. It
ignores all start restrictions, and does not consider that some
flows finish sooner than others. The solution is to add sepa-
rate heuristics for different classes of queries, and allow the
user to select which one is appropriate.

4.3 Using sampling to improve scalability
Tenants may have large collections of virtual machines, per-
haps thousands in some extreme cases. When such a tenant
issues a query, CloudTalk may need to collect status data
from thousands of status servers. The scatter-gather com-
munication pattern used to retrieve load information risks
losing replies for a large number of queried servers. Our ex-

periments show that querying one hundred servers gives low
packet loss with our UDP-based solution, while for a thou-
sand servers, there is high packet loss. Dividing the requests
into multiple rounds leads to increased query times and in-
accurate information, so it is not desirable either.

To avoid these issues, CloudTalk uses sampling when N ,
the total number of tenant VMs, is larger than one hundred.
CloudTalk only asks n randomly selected servers where
n << N . How good is the answer computed via sampling,
compared to having full knowledge? Our evaluation in § 5.2
shows via simulation and EC2 deployment that we only need
to sample relatively few machines for near-optimal results:
the number of samples needed depends on network load and
the required number of servers d, but does not depend on N .
In many situations, sampling achieves near-optimal results
irrespective of the number of VMs owned by tenants.

5. Evaluation
We have implemented CloudTalk in approximately 3000
lines of C++. We rely on the flex/bison suite to generate a
lexer and parser for the CloudTalk language. We have se-
lected three representative application classes that can ben-
efit from CloudTalk: MapReduce computation (Hadoop),
a distributed filesystem (HDFS) and web-search (Solr).
We have changed these applications to generate CloudTalk
queries and use the replies whenever they have a choice
(100-300 LOC per app).

We begin by examining the performance of the CloudTalk
server implementation and its scalability. The rest of our
evaluation is dedicated to measuring HDFS, Hadoop and
Solr performance with and without CloudTalk optimisations.
The results show that CloudTalk boosts application perfor-
mance by 15% to 100%.

We rely both on a local cluster of twenty machines
and Amazon EC2 for testing. Our EC2 experiments use a
slightly modified setup to that in § 4: instead of running the
CloudTalk and status servers in the hypervisor, we run them
as processes inside our virtual machine. The status server es-
timates the remaining available capacity by subtracting NIC
current usage from the per tenant bandwidth limits EC2 im-
poses these days (500Mbps for our VM type). In summary,
we use EC2 to emulate a CloudTalk deployment at scale
not available in our cluster, with the caveat that the network
speeds are fairly low compared to real data center networks.

5.1 CloudTalk server evaluation
Our heuristic query evaluation algorithm is designed to be
fast, but how much accuracy do we lose by favouring quick
response times? It can be shown that our algorithm is optimal
for single variable queries, and for daisy-chaining queries
where the first endpoint is a fixed address. Surprisingly, these
simple traffic patterns cover many use cases, but it’s easy to
find a query where our algorithm is suboptimal.
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Figure 3: How close is our query evalua-
tion algorithm to optimal?
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Figure 4: Evaluating the accuracy of dis-
tributed sampling.
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Figure 5: HDFS running over SSDs.

A simple example is daisy-chaining with every endpoint
being a variable: x1 = x2 = x3 = (s1 . . . sn); f1 x1 > x2 size
100M ; x2 > x3 size sz(f1) transferred t(f1). There are
three variables with n possible values here. We contrast the
results of our algorithm against an exhaustive evaluation of
all possible solutions. The comparison is made for 100k ar-
tificially generated network states involving 20 servers. Ev-
ery state reflects network interfaces of the same capacity, but
with variable outgoing and incoming transfer rates which
vary between 0 and 90% of link capacity, and are indepen-
dently selected for each direction. The background traffic is
inelastic, meaning that flows described in the query can only
use remaining capacity. We ran one batch of experiments
where the rates follow a uniform distribution, and then an-
other where they follow a bimodal distribution, with peaks
at 0% and 90% utilisation.

First, we measured the query response time at the server,
finding that it takes CloudTalk around 0.45ms on average to
answer one query: of these, 0.32ms are spent in parsing the
query and 0.13ms running our query evaluation algorithm.
In comparison, the brute-force evaluation algorithm takes
130ms on the same query.

To measure how good the server selections are, we invoke
the flow-level estimator to get an estimate of write through-
put. We compare our solution and random server choice
against exhaustive search, and plot the results in Figure 3.
The vertical axis shows the achieved throughput as percent-
age of optimal, and the horizontal axis shows the number of
experiments where the throughput was at least that much.
The results show our heuristic is within 2x of the optimal in
the worst case, and is optimal in 80% of the experiments. As
expected, picking a binding at random proves to be a much
worse solution. However, it’s important to consider that ran-
dom selection is generally the only possible option when no
information is available, and our experiments show there is
considerable room for improvement.

Our heuristic evaluation algorithm presented has a run-
ning time proportional to both the number of servers being
considered (n) and the number of variables (d): Table 2 con-
tains the average running time (in microseconds) of multiple
heuristic evaluations for different values of n and d. It grows
linearly with n, and is reasonably small when only a couple

n
d 3 5 10 20 30

100 231 310 477 886 1307
200 427 550 878 1524 2209
300 607 782 1237 2163 3196
500 987 1245 1963 3420 4918
1000 2014 2586 4065 7146 10244
2000 3910 5057 7923 13674 19379

Table 2: Heuristic evaluator running times (µs)

hundred servers or less are involved. It actually turns out that
parsing the query takes slightly more time than the heuristic
evaluation. However, the parser is not optimised (a first step
would be to write a custom parser, instead of using a tool-
generated one), and the language itself could use constructs
which help reduce the verbosity of some queries.

5.2 Sampling accuracy
A number of measurement works [4, 11] show that in many
data centers, at any given time, there is a large number of
idle links, but there are some links that are hot and should
be avoided. In the context of a full-bisection network, links
could be split in two categories: low utilisation and high
utilisation (near 100% utilised).

Query evaluation only cares for the top ranking servers in
terms of available capacity. If we need d servers to answer
the query, our goal is to select all d servers from the ones
with idle uplinks. For concreteness, let’s assume an average
network utilisation of 70%.

Assume we want to contact n servers. How large must
n be to ensure that the best d of them are in the 30% idle
target group with some predefined probability, say 99%? We
turn to simulation to answer this question and ran the fol-
lowing experiment: we generate a total of N = 100.000
servers with load 0% (30% probability) or 100% (70% prob-
ability). Then, we chose d, the desired number of servers
for our query, and keep increasing the number n of sampled
servers until all d servers were idle, with high probability
(the confidence threshold). In Figure 4, we plot the depen-
dence between d (on the X axis) and n (on the Y axis), for
three different confidence thresholds.



First, consider the practical case where d, the number of
servers needed, is small (between one to five in most of our
optimisations): it suffices to query only 10-25 servers out of
the total 100.000 to ensure the evaluation is optimal. n grows
sub-linearly with d: one needs to enquire 4 servers for every
server needed in an answer. With our current experience, this
implies we can answer optimally all queries that involve 25
servers or less, even in a 100.000 node deployment.

Results depend on the fraction of idle servers: if 70% of
servers are idle, we only need to ask 1.6 servers for each
server we use; if only 10% of are idle, we need to ask as
many as 20 servers per used server. In practice, we expect
average network utilisation to be fairly low (30%-50% at
most), thus our sampling solution can efficiently answer
complex queries.

It’s worth noting that server load does not necessarily
have to follow a bimodal distribution, in order for sampling
to make sense. In the general case, we can assume each
server has a different load level. However, they can still
be seen as part of a sequence which is sorted according
to the fitness of each element. At this point, we only have
to choose a threshold such that every server above it is
considered desirable, while all others are not. This leads to a
situation which is fundamentally similar to only having fully
loaded or idle servers. Providers have access to actual load
information, and can adjust the target interval for sampling
accordingly.
Amazon validation. We also wanted to validate these results
on Amazon EC2. The use case under consideration is writing
a file to an HDFS cluster which consists of 301 machines.
With the default replication factor of 3, one replica will be
placed locally (as there is no storage bottleneck), and two
more on remote servers. This means that we are looking to
select two servers from the other 300 in the cluster. To make
this choice actually matter, we make 70% of the servers (the
writer not included) transfer data among themselves, using
the iperf bandwidth measurement tool as a long running
traffic generator, at line rate. Poor replica placement will
dramatically increase the transfer time in this scenario.

If CloudTalk is not enabled, the average write time in-
creases to 40s, from under 4s in an idle cluster. We enabled
CloudTalk and limited the number of remote servers being
interrogated each time to 19 (this is the number predicted in
our previous analysis for a target interval of 30% with 99%
confidence). After running transfers for a couple of hours,
out of 2675 measurements, we got the following results:
2649 finished in under 4 seconds, 3 more finished in under 6
seconds, and the rest in under 30s. The number of unfortu-
nate choices is less than the 1% predicted by the theory.

5.3 Hadoop evaluation
Our modified version of Hadoop was deployed both on a
small local cluster consisting of 20 machines, and on 101
Amazon EC2 c3.large instances. The local computers have

access to both gigabit and 10Gbps connections, that go di-
rectly into a switch. The EC2 c3.large instances offer transfer
rates of around 500Mbps. Their local storage was consid-
erably faster, so bottlenecks were always network related.
In the local cluster, the 10Gbps interconnect can be used to
overwhelm any of our disks.
HDFS Read. Inside HDFS, files are split into blocks and
then replicated; the usual replication factor is three. Before
reading any data, a client will request the location of the
current block, and receive a list of machines hosting the
replicas in return. It then uses CloudTalk to inquire which
server is most suitable to read from:

src = (replica1 replica2 ... replican)

f1 disk -> src size 256M rate r(f2)

f2 src -> client size 256M rate r(f1)

The 256MB size restriction corresponds to the HDFS
block size in use. The first set of experiments ran over the
gigabit network. First, each node copies a 768MB file from
local storage to HDFS. Then, at each step, a percentage of
servers become active. In this state, a server will attempt
to copy three files, chosen at random, from HDFS to local
storage. There is an idle period of up to three seconds (also
random) between copy operations. We did the same on EC2,
with the only exception being file size, which is now 512MB.
Every experiment is repeated 20 times and we measure the
duration of each individual transfer. The local results can
be found in Fig. 6a and the Amazon ones in Fig. 6c. The
horizontal axis contains the percentage of active servers,
while the vertical axis shows time, in seconds. We plot both
the average value and the 99th percentile of read time.

CloudTalk does improve average performance but only
by 10%-30% both on our cluster and on Amazon. The im-
provements depend on how busy the servers are: when few
servers are active, basic HDFS can pick idle sources purely
by chance; when many servers are busy, it is harder to find
idle replicas. CloudTalk provides a factor of two reductions
for the 99% completion times on both our local cluster and
the Amazon EC2 deployment.
HDFS Write. The process of writing a file to HDFS is a bit
more complicated than reading, as it relies on daisy chaining.
When data is written to a new block, the NameNode selects
a primary destination together with a group of secondary
nodes, up to the number of replicas. As the first server
receives and stores data from the client, it also starts sending
to the next node, and so on, until a chain is established to the
last replica location.

The write experiments are similar to those previously de-
scribed for read, just that each active server writes files to
HDFS instead of retrieving them. In this scenario, the pres-
ence of a slow transfer anywhere in the chain will decrease
the overall completion time. There are usually at least three
replicas required, and this leads to poor performance when
replica selection is random.
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(a) HDFS Read in Cluster
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(b) HDFS Write in Cluster
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(c) HDFS Read in EC2
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(d) HDFS Write in EC2

Figure 6: HDFS evaluation on local cluster of 20 machines and 100 EC2 virtual machines.

We have changed the HDFS NameNode to use the fol-
lowing query whenever a block is allocated:

r1 = r2 = r3 = (dataNode1 ... dataNoden)

f1 client->r1 size 256M rate r(f2)

f2 r1->disk size 256M rate r(f1)

f3 r1->r2 size 256M rate r(f4) transfer t(f2)

f4 r2->disk size 256M rate r(f3)

f5 r2->r3 size 256M rate r(f6) transfer t(f4)

f6 r3->disk size 256M rate r(f5)

Figure 6b shows the local results, while the EC2 measure-
ments can be found in Figure 6d. We can see that CloudTalk
fares significantly better in terms of average duration now.
The basic HDFS often attempts to write on a node already
used by another replication process, so it’s performance de-
grades rather quickly. With CloudTalk, it is possible to dis-
cover and select less utilised servers and the benefits are ob-
vious: both the average and 99% flow completion times are
improved by a factor of 1.5 to 2.
SSD HDFS. As previously mentioned, both on EC2 and
in our gigabit network, storage is seldom a bottleneck. We
used the 10Gbps local network to create scenarios where
contention happens primarily at the disk level. For both read
and write, there is a single client, but a variable percentage of
servers also run a local process that causes considerable disk
utilisation. It continuously reads a very large file (for HDFS
read experiments), or repeatedly writes (for HDFS writes).
The experiments evaluates how many idle block locations
we can find. Files read or written by the client are 4GB large.

The results are shown in Figure 5. An important thing to
mention is that even with 10Gbps connectivity, our single
client was not able to fully utilise a disk in read scenarios,
because it became CPU bound first. However, there still was
a noticeable difference when reading from an idle disk. This
and the recurrent issue of not being able to find an idle
replica when a lot of servers exhibit high disk utilisation,
reduce read completion times up to 1.2x. The writes, on the
other hand, finish 1.5 to 2 times faster with CloudTalk.
Reduce. Reducer placement is important for a MapReduce
job, because large amounts of data are received during the
shuffle phase. If a reduce task ends up running on a busy ma-
chine, the overall job finish time can increase significantly.

The next experiments study the interaction between individ-
ual reduce tasks and incoming connections that do not re-
spond to congestion, such as UDP traffic. The MapReduce
scheduler tends to spread tasks as much as possible if there
are enough nodes and available slots, but does not take into
account the existence of other transfers. We evaluate these
effects by having UDP iperf connections from outside the
Hadoop cluster arrive at a subset of the machines within.
The cluster contains 10 servers locally, and 58 instances on
EC2. All other machines run iperf senders. The number of
connections varies from 10 to 70% of cluster size.

Reduce tasks are not assigned all at once, but rather at
most one for each individual heartbeat message received by
the scheduler. We do not rely on a single query to find the
best servers for the job. Instead, whenever a node request a
task to run, its fitness is evaluated after receiving a response
to the following query:

x1 = ... = xm = (node1 node2 ... noden)

f1 0.0.0.0 -> x1 size 1G rate r(f2)

f2 x1 -> disk size 1G rate r(f1)

...

f2m�1 0.0.0.0 -> xm size 1G rate r(f2m)

f2m xm -> disk size 1G rate r(f2m�1)

This query does not describe exactly what the application
will do, but presents a similar scenario that is easier to
describe. There are m variables (one for each pending reduce
task), and n possible values (one for each node). If there are
less nodes than reduce tasks, then everyone receives at least
one reduce task. The odd numbered flows specify we are
interested in servers that will receive significant incoming
traffic. The literal 0.0.0.0 meaning “unknown source” is used
instead of faithfully representing the data sent from each
mapper, and the size of transfers is set to a constant value.
What’s important for query evaluation is not the exact byte
count, but the fact that all servers receive the same amount
of data. Even-numbered flows capture writing data to disk.

The reply will contain the set S of m best servers to place
reduce tasks on. A task is given to the current node x only if
x 2 S, and a mechanism that prevents endlessly waiting for
the best node in certain situations is in place. We compare
the running time of a sort job on our modified variant of
Hadoop, with the original version. We use the randomwriter
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Figure 7: Reducer placement in cluster
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Figure 8: Reducer placement on EC2
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Figure 9: Map-reduce optimisations

example application to generate 512MB (256MB for EC2)
of data per cluster node. The number of reducers is set to
half the cluster size.

The local results are shown in Figure 7. We measure
job completion times and the shuffle duration for successful
reduce tasks. While it may appear that we should have an
easy time selecting servers that are not on the receiving
end of UDP traffic, this is not actually the case. As reduce
tasks start, there are still ongoing maps, some of which
are not data-local. This means that iperf targets are just
some of the nodes which appear to receive a lot of traffic.
Also, the overall job duration is subject to delays caused by
writing results to HDFS (which is not optimised during these
experiments). Still, jobs finish faster when CloudTalk is used
because the shuffle times are shorter and it’s less likely that
one or more reduces will require speculative execution. The
EC2 results are presented in Figure 8, and show that shuffle
duration is reduced by a factor of 1.1 to 2x.
Map/reduce. We now enable all our optimisations and mea-
sure their effect on a map/reduce job. We further implement
a simple change in the map scheduler to select the best map
assignment for the current node during heartbeat processing.
We use the following CloudTalk query:

X = (node1 node2 ... noden)

f1 disk -> X size 128M rate r(f2)

f2 X -> currentNode size 128M rate r(f1)

The possible values for variable X are nodes which store
a data split that must be processed by a pending map task.
After receiving the answer, we select any map task that has
input at that particular location for the current node. This
and the previous reduce optimisation are simple ways of
improving task placement that never skip assigning work.
A more complex scenario involves ignoring slow nodes (as
long as they appear that way) entirely, even if this means
piling multiple tasks on top of several fast workers. However,
it requires more intricate queries using a suitable evaluation
procedure, and is covered to a certain degree by the use of
speculative execution.

Four out of 20 local servers have their SSDs replaced with
HDDs, which are 5 to 10 times slower. We run multiple
instances of the sort job over the gigabit network, with
512MB of data per node. Optimisations are disabled during

input generation, otherwise nothing would be written to the
HDDs. The number of reducers varies from 10 to 70% of
cluster size. Before starting a job, servers drop the buffer
cache, to ensure data is read from disk during each run.

The are two interesting metrics: job finish time and job
sync time. The latter measures the time elapsed between
starting the job and syncing results to disk by running
sync on all servers on completion. In Figure 9 we see that
CloudTalk enabled Hadoop reduces job completion time by
a factor of two in all experiments because it avoids (as much
as possible) interacting with the slow drives. Mappers prefer
to copy data over the network instead of accessing the slow
local disks. CloudTalk also picks replica locations that are
least contended for both reading and writing. Results show
that even a few slow disks can greatly impact performance
and that great benefits can be had from using load and ca-
pacity information.

5.4 Optimising Web Search
Web search is a classical distributed application which uses
a “scatter-gather” workflow. Servers are organized in a hier-
archical structure: the query is sent by the frontend towards
the leaves, while the results go in the opposite direction. The
architecture we used for our experiments has two levels of
aggregators, and is shown in Figure 10. Each aggregator has
around 50 nodes underneath. We deployed Apache Solr on
top of the Apache Tomcat web server on 100 VMs in EC2.
Each machine hosts 4GB of data from roughly 5·106 indexed
URLs (taken from a 2.5TB snapshot of the .uk domain).

We measured the performance of the system in multiple
configurations and present the results in Figure 11. First, we
measured the raw performance of one machine searching its
part of the index — this is the baseline for the distributed
measurements. Second, we measured with only one aggre-
gator contacting all 100 servers. When traffic was low, the
system was behaving correctly, but with obviously higher
delays compared to the single-machine baseline. Once the
traffic exceeds 35 queries per second (qps), the aggregator
software started crashing, and low-level packet information
showed that the effect is due to TCP incast[26].

The last tests use the configuration in Figure 10, keeping
the location of the frontend and the servers constant while
changing the location of the aggregators based on the in-
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Figure 11: Web search performance

ferred EC2 topology from §3. We tested two cases: “worst”
is when we placed the aggregators to be in different subnets
to its corresponding nodes, and “best” where each aggrega-
tor was placed to maximize the number of servers close to
the aggregator: the two aggregators had 14 or 20 machines
in the same rack, 15 or 10 in the same subnet and 18 in dif-
ferent subnets. The results show that the effects of incast are
smaller compared to the single aggregator scenario. When
load increases, the performance for the “best” scenario is
substantially better than the “worst” case, even by a factor
of more than ten.

Can we use CloudTalk to guide the placement of aggre-
gators? Given that performance is dominated by incast, our
flow level evaluator will not work for web-search, so the
client can tell CloudTalk to use a packet-level simulator for
evaluation instead. CloudTalk uses the htsim simulator to
simulate a modified VL2 topology containing 1200 servers
that mirrors the EC2 topology. We placed the 100 servers in
appropriate racks and subnets in the simulated topology and
used this query to find aggregator locations:

AGG1 = AGG2 = (srv1 srv2 ... srvk)

f1a srv1 -> AGG1 size 10KB

f1b AGG1 -> frontend transfer t(f1a)

· · ·
f51a srv51 > AGG2 size 10KB

f1b AGG2 -> frontend transfer t(f51a)

Servers addresses are sorted according to proximity. The
first 50 servers go to the first aggregator, and the other 50
to the second aggregator. The aggregators can be placed on
10 servers chosen to be in different racks. The aggregators
send the data to the frontend, and the query finishes when
all the data has been transferred. We evaluated all possible
aggregator placements (100), and for each placement we
simulate the desired flows in an idle network. With 50-packet
buffers per switch port, the predicted query delay when using
a single aggregator is 1.04s, 0.55s for the “worst” two-level
aggregator setup and 0.4s for the “best” setup, hence our
simulator does indeed capture incast effects and could be
used for CloudTalk optimisations of web search. Evaluating
the entire query takes around 100s. Simulation cannot be
used for realtime queries, but is acceptable for web-search
since it only runs once, at deployment time.

Another way to handle the web-search query is for the
provider to suggest aggregator placement in racks with
switches that have larger per-port buffers or to enable pri-
ority flow control (PFC) for selected tenant traffic.

5.5 Scaling CloudTalk
Can something like CloudTalk really work at scale, in net-
works which consist of thousands, tens of thousands, or even
more servers? We believe the answer is yes based on the re-
sults presented in the previous two sections: the number of
servers being asked for status information does not depend
on the size of the network and is reasonably small (as it tends
to be for most queries we considered), and query evaluation
should take a few milliseconds even in the worst case. These
results are contingent on having a bimodal-like load distri-
bution, but various studies give us confidence in being able
to meet this condition most of the time. We now examine
other obstacles to scalability that may arise in practice.
Network overhead. One potential barrier to scaling is the
overhead caused by CloudTalk related packets which include
queries to status servers (64B) and the associated responses
(78B). The CloudTalk overhead of a HDFS read is 1.3KB
(0.002% if an entire 64MB block is read). The overhead of
an HDFS write in a deployment of 100 nodes is 45KB; again,
for large writes this is negligible. Our reduce optimization
running on a 100 node cluster with 50 reducers sends 43KB
of status messages.

In the examples above, sampling is not used, and our
CloudTalk server contacts all 100 nodes. When dealing with
much larger clusters, sampling will be enabled, and the net-
work overhead will be similar to the above. In summary, we
consider that CloudTalk overhead can be considered negli-
gible for regular applications.

However, malicious users could craft queries at a very fast
pace, and the resulting overhead might affect the accuracy of
results and increase response times. The cloud provider im-
plicitly pays for all resources associated with the operation
of CloudTalk, because this can both make the platform more
attractive to clients, and enable the discovery of important
information. A conceptually simple solution to avoid issues
related to malicious customers is to limit both the arrival
rate, and computation time dedicated to incoming queries,
depending on the amount and type of acquired VMs. Also,
while query answers can be used to infer more information
than the explicit recommendation they provide, we consider
this does not reveal anything which cannot be already deter-
mined by tenants via probing.
Preventing oscillatory behaviour. When a large number of
queries are received, the CloudTalk server may inadvertently
cause oscillations in terms of resource usage by recommend-
ing the same apparently idle servers to multiple clients, until
feedback finally arrives from the status servers and indicates
that those servers are, in fact, overloaded. Afterwards, an-
other small group of servers may be in the same position,
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Figure 12: Using hysteresis in resource allocation reduces
the tail flow completion times.

and so forth. This behaviour happens because there is an un-
avoidable delay between the reception of status data by the
CloudTalk server, and the measurable effects caused by the
application which receives the answer to a query. The delay
can be significant, especially when the server must deal with
high request rates. Even if finding the answer for a query is
fast (under 1 ms), the overall response time perceived by the
application can be as high as tens of ms, if one or more sta-
tus servers fail to provide a reply. This greatly increases the
chances of recommending the same set of endpoints multiple
times in quick succession.

Figure 12 shows what happens when this behaviour is
left unchecked in the EC2 HDFS write scenario described in
Section 5.3. During each experiment, an active server copies
three files in succession to the DFS. Each server will wait
between 0 and 3 seconds (uniformly chosen at random) be-
fore each operation. The vertical bars labeled with “Osc” are
of particular interest. They represent write completion times
when CloudTalk takes no special action to prevent multi-
ple recommendations of the same endpoint in response to
multiple queries that arrive in close succession. Results are
shown both on average (labeled “avg”), and for the 99th
percentile (labeled “99p”). All vertical bars start from zero;
those not labeled “Osc” are superimposed over the former,
because their value is always smaller. As more servers be-
come active, the tail 99 percentile write time increases to
around 4 minutes (ten times the average). This happens be-
cause the loaded state of previously recommended servers
only becomes apparent after a delay which depends on both
the requesting application, and the measurement frequency.
During this time, the server appears to be idle, so endpoints
from other requests will also be bound to it.

One solution is for CloudTalk to manage resource reser-
vations, instead of just making recommendations, but this
greatly complicates things as the abstract state held by the
CloudTalk server must be kept in sync with the real state of
the network. While this is an interesting future research di-
rection, we have adopted a more pragmatic approach. When
an answer is provided in response to a query, the server will
consider the machines it has recommended to be in use for

a time t, chosen sufficiently large to allow the relevant feed-
back to arrive from status servers. During the Hadoop exper-
iments, t was set to 300ms; in general, having t less than
the minimum possible flow completion time ensures that
it doesn’t negatively impact network utilisation. This solu-
tion is very effective: in Figure 12, the 99% completion time
drops to 20s, just double the average. It’s important to stress
that, at this point, CloudTalk does not employ actual re-
source reservations, but rather applies a best-effort approach
where, presumably, applications always follow placement
recommendations. If they do not, then performance is as
good as that of random placement.

Queries from multiple users are processed in parallel, and
synchronization is required before doing every individual
variable assignment, to ensure the status of each endpoint
has not been influenced by the response to a different query.
When this happens, we attempt to bind the current variable
to previously considered endpoints, in decreasing order of
their evaluated fitness.
Usage patterns. CloudTalk servers are completely dis-
tributed and there is no central coordination needed. How-
ever, the way applications use CloudTalkmay result in a sin-
gle CloudTalk server having knowledge of the whole net-
work and making centralized allocation decisions in certain
scenarios. For example, in HDFS write operations are han-
dled by the NameNode that decides replica placement. The
NameNode will issue queries to and get answers from the
local CloudTalk server which will slowly gather information
from all HDFS nodes. Such centralization enabled the oscil-
latory behaviour above. HDFS reads, on the other hand, are
handled in a distributed manner: the clients must choose be-
tween available replicas and they query their local CloudTalk
server. There were no oscillation-related issues during the
read experiments, even without pseudo-reservations. This
is not unexpected; even when most servers are active, each
server has only three replicas to choose from, so it’s a lot
less likely to have idle server being recommended to multi-
ple clients querying CloudTalk at the same time.

6. Related Work
Cloud providers offer distributed applications as a service,
such as Amazon’s MapReduce, which they can optimise ap-
propriately. The downside is that tenants have no control
over these frameworks and often choose to deploy their own
applications instead. Providers also offer a wide variety of
instance types, as well as spot instances that are priced dy-
namically based on availability. Tenants have some control
over resources at instantiation time; for instance, [18] and
[24] use spot requests in addition to on-demand instances to
reduce tenant costs.

CloudTalk bears a conceptual resemblance to Mesos [12];
both solutions provide, to different extents, a communica-
tion medium between a cloud infrastructure and its users.
Mesos enables the coexistence of multiple computing frame-



work within the same cluster by brokering resource allo-
cations, while CloudTalk enables indirect tenant access to
provider information in a public cloud. Omega [22] is a par-
allel scheduler architecture, that uses shared state to run mul-
tiple concurrent schedulers, without resource partitioning.
When used in a distributed manner, CloudTalk could rely
on similar techniques to achieve a global synchronized state.

Instantiation-time optimisations have been proposed to
guide the placement of VMs based on expected traffic pat-
terns [15, 19, 25]. Bazaar [15] suggests changing the VM
instantiation API to allow tenants to express the jobs they in-
tend to run and their desired finish times. However, all these
optimisations are coarse grained, only look at network util-
isation, and do not account for changing usage patterns for
VMs during their lifetime or load variations on the under-
lying machines. CloudTalk is a complementary approach: it
enables runtime optimisations that allow better resource us-
age at short timescales.

Sinbad [5] shows that modifying distributed programs to
improve the outcome of scheduling with outside information
is feasible. We want to enable this in a generic setting, with-
out any assumption regarding the nature of the applications.

Coflow [6] can express the communication requirements
of cluster computing frameworks. It exposes an intent-driven
API that focuses on application semantic information, but
is limited to a predefined set of communication patterns
and only supports network information. CloudTalk is more
general as it can express arbitrary communication patterns,
as well as disk constraints.

7. Future Work
Our prototype CloudTalk implementation shows that signifi-
cant benefits can be achieved when tenants and providers co-
operate instead of working in isolation. The results presented
in this paper represent a couple of important first steps in this
direction. There are other possibilities which we didn’t get
the chance to explore yet.

For example, it’s interesting to consider what happens
when third party services also exist in the cloud. If the
infrastructure is CloudTalk enabled, all parties can use it
to individually optimise their applications, but there’s no
way so far of using CloudTalk between tenants and services
which do not belong to the cloud provider. In this situation,
a third party service could implement CloudTalk capabilities
which can be discovered by clients. For example a third party
storage service could optimise reads and writes depending
on the resources owned by the requesting client.

CloudTalk can also enable new billing possibilities.
Cloud providers can offer lower rates to incentivise clients
to describe their workloads (potentially in advance) using
queries; this information can be used for better resource
planning. Clients could also use CloudTalk queries to de-
scribe a particular workload, and then request a price quota

from the provider, given the communication will terminate
with respect to the specified parameters.

Finally, we also consider extending the set of resources
that can be used in CloudTalk queries; CPU and memory
immediately come to mind. However, unlike network and
disk I/O, their use is more difficult to reason about in a de-
tailed fashion, especially in the presence of multiple ten-
ants. One way to introduce these resources without too much
added complexity is to consider both as scalar values: an
endpoint may require some number of CPU cores, and a cer-
tain amount of memory. Together with the other CloudTalk
features, this could enable a more precise offline description
of workload requirements, which can guide the VM acquisi-
tion process. At the other extreme, we could add more detail
to the model (such as CPU cycles, or memory operations),
but it’s unclear at this point if this is feasible or helpful.

8. Conclusions
Cloud providers want to keep their network topology and
load information a trade secret, while the users need it to op-
timise their applications. Infrastructure cannot be completely
hidden from the users, and it is possible to improve app per-
formance significantly even with limited knowledge of the
underlying topology.

We proposed CloudTalk, a novel cloud-tenant API, that
enables a wide range of distributed application optimisa-
tions. CloudTalk users describe their tasks to the cloud
and replies help them make the most appropriate choices
for work placement. We built a scalable, fully distributed,
CloudTalk implementation, that can quickly answer tenant
queries in 10ms or less, and that enables a wide range of
application optimisations. CloudTalk helps to significantly
improve Hadoop, HDFS and Solr performance in all tests.
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