
Stateless Datacenter Load-balancing with Beamer
Vladimir Olteanu, Alexandru Agache, Andrei Voinescu and Costin Raiciu

University Politehnica of Bucharest

Abstract
Datacenter load balancers (or muxes) steer traffic des-
tined to a given service across a dynamic set of backend
machines. To ensure consistent load balancing decisions
when backends come or leave, existing solutions make a
load balancing decision per connection and then store it as
per-connection state to be used for future packets. While
simple to implement, per-connection state is brittle: SYN-
flood attacks easily fill state memory, preventing muxes
from keeping state for good connections.

We present Beamer, a datacenter load-balancer that is
designed to ensure stateless mux operation. The key idea
is to leverage the connection state already stored in back-
end servers to ensure that connections are never dropped
under churn: when a server receives a mid-connection
packet for which it doesn’t have state, it forwards it to
another server that should have state for the packet.

Stateless load balancing brings many benefits: our
software implementation of Beamer is twice faster than
Google’s Maglev, the state of the art software load bal-
ancer, and can process 40Gbps of HTTP uplink traffic
on 7 cores. Beamer is simple to deploy both in soft-
ware and in hardware as our P4 implementation shows.
Finally, Beamer allows arbitrary scale-out and scale-in
events without dropping any connections.

1 Introduction
Load balancing is an indispensable tool in modern dat-

acenters: Internet traffic must be evenly spread across the
servers that deal with client requests, and even internal
datacenter traffic between different services is load bal-
anced to ensure independent scaling and management of
the different services in the datacenter.

Existing load balancer solutions can load balance TCP
and UDP traffic at datacenter scale at different price points
[26, 13, 9, 22, 15, 31, 12, 18]. However, they all keep
per-flow state: after a load balancer decides which server
should handle a connection, that decision is “remem-
bered” locally and used to handle future packets of the
same connection. Keeping per-flow state should ensure
that ongoing connections do not break when servers and
muxes come or go, but has fundamental limits:
• Standard scaling events that include both muxes and

servers break many ongoing connections.
• SYN flood attacks prevent muxes from keeping

“good” connection state, negating its benefits.
• Running stateful load-balancers in software with

many flows reduces throughput by 40% (§6.1).

In this paper we design, implement and test Beamer,
a stateless and scalable datacenter load balancer that
supports not only TCP, but also Multipath TCP [27]. The
key idea behind Beamer is daisy chaining that uses the
per-connection state already held by servers to forward
occasional stray connections to their respective owners.

Our prototype implementation can forward 33 million
minimum-sized packets per second on a ten core server,
twice as fast as Maglev [9], the state of the art load bal-
ancer for TCP traffic. Our stateless design allows us to
cheaply run Beamer in hardware too, as shown by our P4
implementation (§5). Beamer can scale almost arbitrarily
because each load balancer acts completely independently
and holds no per-connection state. Our experiments show
that Beamer is not only fast, but also extremely robust to
mux and server addition, removal or failures as well as
heavy SYN flood attacks.

2 Background
Services in datacenters are assigned public IP addresses

called VIPs (virtual IP). For each VIP, the administrator
configures a list of private addresses called DIPs (direct
IPs) of the destination servers. The job of the load bal-
ancer is to load balance connections destined to the VIPs
across all the DIPs. Hardware load balancing appliances
have long been around and are still in use in many lo-
cations; however they are difficult to upgrade or modify
and rather expensive. Traditional app-level proxies such
as HAProxy or Squid that terminate the client’s TCP con-
nection and open a new one to the server are also not de-
sirable because their performance is quite low.

A raft of load balancers based on commodity hardware
have been proposed that seek to address the shortcom-
ings of existing solutions [26, 9, 13, 12, 18, 22, 15, 31].
Their goal is to process packets as cheaply as possible,
while balancing load evenly across a dynamically chang-
ing population of backend servers and ensuring connec-
tion affinity: all packets of a connection should reach the
same server.

Almost all existing load balancers follow the same ar-
chitecture introduced by Ananta [26] and we provide a
brief description in Figure 1. In Ananta, load balancing
is performed using a combination of routing (Equal Cost
Multipath) and software muxes running on commodity
x86 boxes. All muxes speak BGP to the border datacen-
ter router and announce the VIPs they are in charge of as
accessible in one hop. The border router then uses equal-
cost multipath routing (ECMP) to split the traffic equally

MUX1	 MUX2	 …	

Server	 Server	 Server	 …	

Border	 	
router	

ECMP	
VIP	 VIP	

DIP1	 DIP2	 DIP3	

1 C	 VIP	
srcIP	 dstIP	

2

3 MUX2	 DIP3	 C	 VIP	

payload	

4 VIP	 C	
C	 VIP	

Figure 1: Load balancing: traffic to the VIP address
is load-balanced across a pool of servers, each with
a DIP address. Return traffic bypasses the muxes.

MUX	

Server	

Client	

1SYN	

2SYN	

3 SYN/ACK	

X

Figure 2: Mux and server
disagree over the status of a
connection.

A	

Add	 mux	 2	 and	 server	 B	

MUX	 1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

A	

MUX	 1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

B	

MUX	 2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

X

Higher	 load	

Figure 3: Scale out: stateful
load balancers break TCP con-
nections.

to these muxes. When a connection starts (i.e. a SYN
packet arrives at a mux), a hash function is applied on the
five-tuple and a server is chosen based on this hash. If a
single server is added to the DIP pool, the assignment of
some existing connections to servers will change; at the
very least, the new server must receive an equal fraction
of all ongoing connections. That is why, once a mapping
of connection to DIP is chosen, it is stored locally by the
mux to ensure all future packets will go to the same DIP.

Upon leaving the mux, the original packet is encapsu-
lated and sent to the DIP. The receiving server first decap-
sulates the packet, changes the destination address from
VIP to DIP, and then processes it in the regular TCP stack.
When the reply packet is generated, the source address is
changed from DIP to VIP and the packet is sent directly
to the client, bypassing the mux to reduce its load (this is
Direct Source Return, or DSR).

3 Limits of stateful load balancing
A key design decision of all existing load balancers is

to keep a small amount of per-connection state to ensure
connection affinity: once a connection is assigned to a
backend, the mux will remember this decision until the
connection finishes or a timer fires.

While per-connection state works well in the average
case, it has a number of fundamental limitations which re-
duce its effectiveness in practice. First, because the mux
only sees one direction of traffic, state kept by the mux
can differ from the server’s state for the same connection;
the worst case here is the muxes’ inability to cope with
SYN flood attacks. Secondly, even in the absence of SYN
floods, connections will be broken in scale-out or scale-in
(or failure) events where both the mux set and the DIPs
change simultaneously; such events happen naturally. Fi-
nally, software muxes’ forwarding performance decreases
with many active connections (see §6). We discuss these
issues next.
State mismatch between mux and server. Consider the
simple example in Figure 2: a client starts a TCP con-
nection by sending a SYN packet, which is seen by a

mux and then redirected to a server, and the mux saves
the chosen mapping locally. The server replies with a
SYN/ACK packet which never reaches its destination be-
cause the client is now disconnected. The server will send
this packet a few times until it terminates the connection;
the mux however is not aware of the reverse path unreach-
ability and will maintain the state for minutes.

SYN flood attacks, where attackers send many SYN
packets with spoofed IP source addresses [8], cause sim-
ilar problems. During a SYN flood, the SYN/ACKs sent
by the server never reach their destination, but both the
server and the mux install connection state. SYN-cookies
[8] are the standard protection against SYN flood at-
tacks: when the number of half-open connections reaches
a threshold, the server stops keeping state upon receiv-
ing a SYN, encoding the state in the SYN/ACK packet it
sends to the client. When legitimate customers reply with
the third ACK to finalize the connection handshake, the
server uses the information from the ACK number (a re-
flection of its initial sequence number) and the timestamp
(the echo reply field) in conjunction with local informa-
tion to check if this is a valid connection; if so, it creates
an established connection directly.

SYN cookies help the server shed unwanted state, but
have no positive effect at the mux: the mux is forced to
allocate state for every SYN it sees. Under a SYN flood
attack, the servers will function normally but the muxes’
connection memory will be overloaded to the point where
they will behave as if they have no connection state, and
thus DIP churn will break connections.

Ensuring state synchronization and defending against
SYN floods at muxes is far from trivial: at the very least it
requires muxes to keep more state (i.e. is the server send-
ing SYN cookies or not?) and examine both directions of
traffic; another cleaner solution is for the mux to terminate
TCP. All solutions limit scalability.
Connection failures during scaling events. Even with-
out SYN floods, keeping mux state does not guarantee
connection affinity. Figure 3 shows a datacenter service
that is running with one mux and one server. As load in-
creases, one more mux and server are added. The border

router now routes half the connections it sent to mux 1 to
mux 2, as the blue flow in our example. Mux 2 does not
have state for the blue flow, and it simply hashes it, as-
signs it to B and remembers the mapping for future pack-
ets. B receives packets from an unknown connection so
it resets it. Such failures happen even when the border
router uses resilient hashing and when all muxes use the
same hash function. The necessary condition, though, is
that both the mux set and the server set changes in quick
succession, but such sequences of events occur naturally
in datacenters during scale out and scale in events.

4 Beamer: stateless load-balancing
Using per-flow state at muxes fails to provide connec-

tion affinity in many cases. Can we do better without
keeping flow state in the muxes? This is our goal here.

To achieve it, we leverage the per-flow state servers
already maintain for their active connections. As an ex-
ample, consider server B in Fig. 3: it receives a packet
belonging to the blue connection, for which it does not
have an entry in the open connections table; the default
behaviour is to reset the blue connection. If B knew that
server A might have state for this connection, it could sim-
ply forward all packets it doesn’t have state for, including
the blue connection, to A, where they could be processed
normally. We call such forwarding between servers daisy
chaining and it is the core of Beamer.

The architecture of Beamer mirrors that in Figure 1: our
muxes run BGP (Quagga) and announce the same VIP
to border routers. ECMP at the routers spreads packets
across the muxes, which direct traffic to servers; finally
the servers respond directly to clients. To build a scalable
distributed system around daisy chaining, Beamer uses
three key ingredients:
• Stable hashing (§4.1), a novel hashing algorithm that

reduces the amount of churn in DIP pool changes to
the bare minimum, while ensuring near-perfect load
balancing and ease of deployment.
• A fault-tolerant control plane(§4.5) that scalably dis-

seminates data plane configurations to all muxes.
• An in-band signaling mechanism that gives servers

enough information for daisy chaining, without re-
quiring synchronization (§4.2).

4.1 Stable hashing
Beamer muxes hash packets independently to decide

the server that should process them. A good hashing algo-
rithm must satisfy the following properties: it should load
balance traffic well, it should ensure connection affinity
under DIPs churn, and it should be fast.

A strawman hashing algorithm is to chose the target
server by computing hash(5tuple)%N, where N is the
number of DIPs; this is what routers use for ECMP. This
mechanism spreads load fairly evenly and as long as the
set of DIPs doesn’t change, and mux failures or additions
do not impact the flow-to-DIP allocations. Unfortunately,
when a single server fails (or is added), most connections
will break because the modulus N changes.

Consistent hashing [19], rendezvous hashing [30] and
Maglev hashing [9] all offer both good load balancing and
minimize or at least reduce disruption under churn. On the
downside, in all these algorithms each server is in charge
of many discontiguous parts of the hash space; this means
the mux must match five-tuple hashes against many rules,
reducing performance (for software deployments) or in-
creasing hardware cost (for hardware ones). These algo-
rithms target wide-area distributed systems and thus strive
to reduce (mux) coordination. In datacenters, however,
we can easily add lightweight coordination which enables
a simple and near-optimal hash algorithm.

Beamer implements stable hashing, an extensible hash-
ing approach that can be used to implement all the algo-
rithms above. Stable hashing adds a level of indirection:
connections are hashed against a fixed number of buck-
ets, and each bucket can be mapped by the operator to
any server. Before the load balancing service starts for a
certain VIP, the operator chooses a fixed number of buck-
ets B that is strictly larger than N, the maximum number
of DIPs that will serve that VIP (e.g. B=100N). Each
bucket is assigned to a single server at any time, and each
server may have multiple buckets assigned to it. The num-
ber of buckets B and the bucket to server assignments
are known by all muxes, and they are disseminated via
a separate control plane mechanism (see §4.5). When a
packet arrives, muxes hash it to a bucket by computing
b=hash(5tuple)%B, and then forward the packet to
the server currently assigned bucket b. As B is constant
by construction, server churn does not affect the hashing
result: a connection always hashes to the same bucket,
regardless of the number of active DIPs.

Bucket-to-server mappings are changed on server fail-
ure or explicitly by the administrator for load-balancing
and maintenance purposes. These mappings are stored
in reliable distributed storage (Apache ZooKeeper [16] in
our implementation); muxes retrieve the latest version be-
fore they start handling traffic. As changes to the bucket-
to-DIP mappings are rare, this mechanism has low com-
munication overhead and scales to datacenter-sizes (§6.4).

We show an example of stable hashing in Figure 4.
The administrator has configured four buckets; muxes
first hash flows into these buckets to find the destination

MUX	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	
	

b)	 Server	 B	 fails	

Fixed	 number	
of	 buckets	

MUX	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	
	

B	 C	 X	
X	

hash	

A	 B	 C	 A	 A	 C	 C	 A	

A	 B	 C	

a)	 Stable	 hashing	 with	 	
	 	 	 	 	 three	 servers	

A	

hash	

Figure 4: Stable hashing is resilient to
server failures.

������

����������

������

Figure 5: Hashing algorithms
comparison

MUX	 2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

MUX	 1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

B	 A	 B	
a)  Buckets	 belong	 to	 	
	 	 	 	 	 	 server	 A	

b)	 Buckets	 moved	 to	 B,	
Inconsistent	 mappings.	

A	 A	 A	 A	 A	
MUX	 1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 A	 A	
MUX	 2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 B	 A	 B	 B	

A	

A	

Figure 6: Daisy chaining allows server
addition or removal without disrupting
ongoing connections.

server. When server B fails, the controller will move the
third bucket from B to C; the mapping is then stored in
ZooKeeper and disseminated to all muxes. After the map-
ping is updated, flows initially going to A or C are unaf-
fected, and flows destined for B are now sent to C. Only
the blue connection, handled by B, is affected.

Our bucket-to-server mappings are managed centrally
by the controller. The controller has the freedom to im-
plement any bucket-to-server mapping strategy to mim-
ick consistent hashing, rendezvous hashing or Maglev. In
our implementation we chose a greedy assignment algo-
rithm that aims to maximize the contiguous bucket ranges
assigned to muxes; this is very useful especially when
Beamer is deployed in hardware, because it can use fewer
TCAM rules to implement its dataplane functionality. To
provide intuition about why this is the case, in Fig. 5 we
show how 47 buckets are assigned to 5 servers using the
three algorithms, where each server is shown in a different
colour: the bigger the fragmentation, the higher the cost
to match packets against packets in the dataplane. Beamer
is the least fragmented, followed by Consistent and Ma-
glev. When servers come and go, bucket assignments to
servers will also become fragmented even with Beamer;
Beamer runs a periodic defragmentation process to avoid
this issue (see §4.5).

Our stateless design ensures that mux churn has no im-
pact on connections: as soon as BGP reconverges to the
new configuration, load will be spread equally across all
muxes and no connections will be broken.

4.2 Daisy chaining
There is a natural amount of churn of servers behind

a VIP, be it for load balancing purposes or for planned
maintenance. To implement such a handover, all our con-
troller has to do is to map to the new server the buckets
belonging to the old server and store the new mappings in
ZooKeeper. The muxes will then learn the new mapping
and start sending the bucket traffic to the new server. For
a truly smooth migration, however, there are two compli-
cations that need to be taken in account: existing connec-
tions will be broken and there might be inconsistencies

when some muxes use the new mappings while others are
using the old ones.

To solve both issues we use daisy chaining, a transi-
tory period where both the new server and the old one are
active and servicing flows that hit the migrated bucket(s).
We aim to move all new connections to the new server,
and process ongoing connections by forwarding them to
the old server even if they arrive at the new server.

We give an example in Fig. 6 where we migrate three
buckets between servers A and B. Initially, both muxes
have the same mappings for all buckets. Daisy chaining
starts when the controller migrates the buckets from A to
B by storing the new mapping in ZooKeeper and marking
A as the previous DIP, along with the timestamp of the up-
date. Note that the muxes save the previous DIP for each
bucket, as well as the time the reallocation took place.
To see how daisy chaining comes into play, let us con-
sider the way packets are processed upon reception by the
server. If the incoming packet is a SYN (TCP or MPTCP),
a valid SYN-cookie ACK, or it belongs to a local connec-
tion, then we can process it locally. Otherwise, the packet
could belong to a connection that has been previously es-
tablished on another server. In this case, we want to daisy-
chain packets back to the appropriate server, but only for
a limited time.

To enable this, packets destined to ports lower than
1024 (higher numbers are used for MPTCP load balanc-
ing, see §4.4) also carry the previous DIP and the times-
tamp of the change (or 0 when there is none). We always
save locally the highest timestamp seen for the bucket the
packet is hashed to, and enable daisy chaining to the pre-
vious DIP when current time is smaller then the times-
tamp plus the daisy chaining interval. Thus, packets are
redirected to the appropriate destination as long as daisy
chaining is active. Otherwise, they are dropped and a RST
is sent back to the source.

Daisy chaining adds robustness to our whole design.
Consider what happens if the two muxes in Fig. 6 tem-
porarily disagree on the server now in charge of the three
buckets. Flows that hit mux 1 are load balanced accord-
ing to the old mapping and will be directed to A, who

will simply process them locally (the black connection).
Meanwhile, B will locally service the red connection, but
will daisy chain the blue connection to A (the previous
DIP) because it doesn’t have state for it. When mux 1 fi-
nally updates its state, the black connection will be sent to
B, and daisy chained back to A (assuming the rule is still
active). After all the muxes have updated their state, A
will only receive packets related to ongoing connections,
which will quickly drop in number. While in principle
daisy chaining can be left running forever, we try to avoid
migrating buckets that are being daisy chained. That is
why our Linux kernel implementation uses a hard timeout
of four minutes for daisy chaining.

There is one subtle corner case where daisy chaining
still doesn’t protect against broken connections, and we
exemplify in figure 6. Consider the red connection that is
being serviced by B after mux 2 updates its configuration;
if this connection is sent to mux 1 (e.g. via ECMP churn
in BGP), mux 1 will send it to server A which will reset
it. To avoid this problem, packets also carry the genera-
tion number for the dataplane information, and all servers
remember the highest generation number they have seen.
In this example, server A will receive packets from B (and
possibly from other muxes) with generation 2 and will re-
member 2 as the latest generation. When A receives a
mid-connection packet that can not be daisy chained and
for which it has no state, it will check if the generation
number from the mux equals the highest generation num-
ber seen; if yes, the connection will be reset. If not, the
server silently discards the packet. This will force the
client to retransmit the packet, and in the meantime the
stale mux mappings will be updated to the latest genera-
tion, solving the issue. Note that, if the border router uses
resilient hashing, the mechanism above becomes nearly
superfluous.

4.3 Mux data plane algorithm
The mux data plane algorithm pseudocode is shown

in Fig.7. Lines 3-9 handle regular TCP traffic: first the
bucket b is found together with the current and previous
DIPs for bucket b. After that, the packet is encapsulated
and sent to the current DIP. The algorithm is very sim-
ple, requiring a hash and one memory lookup in the buck-
ets matrix (all three columns easily fit in one cache line).
The remaining code in the mux performs Multipath TCP
(MPTCP) [27] traffic load balancing equally cheaply: a
single lookup is needed and the packet is encapsulated and
sent to the appropriate DIP (see §4.4).

The simplicity of the mux is key to good performance:
on one core our prototype can handle around 5-6Mpps,
and around 33Mpps on an ten core Xeon box.

1 packet* mux(packet* p){
2 if (p->dst_port<1024){
3 gen = buckets.version
4 b = hash(5-tuple)%B;
5 dip = buckets[b][0];
6 pdip = buckets[b][1];
7 ts = buckets[b][2];
8
9 return encapsulate(mux,dip,pdip,ts,gen,p);
10 }
11 else {
12 dip = id[p->dst_port];
13 return encapsulate(mux,dip,p);
14 }
15 }

Figure 7: Mux data plane pseudocode

4.4 Handling Multipath TCP
MPTCP deployment on mobiles is spreading: all IOS-

based phones have it, as do top-end Android devices such
as Galaxy S7 / S8. None of the existing datacenter load
balancers support MPTCP, unfortunately, and this is a bar-
rier to server-side deployment. This is because load bal-
ancing MPTCP is more difficult than regular TCP.

An MPTCP connection contains one or more subflows,
and it starts when its first subflow is created. Each subflow
looks very much like an independent TCP connection to
the network, with the exception that its segments carry
MPTCP-specific options. When load balancing MPTCP,
all subflows of the same connection must be sent to the
same DIP. Existing datacenter load balancers (e.g. Ananta
[26], Maglev [9], SilkRoad [22], Duet [13]) treat MPTCP
subflows as independent TCP connections, thus the DIP
for each subflow will be decided independently, sending
them to different servers most times, and breaking sec-
ondary subflows.

In MPTCP, after the initial subflow is setup, each end-
point computes the token—a unique identifier its peer
has assigned to this connection. This token is embedded
in the handshake of additional subflows within the same
MPTCP connection and helps the remote end find the ap-
propriate connection to bind the subflow to.

If one follows the mux state design approach, imple-
menting MPTCP support requires storing the server-token
TB to DIP mapping in some shared memory all muxes can
access, but this poses two problems: first, since only the
DIP knows the token, it should update the shared mem-
ory when a new connection is created; secondly, having a
shared memory access for each additional subflow would
be prohibitive from a performance point of view.

We propose a stateless solution that leverages the mo-
bility support available in MPTCP to ensure that sec-
ondary subflows can be forwarded to the correct server.
We use the destination port in SYN JOIN packets to en-
code the server identifier. This is shown in Fig. 8: when

LT
E	
in
te
rf
ac
e	

W
ifi
	 in
te
rf
ac
e	

VIP	
SYN	 (MPC)	 to	 VIP,	 80	

SYN/ACK	 (TB)	

ACK	 to	 VIP,80	

ACK	 (ADD_ADDRESS	 VIP
,1050)	

SYN	 (JOIN,	 TB)	 to	 VIP,	 1050	

SYN/ACK	 (JOIN
)	

ACK	 to	 VIP,1050	

A	 B	

Used	 for	 OS	 	
demulNplexing	

Used	 for	 Beamer	
load	 balancing	

Used	 for	 OS	 	
demulNplexing	

Figure 8: Load balancing MPTCP statelessly. Beamer
uses address advertisement to embed the server identifier
in the destination port of secondary subflows.

receiving TCP SYN or MPTCP initial subflow SYN pack-
ets, the port number is used to find the listening socket.
However, SYN JOIN packets (handshake of secondary
subflow) contain a token (TB) that servers use to find the
existing MPTCP connection [11]; the destination port is
not used by the stack and we use it for Beamer.

Before deployment, Beamer assigns each server a
unique identifier in the 1025-65535 range. We reserve
port numbers (1-1024) for actual services, and utilize the
remaining port numbers to encode server identifiers for
secondary subflows. MPTCP allows endpoints to send
add address options that specify another address/port
combination of the endpoint to be used in future subflows.
We use this functionality as shown in Fig. 8: whenever a
new MPTCP connection is established (i.e. the third ACK
of the first subflow is received), servers send an ACK with
add address option to the client with the VIP address
and the server identifier as port number. The client re-
members this new address/port combination and will send
subsequent subflows to it.

To handle MPTCP secondary subflows correctly, our
mux (Fig. 7) treats traffic differently depending on the
packet’s destination port: traffic to ports greater than 1024
are treated as secondary subflows and directed to the ap-
propriate servers. As each server has exactly one port
associated to it, our solution can support at most 64K
servers for each VIP. The muxes use another indirection
table called id, that simply maps port numbers to DIP
addresses (identified with Di here, see Fig. 9).

Note that we only need daisy chaining to redirect initial
subflows of MPTCP connections or plain TCP connec-
tions. Secondary subflows are sent directly to the appro-
priate server (uniquely identified by the port).

4.5 Beamer control plane
We have designed our control plane to be scalable and

reliable and built it on top of ZooKeeper. ZooKeeper
ensures reliability by maintaining multiple copies of the

data and using a version of two-phase commit to keep
the copies in sync. Users can create hierarchies of nodes,
where each node has a unique name and can have data
associated to it, as well as a number of child nodes.

We show the operation of our control plane by detailing
how the most important operations are implemented. The
controller is the only machine that writes information into
ZooKeeper and muxes only read ZooKeeper information.
Servers do not interact with ZooKeeper at all. The node
hierarchy used by Beamer is shown in Fig. 11.

When a new Beamer instance is created, the con-
troller creates a high level node (called in this example
“beamer”) and a “config” child node holding the basic
configuration information including the VIP and the to-
tal number of buckets. Next, the operator can add DIPs to
the load balancer instance by specifying the DIP address,
an identifier (unique within an instance) and a weight.

The bucket-to-server assignments are stored in the
“mux ring”, while the “dips” node contains DIP-related
metadata, which is not read by the muxes.
Creating a DIP. To add a DIP, the controller will add
an entry for the DIP in the “dips” node, and then in the
“id” node. ZooKeeper guarantees that all individual op-
erations are atomic. If the controller or its connection to
ZooKeeper crashes at any point, it checks the “dips” node
for any in-progress DIP additions. If a DIP is not repre-
sented in the “id” node, it is added there as well.
Load balancing is run after one or more DIPs are added,
before they are removed or after their weight is changed.
The assignment algorithm runs in a loop, aiming to bal-
ance load properly while reducing daisy chaining:
• Select the most overloaded server A and underloaded

server B, where load is the ratio between assigned
buckets and weight.

• Find the maximum number of buckets n such that, if
transferred from A to B, A’s load would not fall under
the average, and B’s load would not rise above.

• Select the n buckets that have been in A’s pool for
the longest time, and move them from A to B.

To move buckets between two servers, the controller sim-
ply updates the mux ring (see below). Our greedy bucket-
to-DIP assignment algorithm will cause fragmentation
when the DIP set is altered and buckets are reassigned to
ensure good balancing. Beamer includes a defragmenta-
tion algorithm (see Appendix) that runs when fragmenta-
tion exceeds a threshold.
Removing a DIP begins by setting its weight to zero. Af-
ter running the load balancing algorithm, the “dips” entry
is removed.
Updating mux dataplane configuration safely. The
muxes load the dataplane configuration from the

DIP	 PDIP	 TS	

D1	 D5	 100	

D6	 D0	 200	

D1	 D5	 100	

…	 …	 …	

DIP	

D1	

D6	

…	

id	
buckets	

B	
en

tr
ie
s	

64
K	
en

tr
ie
s	

Figure 9: Mux data structures

mux ring

gen1

latest_gen

latest_blob

blob0 Timestamp
D1, #buckets, list
D2, #buckets, list
…

0

2

DIP PDIP TS

D1 D5 100

D1 D5 100

… … …

log0

gen0 gen2

Figure 10: Mux configuration informa-
tion stored in ZooKeeper

beamer	 config	

bucket	
count	 VIP	

mux_ring	

id	

141.85.37.8	 6.4M	
DIP1,	 id1,	 weight1	
DIP2,	 id2,	 weight2	
…	

DIPS	

Figure 11: Controller informa-
tion stored in ZooKeeper

“mux ring” node in ZooKeeper, as shown in Fig. 10.
The dataplane information is stored in several generation
nodes, that have logs, which capture incremental updates
to bucket ownership. Optionally, a generation node may
also have a blob, which is an entire snapshot of the data-
plane. The logs and blobs are compressed using zlib [1],
and may span multiple nodes1.

The blob contains the same data structure used by the
muxes to forward packets. When it starts up, the mux first
reads the values of “latest blob” (the newest generation
that contains a blob, in this case “gen0”). The mux reads
the blob from “gen0” and obtains a functional forwarding
table. If the “latest gen” node has a value greater than the
latest blob, the mux reads all the generations in ascending
generation number order and applies the deltas contained
therein. The mux now has an up-to-date forwarding table
and can process packets.

ZooKeeper allows clients to register watches on nodes
and it delivers notifications when the nodes’ data is up-
dated. We leverage this functionality to inform muxes that
the forwarding information has changed: all muxes regis-
ter watches for the “latest gen“ node; when it changes, the
muxes will fetch and apply the new deltas.

Finally, the controller updates the mux ring informa-
tion with the following algorithm: a) create a new genera-
tion node and store the updates to the bucket-to-server as-
signments, and b) update the “latest gen” node to inform
the muxes of the new version. The controller also creates
blobs by applying the deltas in the same way the muxes
do, creating the blob nodes under the current generation
and then updating the “latest blob” entry.
Safety. The controller algorithm above does not require
any synchronization between muxes or the controller be-
yond ZooKeeper interactions. To ensure correctness, it
maintains the following invariants: a) Muxes only read
ZooKeeper information; they never update it. Configura-
tion information is only written by the fault-tolerant con-
troller; b) State updates are atomic from the muxes’ point
of view: they occur when the “latest gen” node is changed

1ZooKeeper nodes have a maximum size of 1MB.

In
gr
es
s	

Eg
re
ss
	

Match	 Ac/on	

*	 b	 =	 CRC32	
(5tuple)	

HASH	 table	

Match	 Ac/on	

*	 b	 =	 b%B	

MODULO	 table	

Match	
b	

Ac/on	

0	 Encap(D1,D5,100)	

1	 Encap(D6,D0,200)	

…	 …	

BUCKETS	 table	

Match	
TCP.DST	

Ac/on	

1024	 Encap(D1)	
1025	 Encap(D2)	
…	 …	

ID	 table	

TCP.DST<=1024	
AND	 b	 is	 set	

Figure 12: P4 implementation of a Beamer mux.

(an atomic ZooKeeper operation), which only occurs after
the controller has finished writing the data pertaining to
the newest generation; and c) Generations with an iden-
tifier smaller than “latest blob” can be safely deleted by
the controller since muxes do not need them to have an
up-to-date version of the dataplane.

5 Implementation
Beamer servers run a kernel module (1300LOC) that

handles decapsulation, address mangling and daisy-
chaining. We have also patched the MPTCP Linux kernel
implementation (version 0.90) to advertise the server ID
for subsequent subflows (a few tens of lines of code). Our
controller is implemented in 2100 lines of Java.

We have implemented Beamer muxes both in software
and hardware (P4). The software mux runs a Click con-
figuration atop the FastClick suite [4]. FastClick enables
scaling to multiple cores, sets thread to core affinities and
directly assigns NIC queue interrupts to cores.
Software mux. The core of the software mux is a Click
element we have developed that implements our mux al-
gorithm and acts as a ZooKeeper client to receive state up-
dates. To improve performance, our design is completely
lock free, which we achieve by carefully ordering the way
we update the buckets matrix during updates.
Our hardware mux implementation is based on P4 [5]
and is shown in Fig. 12. It contains two match-action

��

��

��

��

��

���

���

��� ���� ���� ���� ����������

�
�
�
�
�
��
��
��

�
��
�
�
�
�

���������������

���������
������

���������������
�����������������

Figure 13: Forwarding performance
vs. packet size (one core). Beamer
outperforms stateful design 2-3x.

��

��

���

���

���

���

���

���

�� ��� ���� �� ����

�
�
�
�
�
��
��
��

�
��
�
�
�
�

�����������������

�����������������
����������������

Figure 14: Forwarding performance
(ten-core Xeon, 4 x 10Gbps). Beamer
forwards 40Gbps with 128B packets.

��

����

��

����

��

����

��

����

��

�� ��� ���� �� ��� ����

�
�
��
�
�
�
�
�
��
��
�
�
�
�

������������������

Figure 15: Software mux perfor-
mance decreases with more active
connections.

tables, one for the bucket-to-server mappings and one for
the id-to-server mappings. The control part of the mux
simply directs packets to one of these tables based on their
destination port. The tables are populated by a software
control plane that speaks to ZooKeeper.

The biggest challenge is computing the hash of the 5-
tuple that is needed for lookup in the buckets table in the
ingress stage of the pipeline: we can use the stock CRC32
function to compute it, but the checksum is calculated
only in the egress stage. Since we cannot compute the
CRC manually, we “recirculate” the packet instead: when
the packet first enters the pipeline, its hash is calculated
and stored as metadata “b” and the packet is resubmitted
to the ingress port. To compute the modulus we add one
more table with a single default entry where the modu-
lus in computed in the action. Finally, the packet hits the
buckets table and is encapsulated.

6 Evaluation

The purpose of our evaluation is to test the perfor-
mance, correctness, fault tolerance and deployability of
our prototype implementation. We used our local testbed
containing 20 Xeon-class servers connected directly to an
48-port 10Gbps BGP router to test dataplane performance
and perform microbenchmarks of our control plane. We
ran experiments on Amazon EC2 to show that our con-
troller can scale to a large Beamer instance with one hun-
dred muxes, 64K DIPs and 6.4 million buckets. In the
appendix we also evaluate stable hashing.

Our results show that Beamer is simultaneously fast
and robust: no connections are ever dropped, in contrast
to stateful approaches, Beamer’s dataplane performance
is twice that of the best existing software solution, and
our mux introduces negligible latency when underloaded
(100µs). The control plane experiments highlight the ro-
bustness and scalability of our design.

6.1 Micro-benchmarks
We first tested our software mux in isolation handling

1000 buckets. The server used for testing has a ten core
Intel Xeon processor running at 2.7GHz, 16GB of RAM
and a ten gigabit NIC using the 82599 Intel chipset. Our
traffic generator is based on the pkt-gen utility from the
netmap [29] suite. The generator can saturate a 10Gbps
link with minimum sized packets. In each experiment we
generate packets of a single size and we measure perfor-
mance at the receiver using pkt-gen.

The source code of previous datacenter load balancers
including Ananta and Maglev is not publicly available. To
compare against such solutions, we implemented Stateful,
a version of our mux that uses a hash table to store per flow
load balancing decisions. We use Stateful to understand
the performance of stateful load balancers.

The results are shown in Fig. 13. First, we note that
the stateful design, running with 1 million active flows
(a typical load seen in production [22]), is significantly
slower than Beamer, because flow table lookups and in-
sertions are comparatively expensive and result in cache-
thrashing. Fig. 15 shows performance as a function of the
number of active flows. Throughput drops from 3.9Mpps
with one thousand active flows to 2.3Mpps with 100 mil-
lion active flows. The performance results presented in
the Maglev paper ([9], Fig. 8) are comparable to those
of Stateful: 2.8Mpps per core and 12Mpps for six cores.
Beamer forwards 6Mpps per core, twice faster.

To see how Beamer scales, we also increased the num-
ber of cores it uses to service the single NIC while spread-
ing the NIC queues across the cores. With at least two
cores, the Beamer software mux achieves line rate for all
packet sizes. Note that the maximum throughput with 64B
packets is lower than the expected 14.88Mpps because of
the overhead of the encapsulation we use: our mux adds
an IP-in-IP encapsulation header (20B) to all packets, and
an IP option (16B) to packets to ports smaller than 1024.

Finally, we installed four ten gigabit NICs into a Xeon
server with ten cores at 2.5GHZ per socket. The per-core
forwarding performance on this machine is 10% slower

than in the above experiments because the CPU is 10%
slower. This setup allows us to test just how much traffic
a software mux can handle if it uses all its resources.

We used four clients and four servers each with one
10Gbps NIC to saturate our MUX with 64B packets. We
also varied the number of buckets to see how our design
copes with larger server populations. Per core throughput
with 64B packets drops to 5.6Mpps when the mux han-
dles 100K buckets, and to 5.1Mpps when there are 1M
buckets. The results are due to decreased cache locality
when the memory needed to store the bucket information
increases. A mux implementation could coalesce neigh-
bouring buckets that point to the same server to reduce the
number of effective buckets, thus increasing performance.

The total throughput per mux is shown in Fig.14: our
mux can forward 23 to 33Mpps per server, or 20 to
30Gbps depending on the number of buckets. With 128B
packets the mux saturates all interfaces (40Gbps).
Performance with real traffic. We used MAWI [21]
traces to estimate the throughput of our mux in realistic
traffic conditions, and to estimate how many web servers
could be handled by a single mux. We built a replay tool
that takes packet sizes from MAWI HTTP uplink traffic
and generates such packets as quickly as possible.

We measured the performance of a mux with four
10Gbps NICs installed: our mux can forward 36Gbps of
HTTP uplink traffic, saturating all links (considering our
encapsulation overheads at the mux) while using 7 of the
10 cores of the machine.

In the MAWI traces, server-to-client traffic is 15 times
larger than client to server traffic, so one mux can load
balance a pool of servers that together serve 540Gbps
of downlink traffic. HTTP servers running custom made
stacks can serve static content at 60Gbps [20]; however
most servers will serve much less than that because con-
tent is dynamic. We expect one server to source around
1-10Gbps of traffic, and expect that a single software mux
could cater for 50-500 servers.
Implementation overheads. We measure the server over-
head introduced by our kernel module that decapsulates
packets and implements daisy chaining. To this end we
ran a 10Gbps iperf connection between a client and a
Beamer server and measured its CPU usage with and
without our kernel module. The vanilla server has an av-
erage CPU utilization of 7%, and of 9% with our module
installed; this overhead is negligible in practice.
Latency. Our software mux achieves high throughput,
but have we sacrificed packet latency in our pursuit of
speed? We setup an experiment where our mux is run-
ning on a single core and processing 64B packets sent
at different rates. In parallel, we run a ping with high

frequency between two idle machines. The echo request
packet passes through the mux, and the reply is sent di-
rectly to the source. We show a CDF of ping latency
measurements for different packet rates in Figure 16. As
long as the CPU is not fully utilized, both median and
worst-case packet latencies stay below 0.2ms. When we
overload the mux with 6.6Mpps (600Kpps more than its
achievable throughput), the ping latency jumps to 1.5ms
and 14% of packets are dropped. This latency is a worst
case and is explained by the time it takes one core to pro-
cess all the packets stored in the 10 receive queues used
by netmap (one queue per core, 256 packets per queue).
P4 dataplane. We do not have access to a Tofino switch
yet, so we resort to both software deployment and NetF-
PGA deployment to test our P4 prototype.

We first ran our P4 mux in the behavioural model
switch on one of our Linux machines and measured its
performance: the switch can only sustain 55Mbps of iperf
throughput with 1500B packets, and around 4.5Kpps with
minimum-sized packets. Any performance measurements
with this switch are therefore irrelevant; we do, however,
use it to check the correctness of our implementation and
interoperability with our controller and the Click-based
software mux.

Our NetFPGA implementation of the P4 switch uses
P4-NetFPGA [2]. To enable our prototype to compile we
had to make a number of modifications. First, we up-
graded our code to P4-16 which simplified our code be-
cause actions can compute checksums, so we don’t need
to recirculate packets anymore. Next, running on hard-
ware imposes constraints on table actions, limiting the
bitsize of action parameters. To avoid these problems we
broke up bigger tables into cascading smaller tables which
satisfy the constraints. The decomposition is done such
that we maintain consistency even if concurrent tables are
not modified simultaneously.

We tested our implementation with Vivado’s xsim
2016.4 simulator, injecting a batch of packets, verify-
ing they are processed correctly, and measuring the time
needed by the switch. The simulator reports that it takes
154 µs to process 10000 packets with 100B packets; this
means the P4 mux can handle around 60Mpps. Deploying
this prototype on actual hardware is ongoing work.

6.2 Scalability and robustness
Handling mux churn. One of the major benefits of soft-
ware load balancing is the ability to add capacity when
demand increases. This means setting up a new mux
and sending a BGP announcement for the VIPs it serves.
As soon as the announcement propagates to the border
routers, they start hashing traffic to the new mux.

��

���

���

���

���

����

����� ���� ���� �� �� �� ���

��������

�
�
�

�
��
�

�����������������

�������
�������

�������
��������

Figure 16: Mux latency is less than
0.3ms when not fully loaded.

��

��

���

���

���

���

���

���

�� ��� ���� ���� ���� ���� ���� ���� ����

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�

��
�

��
�
�

�
�
��
�
�
�
�
�
��
��
�
�
�
�

��������

Figure 17: Beamer handles failures
and mux churn smoothly.

��

��

��

��

��

���

���

�� ��� ���� ���� ���� ���� ����

������������

�
�
��
�
�
�
�
�
��
��
�
�
�
�

��������

Figure 18: Beamer spreads traffic
evenly across all active servers.

To emulate a real datacenter setup, we use an IBM 8264
RackSwitch as the border router and setup five clients and
six servers, each with one 10Gbps interface. Clients open
several iperf connections each to the VIP of the server,
and we plot their added throughput in Figure 17. We be-
gin the experiment with a P4 switch running alone and
load balancing all traffic; the performance is terrible, just
55Mbps. Next, we add three software muxes a minute
apart: the graph shows the few seconds it takes the muxes
to setup a BGP session, announce the VIP, and to the
router to install the route and start using it. Traffic scales
organically as we add more muxes. Connections change
muxes, yet they are not affected since our muxes are state-
less. The P4 and Click muxes behave the same way, and
are interchangeable.

We start simulating mux failures: first we kill a Click
mux at 240s by bringing its network interface down, and
throughput drops to 20Gbps. Next we kill the P4 mux:
total throughput suffers until BGP discovers the failure
and reconverges, then it recovers to 20Gbps. During the
experiment not a single iperf connection is broken.

We conclude that Beamer handles mux churn smoothly,
and that it is trivial to create a heterogeneous deployment
with both software and hardware muxes.
Handling server churn. We want to see how Beamer bal-
ances server traffic when servers are added or removed.
We generate 64B packets from a single machine and send
them directly to one mux (using two cores). The ex-
periments start with a single server receiving all traffic,
and then we keep adding servers every 30 seconds using
the controller’s command-line interface. The controller
moves buckets between servers to evenly balance the traf-
fic across all servers by updating ZooKeeper data, as de-
tailed in §4.5. When all the changes are ready, the con-
troller “commits” the change by updating the current gen-
eration node, and the mux updates its state. Figure 18
shows the throughput received by each server as a func-
tion of time: changes are almost instantaneous, and traffic
is evenly balanced across all active servers.
Connection affinity. We now use TCP clients to estimate
the ability of Beamer and Stateful to provide connection

affinity in different scenarios. In all experiments, we have
7 clients each open 100 persistent HTTP connections and
continuously downloading 1MB files over each of them,
in a loop, from servers in a Beamer cluster.

In our first experiment, we begin with two muxes and
8 servers and then perform a scale-down event: we first
remove some servers, wait for 30s and then remove one
mux. The number of broken connections is shown below.

DIPs removed 0 1 2 4
Stateful 0 54± 7 103± 14 214± 48
Beamer 0 0 0 0

As expected Stateful behaves poorly: it drops 7%-30% of
the active connections when 1 to 4 servers are removed.
After the DIP is removed, traffic is still sent correctly be-
cause there is state in both muxes. However, when one
mux is removed, its state (for half of the connections hit-
ting the removed DIP) is lost, and these will be hashed by
the remaining mux to the other servers, which will reply
with RST messages. In contrast, Beamer does not drop
any connection because daisy chaining keeps forwarding
packets to the removed DIP.
SYN flood. In our second experiment we use a similar
setup, but only remove servers, keeping the mux set con-
stant. In the absence of a SYN flood attack both State-
ful and Beamer provide perfect connection affinity, as ex-
pected. We then started a SYN flood attack (1Mpps) run-
ning in parallel to our 7 clients; we show the number of
dropped connections below:

DIPs removed 0 1 2 4
Stateful 0 87± 2 184± 8 351± 21
Beamer 0 0 0 0

Stateful performs rather poorly in this SYN flood attack,
because the state its muxes keep for its real clients is
flushed out by the aggressive attack. In contrast, Beamer’s
performance is not affected. Finally, we measured the ef-
fect of the SYN flood on the servers themselves, finding
there was little impact: the average server utilization in-
creased by 1% during the attack, and the flow completion
times increased from 1ms to 1.3ms in the median and from
1.4ms to 1.7ms at the 99%.

����

��

���

����

�����

�� ���� ���� ���� ���� ����

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

��
�
�

��
�
�

��
�
�

�
�
�

�
��
�

��������

������ ���

Figure 19: Flow completion times for
MPTCP clients using Beamer

����

��

���

����

�� ���� ���� ���� ���� ����

�
�

�
�
��

�
�

�
�
��

�
�

�
�
��

�
�

�
�
��

�
�

�
�
��

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��������

������ ���

Figure 20: Flow completion times for
MPTCP clients using Stateful.

��

���

����

����

����

����

����

����

�� ���� ���� ���� ���� ����

�
�
�
�
�
��

�
�
�
�
��
��
�

��������

Figure 21: Outgoing traffic per server
with Beamer

6.3 Load balancing HTTP over MPTCP
In our next experiment we emulate over-the-air mo-

bile app updates. We setup four clients repeatedly down-
loading the same 100MB file using the siege tool from
the VIP handled by Beamer. Each client opens 10 par-
allel downloads, and runs in a closed loop: as soon as
one transfer finishes, it starts a new one. The clients
run MPTCP and have two virtual interfaces on the same
10Gbps physical interface.

We start the experiment with four muxes and one server
processing all the traffic. After every minute a new server
is added until we reach six servers. Next, we start killing
one mux every minute until there is a single mux running.

We plot the median and 99th percentile of client-
measured flow completion as a function of time in fig-
ure 19. The graph shows that adding servers drastically
reduces both the median flow completion time and espe-
cially the tail. The median drops from 10s when a single
server is used, to 1s when six servers are used. The 99th

percentile also drops from 50-100s with one server to a
couple of seconds with six servers. Notice the ten second
spikes in 99% FCT when muxes are killed: these are sub-
flows that were handled by the failed mux, and they stall
the entire MPTCP connection until they timeout and their
packets are reinjected on good subflows.

Figure 21 shows the cumulative number of packets
sent by each server and we can clearly see how initially
only one server is active, another quickly follows and
then more servers join one minute apart. The graph also
shows that Beamer does a good job spreading connections
equally across all active servers.

Finally, we wanted to check that daisy chaining works
as described. We plot the number of daisy chained packets
by each server in Figure 22. Note the different unit on the
y axis (thousands of packets instead of millions): daisy
chaining not only works, but it is also quite cheap. Daisy
chaining forwards a total of 30 thousand packets, most of
which are ACKs (total size is around 200KB).

Siege did not report any failed connections, but this
could be masked by MPTCP’s robustness to failures. We
looked at individual subflow statistics and found that no

subflows were reset; we did see numerous subflow time-
outs triggered by mux failures, however these are well
masked by MPTCP: when one subflow crossed a failed
mux, its packets get resent on other working subflows.

We ran the same experiment with Stateful to test its be-
haviour when handling MPTCP connections and under
mux failures. Packet traces show that, overall, less than
20% of MPTCP secondary subflows are created; this is
expected, since Stateful is oblivious to MPTCP and ran-
domly sends subflows to servers. With Stateful, MPTCP
connections have a single subflow most times and behave
like regular TCP. Without failures, FCTs should be similar
to MPTCP/Beamer since the total achievable network ca-
pacity is the same. The FCT results in Figure 20 confirm
our expectations: median FCTs are similar, however the
99th percentile is much higher. This is because MPTCP
does a much better job of pooling the available network
capacity than TCP does, thus reducing the outlier FCTs.
Also note the huge spikes when DIPs are added or muxes
are removed: this is Siege timing out on a connection after
many retransmission attempts.

6.4 Controller scalability
Stable hashing works great as long as the centralized

allocation of buckets to servers scales to large deploy-
ments. In this section we evaluate whether our controller
can scale to many muxes and by extension to a large data-
center. To stress the controller we generate the maximum
number of DIPs for a single VIP supported by our solu-
tion (64K), and create 100 buckets for each DIP, resulting
in a total of 6.4 million buckets. We deploy our system in
Amazon EC2 as follows: ZooKeeper runs on three VMs,
one VM runs our controller, and one hundred VMs run
our mux. According to our benchmarks in §6.1, one hun-
dred muxes should easily be able to load balance traffic
for 64K typical HTTP servers.

First, we want to see how long it takes to perform con-
trol plane operations on the maximum load balancer in-
stance we can support. We have stress-tested the con-
troller and run each operation multiple times with differ-
ent numbers of pre-existing DIPs, randomized bucket-to-

��
��
��
��
��
��
��
��
��
��

���

�� ���� ���� ���� ���� ����

�
�
��
�
�
�
�
�
��
�
�

�
�
�
��

�
��
�

��������

Figure 22: Packets daisy chained per
server.

DIPs Add (sec) Rm (sec)
1 0.63 0.58
10 0.57 0.57
100 0.69 0.67
640 0.87 1.58
6400 6.9 2.25
16000 8.1 3.2
32000 9.8 9.7

Figure 23: Duration of con-
trol plane ops on the largest
Beamer instance

 0

 20

 40

 60

 80

 100

 64 128 256 512 1024 2048 4096 8192

C
D

F
 (

%
)

Latency (ms)

6.4K DIPs 16K DIPs 32K DIPs

Figure 24: Time to propagate a controller
update from ZooKeeper to all the muxes.

DIP assignments 2, and recorded the maximum comple-
tion time. The results are provided in table 23, showing
that the Beamer controller performs large config changes
in a few seconds.

Next, we measured the time it takes since the controller
commits a new generation until all muxes download and
start using it. Fig. 24 shows a CDF of the propaga-
tion time as measured at the muxes for three large config
changes (adding 6.4K, 16K or 32K servers); the results
show that even for 32K servers, all muxes use the new
dataplane rules in a few seconds. Smaller updates are in-
stalled in tens to hundreds of milliseconds.

Finally, we note that all operations generated negligible
amounts of control traffic; the largest ones (the addition
or removal of 32K DIPs) incurred less than 1GB of traffic
(10MB per mux).

7 Related work
Almost all existing solutions for datacenter load bal-

ancing keep per-flow state at muxes. Software solutions
include Ananta [26], Maglev[9], IPVS[31] and GLB[15]
while hardware ones include Duet [13] and SilkRoad
[22]. Resilient hashing [6] takes a similar approach on
switches and routers to avoid the pitfalls of ECMP. To al-
low scale in/out without affecting client traffic, stateful
designs could use flow state migration, which is very ex-
pensive: OpenNF [14] or Split Merge [28] offer migration
guarantees and strong consistency but at a steep perfor-
mance cost (Kpps speeds).

A parallel effort to ours is Faild[3], a commercial state-
less load balancer that works within a single L2 domain
using ARP rewriting; this reduces its applicability to small
clusters. Kablan et al.[17] propose to store per-flow state
in a distributed key-value storage solution such as RAM-
Cloud [25] instead of keeping it in memory; however its
performance is limited to 4.6Mpps per box, eight times
slower than Beamer.

2Updates to the dataplane are stored in a compressed format and hav-
ing randomized bucket assignments yields near-worst-case compression
ratios.

Load balancing within a single OpenFlow switch has
been examined in [24, 32]. Orthogonal to existing load
balancing solutions, Rubik[12] uses locality to reduce
bandwidth overhead of load balancing while Niagara [18]
offers an SDN-based solution to improve network-wide
traffic splitting using few OpenFlow rules.

Paasch et. al [7] discuss the problems posed by MPTCP
traffic to datacenter load balancers. Their analysis focuses
on ensuring SYN(MPC) and SYN(JOIN) packets reach
the same server, and it assumes muxes keep per flow state
after the initial decision has been made. Duchene et. al
[10] propose to load balance secondary MPTCP subflows
by using IPv6 addresses; Beamer could easily implement
this solution if both the client and the datacenter have IPv6
enabled and a working IPv6 path between them. Finally,
Olteanu et al. propose [23] to load balance MPTCP traffic
by encoding the server identifier in the TCP timestamp
option; unfortunately this solution does not work if the
client does not support or enable timestamps, and supports
a smaller number of servers (8192) per VIP.

8 Conclusions
We have presented Beamer, the first stateless

datacenter-scale load balancer solution that can handle
both TCP and Multipath TCP traffic. Beamer muxes
treat TCP and MPTCP traffic uniformly, allowing them
to reach speeds of 6Mpps per core and 33Mpps per box,
twice faster than the fastest existing TCP load balancer,
Maglev [9]. A Beamer mux can saturate four 10Gbps
NICs with real HTTP uplink traffic using just 7 cores.

Daisy chaining enables Beamer to provide connection
affinity despite DIP and mux failure, removal and addi-
tion. In contrast to stateful designs, Beamer handles SYN
flood attacks seamlessly.

Beamer is available as open-source software at
https://github.com/Beamer-LB.

Acknowledgements
This work was partly funded by the SSICLOPS and

SUPERFLUIDITY H2020 projects.

https://github.com/Beamer-LB

References
[1] zlib. https://www.zlib.net/.

[2] P4 to NetFPGA project. https://github.
com/NetFPGA/P4-NetFPGA-public/wiki,
February 2018.

[3] J. T. Araujo, L. Saino, L. Buytenhek, and R. Landa.
Balancing on the edge: Transport affinity without
network state. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
18), Renton, WA, 2018. USENIX Association.

[4] T. Barbette, C. Soldani, and L. Mathy. Fast
userspace packet processing. In Proceedings of
the Eleventh ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems,
ANCS ’15, pages 5–16, Washington, DC, USA,
2015. IEEE Computer Society.

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vah-
dat, G. Varghese, and D. Walker. P4: Program-
ming protocol-independent packet processors. SIG-
COMM Comput. Commun. Rev., 44(3):87–95, Jul
2014.

[6] Brad Matthews and Puneet Agarwal. Resilient
Hashing for Load Balancing of Traffic Flows. US
Patent Application: US20130003549 A1, Jan 2013.

[7] Christoph Paasch, Christoph and Greenway,
G. and Ford, Alan. Multipath TCP be-
hind Layer-4 loadbalancers (internet draft).
https://tools.ietf.org/html/draft-paasch-mptcp-
loadbalancer-00, Sep 2015.

[8] W. M. Eddy. Defenses Against TCP SYN Flooding
Attacks. The Internet Protocol Journal, 9(4), Dec
2006.

[9] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,
R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,
B. Cheyney, W. Shang, and J. D. Hosein. Maglev:
A fast and reliable software network load balancer.
In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), pages 523–
535, Santa Clara, CA, Mar 2016. USENIX Associa-
tion.

[10] Fabien Duchene and Vladimir Olteanu and
Olivier Bonaventure and Costin Raiciu and
Alan Ford. Multipath TCP Load Balancing.
https://tools.ietf.org/html/draft-duchene-mptcp-
load-balancing-01, July 2017.

[11] Ford, Alan and Raiciu, Costin and Handley, Mark
and Bonaventure, Olivier. RFC6824: TCP Exten-
sions for Multipath Operation with Multiple Ad-
dresses. https://tools.ietf.org/html/
rfc6824.

[12] R. Gandhi, Y. C. Hu, C.-K. Koh, H. Liu, and
M. Zhang. Rubik: Unlocking the power of locality
and end-point flexibility in cloud scale load balanc-
ing. In Usenix Annual Technical Conference, 2015.

[13] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye,
L. Yuan, and M. Zhang. Duet: Cloud scale load bal-
ancing with hardware and software. In SIGCOMM,
2014.

[14] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella.
OpenNF: Enabling Innovation in Network Function
Control. In SIGCOMM, 2014.

[15] GitHub Engineering. Introducing the GitHub Load
Balancer. https://githubengineering.
com/introducing-glb/, September 2016.

[16] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale
systems. In Proceedings of the 2010 USENIX Con-
ference on USENIX Annual Technical Conference,
USENIXATC’10, pages 11–11, Berkeley, CA, USA,
2010. USENIX Association.

[17] M. Kablan, A. Alsudais, E. Keller, and F. Le. State-
less network functions: Breaking the tight coupling
of state and processing. In 14th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI 17), pages 97–112, Boston, MA, 2017.
USENIX Association.

[18] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and
J. Rexford. Efficient traffic splitting on commodity
switches. In CONEXT, 2015.

[19] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and
random trees: Distributed caching protocols for re-
lieving hot spots on the world wide web. In Proceed-
ings of the Twenty-ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, pages 654–663,
New York, NY, USA, 1997. ACM.

[20] I. Marinos, R. N. Watson, and M. Handley. Network
stack specialization for performance. In Proceedings
of the 2014 ACM Conference on SIGCOMM, SIG-
COMM ’14, pages 175–186, New York, NY, USA,
2014. ACM.

https://www.zlib.net/
https://github.com/NetFPGA/P4-NetFPGA-public/wiki
https://github.com/NetFPGA/P4-NetFPGA-public/wiki
https://tools.ietf.org/html/rfc6824
https://tools.ietf.org/html/rfc6824
https://githubengineering.com/introducing-glb/
https://githubengineering.com/introducing-glb/

[21] MAWI Working Group Traffic Archive. http://
mawi.wide.ad.jp/mawi/.

[22] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu.
Silkroad: Making stateful layer-4 load balancing fast
and cheap using switching asics. In Proceedings of
the Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’17, pages
15–28, New York, NY, USA, 2017. ACM.

[23] V. Olteanu and C. Raiciu. Datacenter scale load bal-
ancing for multipath transport. In Proceedings of
the 2016 Workshop on Hot Topics in Middleboxes
and Network Function Virtualization, HotMIddle-
box ’16, pages 20–25, New York, NY, USA, 2016.
ACM.

[24] V. A. Olteanu, F. Huici, and C. Raiciu. Lost in net-
work address translation: Lessons from scaling the
world’s simplest middlebox. In Proceedings of the
2015 ACM SIGCOMM Workshop on Hot Topics in
Middleboxes and Network Function Virtualization,
HotMiddlebox ’15, pages 19–24, New York, NY,
USA, 2015. ACM.

[25] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ouster-
hout, and M. Rosenblum. Fast crash recovery in
ramcloud. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP
’11, pages 29–41, New York, NY, USA, 2011. ACM.

[26] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Green-
berg, D. A. Maltz, R. Kern, H. Kumar, M. Zikos,
H. Wu, C. Kim, and N. Karri. Ananta: Cloud scale
load balancing. In SIGCOMM, 2013.

[27] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley. How
hard can it be? designing and implementing a de-
ployable multipath TCP. In NSDI, 2012.

[28] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. Warfield. Split/merge: System support for elastic
execution in virtual middleboxes. In NSDI, 2013.

[29] L. Rizzo. netmap: A novel framework for fast packet
i/o. In Proc. USENIX Annual Technical Conference,
2012.

[30] D. G. Thaler and C. V. Ravishankar. Using name-
based mappings to increase hit rates. IEEE/ACM
Trans. Netw., 6(1):1–14, Feb 1998.

[31] The Linux Foundation. The IP Virtual
Server Netfilter module for kernel 2.6.

http : / / www . linuxvirtualserver .
org/software/ipvs.html, February 2011.

[32] R. Wang, D. Butnariu, and J. Rexford. Openflow-
based server load balancing gone wild. In HotICE,
2011.

Appendix
A1. Defragmentation

There is a three-way trade-off between load balancing,
fragmentation and churn. Beamer prioritizes load balanc-
ing, ensuring near-perfect balancing at all times. This
means that we can either end up with fragmented bucket
ranges assigned to servers (which will increase dataplane
matching costs, especially for hardware dataplanes such
as P4) or move buckets to reduce fragmentation but create
daisy chaining traffic in the meantime.

Defragmentation is therefore necessary to ensure
servers get a contiguous range of buckets, as this will re-
duce the number of rules needed in the mux dataplane.
Beamer implements an algorithm that reduces fragmen-
tation progressively, while keeping daisy-chaining costs
small. The algorithm has two parameters: a target frag-
mentation rate (fr ≥ 1, target average number of rules
per DIP), and bmax, the maximum number of buckets
that can be moved per server, per iteration.

The defragmentation algorithm has two phases: it first
selects a target mapping and then it iteratively moves to-
wards this target. The target mapping is computed when-
ever the DIP set changes, and this triggers a second im-
plementation phase that includes a number of iterations
where at most bmax buckets per server are moved in each
iteration; iterations are spread in time (one iteration every
4 minutes). The second phase stops whenever the target
defragmentation rate is reached. While heuristic, the al-
gorithm performs really well in practice.

The target mapping is computed greedily: starting at
bucket offset 0, the controller selects the server which
can take over a contiguous range while causing the least
amount of churn. After every step, the offset is then incre-
mented past the newly-allocated range.

start = 0
while (start < #buckets) {
select DIP A s.t. churn of assigning A

at position start is minimized.
target(A) = {start, start+#buckets(A)}
start += #buckets(A)

}

During each iteration of the second stage (pseudocode
below), the controller performs a subset of the realloca-
tions prescribed by the target mapping. It performs no

http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/
http://www.linuxvirtualserver.org/software/ipvs.html
http://www.linuxvirtualserver.org/software/ipvs.html

Hashing algo. Imbalance Min. data
plane rules

Server churn
1% 5%

Consistent[19] 2.27 9K 0 0
Maglev[9] 1.01 65K 2.3% 3.3%
Stable Hashing 1.01 1K 0 0

Table 1: Hashing comparison, N=1000 and B=65537

more than bmax reallocations per DIP, while keeping the
number of buckets constant for each DIP. (I.e. the number
of buckets allocated to each DIP is the same as the number
of buckets allocated away from it.)

let G = (V, E) be a directed multigraph, where
vertices are DIPs and edges are bucket
reassignments

for each DIP in V
DIP.budget = bmax

while (G.has_cycles) {
select cycle C
for each realloc in C.edges {

perform(realloc)
E.remove(realloc)

}
for each DIP in C.vertices {

DIP.budget -= 1
if (DIP.budget == 0)

V.remove(DIP)
}

}

A.2 Stable hashing evaluation
Table 1 shows the performance of Stable hashing

against our implementations of the classical consistent
hashing algorithm [19] and Maglev [9]. We used 1000
servers and 65537 buckets (the params are from the Ma-
glev paper, §5.3, for fair comparison). We first measured
the imbalance—the ratio between the maximum and av-
erage load—finding that Maglev and Stable have near-
perfect load balancing, while Consistent hashing places
twice more load on one unlucky server.

We next computed the minimum number of range rules
we need to use in a hardware data plane to perform match-
ing: algorithms that assign consecutive buckets to the
same server will utilize fewer rules and are better. This
is the case for Stable, where we only need one rule per
server; Maglev, in comparison, needs as many rules as
buckets, two orders of magnitude more than Stable. Con-
sistent falls somewhere in the middle. Finally, we looked
at the number of “innocent” connections that are disrupted
when we remove a number of nodes; both Consistent and
Stable have no collateral damage, while Maglev breaks
2.3%-3.3% of ongoing connections.

A.3 Defragmentation evaluation
Stable hashing can enable very cheap hardware imple-

mentation with one rule per server, but this is only the

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7

F
ra

g
m

e
n

ta
ti
o

n

Total buckets migrated (million)

Figure 25: Defragmentating bucket-to-DIP assignments
to reduce the number of data plane rules.

case when all the buckets assigned to one DIP are contigu-
ous. As servers come and go, even a perfect distribution
can end up fragmenting the buckets, with each server in
charge of many small ranges; this would require propor-
tionally more rules to implement in hardware.

To avoid this effect, especially for hardware deploy-
ments, we can use the defragmentation described above:
when the average number of rules per server increases be-
yond a given threshold, the defragmentation algorithm is
invoked, reassigning buckets to remove fragmentation as
described in §4.5.

We show a run of our defragmentation algorithm in Fig-
ure 25 starting from a worst case scenario where all buck-
ets assigned to a DIP are scattered, and each DIP needs
100 rules to match its buckets. The figure shows how
the fragmentation (number of rules needed per DIP) de-
creases as the algorithm migrates more buckets to reduce
fragmentation.

The cost of defragmentation is daisy chaining, which is
proportional to the number of buckets “moved” between
servers. In the worst case when we move all buckets,
Beamer will duplicate the incoming traffic for a brief pe-
riod of time. To avoid creating congestion, the defragmen-
tation algorithm moves slowly, migrating a few buckets at
a time and then waiting for daisy chaining to end; this
ensures that overall load increases only marginally.

We also note that defragmentation is only needed infre-
quently. We start with a fresh cluster containing 10K DIPs
(1M buckets) and perform a number of control plane op-
erations and show the resulting fragmentation in the table
below. Even after large control plane operations, Frag-
mentation only increases slightly, and in some cases (like
doubling or halving the cluster) it stays perfect. So in nor-
mal operation, we expect a cluster to slowly become more
fragmented, reducing the need for defragmentation.

servers Added Removed
0.1% 1.01 1.01
10% 2 2.1
33% 1.5 2
50% 1.33 1
100% 1 N/A

	Introduction
	Background
	Limits of stateful load balancing
	Beamer: stateless load-balancing
	Stable hashing
	Daisy chaining
	Mux data plane algorithm
	Handling Multipath TCP
	Beamer control plane

	Implementation
	Evaluation
	Micro-benchmarks
	Scalability and robustness
	Load balancing HTTP over MPTCP
	Controller scalability

	Related work
	Conclusions

