Exploit Hijacking: Side Effects of Smart Defenses

Costin Raiciu
Department of Computer
Science
University College London

c.raiciu@cs.ucl.ac.uk

ABSTRACT

Recent advances in the defense of networked computers use
instrumented binaries to track tainted data and can detect
attempted break-ins automatically. These techniques iden-
tify how the transfer of execution to the attacker takes place,
allowing the automatic generation of defenses. However, as
with many technologies, these same techniques can also be
used by the attackers: the information provided by detec-
tors is accurate enough to allow an attacker to create a new
worm using the same vulnerability, hijacking the exploit. Hi-
jacking changes the threat landscape by pushing attacks to
extremes (targeting selectively or creating a rapidly spread-
ing worm), and increasing the requirements for automatic
worm containment mechanisms. In this paper, we show that
hijacking is feasible for two categories of attackers: those
running detectors and those using Self-Certifying Alerts, a
novel mechanism proposed by Costa et al. for end-to-end
worm containment. We provide a discussion of the effects of
hijacking on the threat landscape and list a series of possible
countermeasures.

Keywords
exploit hijacking, self-certifying alerts

1. INTRODUCTION

Recent advances in the defense of networked computers
use dynamic run-time instrumentation of binary executables
to track tainted data and can detect attempted break-ins
automatically [8, 13,16, 20,22]. These techniques identify
how the transfer of execution to the attacker takes place,
allowing the automatic generation of defenses.

However, as with many technologies, these same tech-
niques can also be used by the attackers. Consider an at-
tacker who already has compromised hundreds of desktop
machines, perhaps using an email virus. He can then run
an instrumented server on these machines. When a new
exploit for this server software is discovered, his aim is to
discover the exploit early. These detectors provide detailed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM’06 Workshops September 11-15, 2006, Pisa, Italy.

Copyright 2006 ACM 1-59593-417-0/06/0009 ...$5.00.

Mark Handley
Department of Computer
Science
University College London

m.handley@cs.ucl.ac.uk d.rosenblum@cs.ucl.ac.uk

David S. Rosenblum
Department of Computer
Science
University College London

information about the exploit. In many cases this is enough
to generate automatically a new worm using the same vul-
nerability. In effect the exploit has been hijacked.

Exploit hijacking changes the threat landscape. An at-
tacker with a new exploit has two choices: target very selec-
tively so as not to risk triggering a detector, or compromise
as many hosts as possible via a rapidly spreading worm—a
flash worm [24]. The speed of the worm matters greatly. He
knows that his competitors may in turn hijack his worm; the
fastest spreading worm will win. Competitive pressure will
result in only very targeted attacks, or worms that compro-
mise the entire vulnerable population in seconds. It is likely
that no attack between these extremes will survive.

One of the most promising technologies to defend systems
against worms and other software exploits is Self-Certifying
Alerts [7]. These are descriptions of exploits that contain
enough information to allow an end-host to automatically
verify whether a vulnerability really exists in its software.
SCAs can be created automatically using taint-tracking de-
tectors, and distributed to potentially vulnerable hosts. Each
host can safely check the SCA locally to determine if it is
vulnerable, and if so, it can generate a filter automatically
to avoid being compromised. Using a peer-to-peer network,
it is possible to distribute SCAs rapidly, checking them at
each hop along the way to avoid propagating false alarms.
The hope is that most vulnerable hosts are alerted before
they can be compromised.

However, as with detectors, there is a downside. We have
developed proof-of-concept code that demonstrates that many
SCAs contain enough information to allow the generation of
new worms using the same vulnerability.

This paper details the cat and mouse game between the
automated attackers and automated defenders that now seems
inevitable. We show that hijacking is feasible in Section 2.
We discuss and evaluate the impact of hijacking on the
threat and defense landscape in Sections 3 and 4. In Sec-
tion 5, we list possible defense strategies. We summarize
our arguments in Section 6.

2. EXPLOIT HIJACKING

Finding software flaws and turning them into exploits is
not a trivial task, as it requires a great deal of knowledge and
creativity. In contrast, manually crafting a new exploit from
an existing one is significantly easier and has even been used
by the creators of infamous Internet worms such as Blaster
and Slammer. Exploit code was publicly available in both
cases weeks before the worm outbreaks; creating the worms
was only a matter of somebody modifying the exploit code.

Therefore, given an existing worm (i.e., its attack messages),
it is usually easy to manually craft a new worm—to hijack it.
However, manually hijacking a worm will usually bring little
benefit: By the time the hijacked worm is available, the ini-
tial worm has already infected most of the susceptible pop-
ulation. As many worms patch the vulnerability they use,
the manually modified worm will have little impact. Inter-
estingly, the same problem exists in defenses against worms:
If signatures are manually generated, they come too late to
stop the infection of the spreading worm. To have much
impact, both hijacking and defenses must be automated.

2.1 Hijacking Using Detectors

Instrumented software designed to detect attempted break-
ins works by tracking tainted data (data derived from mes-
sages received from the network) as it is used by the pro-
gram. If this tainted data is executed or used as a jump
address, then an exploit has been detected [8,16,20,22]. By
tracing back the tainted data to its origin in the message
logs, the detector finds the message that contained the ex-
ploit. Normally this process would be used to generate an
alert or patch, but an attacker can use it instead to generate
new malicious code that uses the same vulnerability.

All the attacker has to do is to paste his worm code over
the original payload, as determined by the detector. A ver-
sion of hijacking for the good (to create automated anti-
worms) was proposed by Castaneda et al. [5]. The tech-
niques described there are further demonstration that hi-
jacking using detectors is feasible.

2.2 Hijacking Using SCAs

A Self-Certifying Alert is a message that describes a spe-
cific exploit of a vulnerability in enough detail that the exis-
tence of the vulnerability can be automatically verified, by
replaying the exploit in a sandboxed version of the vulner-

able application. Three types of SCA are detailed by Costa
et al. [7]:

e Arbitrary Code Execution SCAs describe how to inject
and execute code in the vulnerable program.

e Arbitrary Ezecution Control SCAs show how to divert
a program’s execution flow to a particular memory lo-
cation.

e Arbitrary Function Argument SCAs show how to sup-
ply parameters to arbitrary function calls.

An example of an Arbitrary Execution Control SCA from
Costa et al. is provided in Figure 1. The SCA tells the host
that placing an arbitrary address at offset 97 in the supplied
message and sending it to an instance of SQL Server version
8.00.194 will cause the program to jump to that address.
This information is used by a verifier to check the existence
of the vulnerability.

As techniques to exploit the various types of SCAs are
different, we separate the discussion for each type of alert.

2.2.1 Arbitrary Code Execution SCAs

Arbitrary Code Execution SCAs are easiest to use in au-
tomatic exploit generation with high likelihood of success in
the wild. When an SCA arrives that describes a arbitrary
code execution vulnerability, the hijacker merely writes the
exploit code at the offset specified in the SCA. Assuming
that the exploit code is small enough and general enough to

Service: Microsoft SQL Server 8.00.194

Alert type: Arbitrary Execution Control

Verification Information: Address offset 97 of message 0
Number messages: 1

Message: 0 to endpoint UDP:1434

Message data: 04, 41, 41, 41, 41, 42, 42, 42, 42, 43, 43, 43,
43, 44, 44, 44, 44, 45, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47,
47, 48, 48, 48, 48, 49,49,49, 49, 4A, 4A, 4A, 4A, 4B, 4B, 4B,
4B, 4C, 4C, 4C, 4C, 4D, ...

Figure 1: Arbitrary Execution Control SCA for Slam-
mer (7]

work on multiple platforms, the hijacker can now launch the
worm in the wild.

We tested this technique for two existing worms, Blaster
and Slammer. Rather than generate a new worm, we used
existing exploit code that gives the attacker a remote com-
mand shell [2]. The code is independent of the Windows
variant, is reasonably small (332 bytes), and contains no
null characters and so is usable in strcpy-like overflows. To
simulate SCAs, we used the publicly available code for Slam-
mer and Blaster and identified the address of the shell code
inside the attack messages. The process of hijacking the
worm was reduced to overwriting the original exploit code
with our shell code. Hijacking worked on our first attempt,
without any debugging, for both worms.

2.2.2 Arbitrary Execution Control SCAs

Leveraging Arbitrary Execution Control SCAs is a bit
more complicated than Arbitrary Code Execution SCAs.
The SCA tells the hijacker how to direct the vulnerable
software to jump to any specified address. However, the
hijacker is not told how to place exploit code at a known
address inside the process’s address space.

Automatically mapping the exploit code at a known ad-
dress does not appear to be easy, but there are at least two
basic ways to do this. In both cases, our approach is to build
offline a database that describes how to map data at specific
known locations.

The first approach assumes the arbitrary execution con-
trol is due to a stack-based buffer overflow. The attacker
places the exploit code immediately after the (overwritten)
return address in the attack message. To jump to the exploit
code, he needs to find some code in the vulnerable program
that executes a “jmp esp” instruction (or an equivalent).
Using a tool called findjmp [1], we find such an instruction
in kernel32.dll at offset 0x7C82385D, for Windows XP SP
2. As kernel32.dll is loaded with every Windows executable,
the hijacker can use a debugger to find the base address
of kernel32.dll in the vulnerable software’s memory space.
Slammer and Blaster, both of which use stack-based buffer
overflows, can be hijacked in this way. We note that this off-
set is OS dependent, and therefore multiple database entries
must be maintained per software product, corresponding to
different OS versions.

Our second approach is to use the services provided by
the vulnerable process to map code at predictable locations
in memory and is aimed for exploits that are not stack over-
flows. Creating a database of memory invariants in the tar-
get software is not an easy task, but it is often feasible.

For concreteness, let us consider Microsoft’s IIS 5.1 Web
Server. The server is multi-threaded, so data mapped into
one thread is visible to the other threads. Using HTTP, we

can place arbitrary code into memory by encoding it into
the resource name, as multipart or form data, or as HTTP
headers. We found the following invariants:

Heap Addresses. For idle servers, we can use predictable
heap addresses to map data in memory (examples include
0x71cb6f, 0x11ce8f, etc.). Reliability can be increased by
sending multiple requests to the server. This technique al-
ready has been used successfully to exploit IIS 5.0.

Stack. Relatively idle IIS processes copy the name of the
requested resource (e.g., index.html) to a fixed offset on the
stack of the thread servicing the request. The offset for the
first thread is 0x9bf2cc.

Log. IIS uses memory-mapped I/O to improve logging per-
formance. A 64KB file block is allocated and mapped to
memory. By default, the full query string is logged into
this block, along with the server’s response code. When-
ever the 64KB of memory fill up, the data is written to disk
and a new file block is mapped at the same memory loca-
tion. If we send enough repeated requests to IIS, we can
fill the memory mapped block with our URL-encoded shell-
code and have the shellcode at the beginning of the log with
high probability. The base address of the memory block ap-
pears to vary within the range 0x3c0000—0x3d0000 and can
be guessed with several tries.

Hijacking Arbitrary Execution Control SCAs is not as re-
liable as Arbitrary Code Execution SCAs. Usually, mapping
data to memory in this way has a non-zero probability of fail-
ure. Furthermore, selecting the proper approach requires a
trial and error process, similar to SCA verification, to check
whether the hijacked exploit works.

Creating offline databases of memory invariants for mul-
tiple versions of software and operating systems is time-
consuming. However, we are constantly amazed at how sub-
tle errors in code turn out to be exploitable in the hands of
skilled attackers. Such a database can be constructed once,
and then with infrequent updates can be used for any new
vulnerability that is discovered later. Thus, this seems to
be well within the capabilities of attackers. Nevertheless,
the need to maintain different entries for different operating
systems and software versions may limit the reach of worms
generated this way. This same limitation does not apply for
targeted attacks (Section 3.2).

2.2.3 Arbitrary Function Argument SCAs

These SCAs appear to be the most difficult to hijack au-
tomatically in the general case. There are cases, however,
when they can be hijacked easily. For instance, if we con-
trol the parameters to the “exec” syscall, we can easily cre-
ate a new exploit: Previously fabricated shell scripts (that
download the worm code and execute it) can be provided
as parameters to “exec”. For other types of system calls,
it is unclear how these can be used to craft a new exploit
automatically.

Certain application-level attacks can also be described us-
ing Arbitrary Function Argument SCAs. SQL injection is
an example, where the attacker partially controls the pa-
rameters passed to the SQL query engine: User-provided
parameters used directly to construct SQL queries allow an
attacker to execute SQL statements of his choice. Modern
Database Management Systems (DBMS) offer considerably
more functionality than traditional DDL and DML state-
ments, in some cases even allowing execution of arbitrary

processes. An attacker can leverage this functionality to ex-
ecute a command interpreter that downloads and executes
the worm code. Candidates for SQL injection attacks are
widespread Web software such as message boards, project
management software, etc. The hijacker’s database will in-
clude in this case the application name and the correspond-
ing exploit code, along with a list of servers running this
software. The list is trivial to create: Popular search en-
gines can be used to find pages with distinctive elements
of the specific Web application, such as logos, mottos, ac-
knowledgments, etc.

2.3 Hijacking Using Network Detectors

As an aside, we briefly speculate how network-level detec-
tors can be used for hijacking. Network Intrusion Detection
Systems (IDS) (such as Bro [17]) combined with automatic
network-based mechanisms that generate worm signatures
can automatically stop spreading worms. The latter tech-
niques use heuristics first to classify network flows as innocu-
ous or suspicious and then to search for recurring patterns
within the suspicious flows [12,15].

To hijack a worm using network detectors, the attacker
uses the output of the signature generation mechanism to
trace back into the message logs and identify the worm’s
attack packets. Executable code in these packets will be re-
placed with the hijacker’s own code. In some cases where
the code possesses a certain structure that precludes sim-
ple overwriting, state machines or even host-based detectors
must be used to guide hijacking. If the code is encrypted,
hijacking is not possible at network level.

In general, the precision of network-based signature gen-
eration seems lower than that of host-based detectors, which
have full access to host state. Consequently, we expect hi-
jacking using network detectors will have smaller impact.

3. IMPACT

So for we have concentrated on how to hijack an exploit
automatically. Equally important from an impact point of
view is how the hijacked exploit is then used, as this deter-
mines the possible defense strategies. We distinguish two
uses of hijacking;:

e Auto-Worms. Hijacking is used to create a worm that
aims to outrun both the initial worm (if the original
exploit was a worm) and SCAs generated to defend
against the exploit.

e Targeted Attacks. The hijacker targets specific ma-
chines for infection. Software available on these ma-
chines is mapped slowly by the hijacker before the at-
tack. When an exploit is detected, it is hijacked and
immediately used to infect only these machines.

3.1 Auto-Worms

Botnets comprising desktop computers are comparatively
easy to create (or indeed buy) using many different tech-
niques such as email viruses. However, compromised servers
have higher value in terms of the potential for malice or the
economic damage that can be wreaked. Thus one motiva-
tion of an attacker is to leverage a cheap botnet into a much
more valuable one. Alternatively an attacker simply wants
to “own” more hosts.

In any case, the sooner the exploit is hijacked, the more
machines are still unpatched (by the competing worm or

SCA) to be subverted to the owner’s control. To this end,
the botnet owner will run both his own detectors and register
for SCAs. The more machines he uses for this, the higher
the probability to discover the exploit early.

While passively waiting for an exploit to hijack, the bot-
net quietly creates hit-lists for the most popular software
packages. When the exploit is hijacked by one of the bots,
the resulting worm is rapidly disseminated to the other bots;
each of these starts to infect its own portion of the hit-list,
in an attempt to cut down the slow stage of the exponential
spread and to compromise as many known hosts as possible
before they are patched.

In light of this, an attacker discovering an exploitable vul-
nerability only has two choices: target very selectively so as
not to trigger detectors, or create a really fast worm. Any-
thing in the middle does not make sense, since someone else’s
auto-worm generated from his exploit will capture more vul-
nerable hosts. Similar competitive pressure is created by
the SCA mechanism, but only if SCAs are deployed globally.
However, global deployment of SCAs, although highly nec-
essary, does not appear to be imminent; hijacking, on the
other hand, is already feasible.

This observation is particularly important: Currently, few
worms are flash worms; it seems that pressure from both
hijacking and SCAs obliges attackers to create flash worms.
Also, few vulnerabilities are exploited by worms. Attackers
seem to favor direct scanning from their bots as it avoids IDS
systems more easily. With hijacking it becomes much more
likely that an exploit will become a worm. The ecosystem
naturally pushes it that way, as direct scanning is likely to
be too slow when competing with auto-worms.

Registering for SCAs highlights the opportunistic attitude
of the hijacker. Although he will run detectors, these will
commonly be on end-hosts that might not be early targets
for server-based attacks, especially if his competitors are
trying to avoid his detectors. In contrast, detectors for the
SCA network are likely to be run on production servers to
catch exploits early. Even if SCAs have propagated fast
enough to protect most machines, the fraction the hijacker
infects is still non-zero.

If not all vulnerable hosts register for SCAs, then the
problem is significantly worse. In effect, if SCAs are used
for a particular piece of software, it becomes necessary for
all instances of that software to register for SCAs, or the
risk is higher than if SCAs had not been deployed at all.

3.2 Targeted attacks

Suppose a malicious party wants to cause economic dam-
age to a particular company (or even a country). For this,
many compromised machines in that company may be needed.
Hijacking provides a way to target them directly. The mali-
cious user maps out the company carefully and slowly, and
builds a catalog of all the software the company uses and
the machines it runs on. When an exploit is detected that
matches the software, it is turned into an exploit that is
targeted at the company’s machines.

Targeted attacks have two advantages from the point of
view of the attacker. First, they can be used by an attacker
that does not possess a botnet. Such an attacker cannot
afford to run a large number of detectors, but he can register
for SCAs for a wide range of software used by his target.
When an SCA arrives, it is then a race to see whether the
hijacked exploit can be generated and delivered before the

SCA is received by the target and a filter generated. If
the target fails to register for SCAs, then the attacker will
always win.

Second, if an attacker does possess a botnet, then there
is a much higher likelihood that he will receive the SCA
before the target does. This tilts the balance in favor of the
attacker. The SCA distribution mechanism needs to notify
everyone worldwide, whereas the attacker can bring a large
number of bots to bear on a single destination.

A special type of targeted attack is an attacker controlling
an ISP node (or equivalent). In this case, existence of SCAs
implies that this node can infect all the machines in its sub-
net; since it controls traffic to that sub-net, it will drop SCAs
and will use them only for hijacking.

4. EVALUATION

The success of exploit hijacking—measured as the per-
centage of the number of target machines infected using
auto-worms or targeted attacks—is highly dependent on the
properties of the initial exploit (assumed here to be a worm)
and the defense mechanism (SCA network). Here, we eval-
uate these dependencies through simulation.

4.1 Simulation Setup

We use a simple packet-level discrete event simulator to
simulate an overlay network with 100,000 hosts similar to
that used by Costa et al. [7]. Of these, 1,000 are super peers
organized in a secure overlay, each connected to about 50
other peers. The remaining 99,000 hosts are susceptible to
infection. Each end-host is connected to one super peer.
Overlay delays are computed using a transit-stub topology
generated with the Georgia Tech topology generator [26].
Each end-host is either vulnerable (i.e., such a host can
be infected by the worm), a detector (that generates SCAs
when hit by a worm) or a bot (that hijacks the worm or SCA
it receives). Messages between hosts that are not directly
connected in the overlay are assumed to have delay equal to
the average delay of the network.

We use the infection model described by Hethcote [10],
modified to account for detectors and bots. Assume there
are S susceptible hosts, with a fraction d of detectors and
a fraction b of bots. Assume that the infection rates (also
called worm speed throughout this paper) for the worm and
auto-worm are 3, and (., respectively. The equations de-
scribing the number of hosts infected by the worm (I,,) and
the auto-worm (I,) are:

AL, (t) Lo(t) + L ()
o = B Lo(t) - (1—d—p— 20l)

dl.(t) Ly (t) + Ia(2)
i s ¥

Using the number of hosts infected by the worm or auto-
worm and the equations above, we compute the time at
which a randomly selected host will be probed either by the
worm or the auto-worm. The bots are connected in a full
mesh and have a hit-list of susceptible machines, selected as
a fraction of the total vulnerable population. Each infected
host probes a random host every 10ms. The worm does not
use hit-lists. Whenever an exploit is hijacked by one bot, all
other bots are notified and then each starts to infect its own
share of the hit-list. Bots are assumed capable of sending
1,000 messages per second (to alert other bots or to infect

=Ba-L(t)- (1—d—b—

a. Impact of Speed

Total Machines Infected (%)

b. Impact of Hit-list Size

100
80
60
40

Figure 2: Auto Worm Impact

the hosts from the hit-list). For simplicity, we assume that
SCA and auto-worm generation are instantaneous, but we
do model the SCA verification lag, which is assumed to be
the same for all hosts. To make the analysis manageable,
we arbitrarily chose a random 1% of S to be detectors, and
0.1% to be bots. These values seem reasonable, but as the
results do depend on this ratio, they should only be read as
illustrative.

4.2 Results

First, we investigate how the speed of the auto-worm and
the SCA verification time affect the outcome. To do this, we
fix the size of the bots’ hit-list to be 10% of the susceptible
population. Figure 2a shows that even when SCA verifi-
cation is very fast (1ms) and the auto-worm’s speed is the
same as the initial worm’s, the auto-worm still infects 5% of
the hosts. Increasing the speed of the auto-worm only im-
proves its success when the SCA dissemination delay is fairly
high. Otherwise, the auto-worm only infects a fraction of its
hit-list and few other hosts.

In reality, SCA verification may be quite slow: In Costa
et al. [7], SCA verification times of the order of milliseconds
are reported for verifiers having an active running instance
of the vulnerable software in a virtual machine when the
SCA arrives. However, if the software is started when the
SCA arrives, verification takes a few seconds [7]. We ex-
pect similar delays for inactive processes (i.e., cold caches
or paged out). When SCA verification takes seconds, the
auto-worm infects a larger fraction of the population. Fast
auto-worms (4 times as fast as the initial worm) infect ap-
proximately 20% of the population if the SCA verification
delay is 1s and 80% if the delay is 4s.

The impact of the size of the hit-list on the number of
hosts infected by the auto-worm is shown in Figure 2b. In
this figure, the auto-worm was four times as fast as the initial
worm. We see that the size of the hit-list matters greatly.
If the auto-worm uses small hit-lists and SCA propagation
times are small, the number of infected hosts is close to zero.
If SCA propagation times are large (1s—4s), the increase is
sharp when hit-list size increases.

Figure 3 presents the number of hosts infected by the
worm and the auto-worm as a function of auto-worm rela-
tive speed (Figure 3a, hit-list size 1%) and hit-list size (Fig-
ure 3b, with the auto-worm as fast as the worm). We see
that high speeds and large hit-lists make the difference in

the race between the two worms.

In Figure 4, we quantify the effectiveness of targeted at-
tacks by measuring the percentage of machines from the
target group that become infected. As this scenario is one
that a resource-poor attacker can perpetrate, we use only
0.01% bots (approximately 10). The target group contains
1000 randomly chosen machines. The initial worm’s speed
is set to be competitive with the SCA mechanism: when
the SCA verification delay is 1s, the worm infects 17% of
the population. We measure the fraction of target hosts in-
fected by the bots as a function of SCA verification delay for
three cases: when hijacking uses both SCAs and detectors,
uses only SCAs, and uses only detectors. When using both
techniques, hijacking is most successful. Using only SCAs
for hijacking (which is the case where detectors cannot be
run, due to increased software diversity) is beneficial only
when the SCA dissemination is fast. Otherwise, if SCAs are
slow to reach the hijacker, the initial worm gets the largest
fractions of the vulnerable hosts (Figure 4, when verification
delay is greater than 1s). In this case, using detectors makes
hijacking more effective.

4.3 Discussion

The model we have used is simple and has a number of
inaccuracies. First, all the hosts are considered vulnerable,
which is the ideal case for the worm and auto-worm but also
allows SCAs to be propagated by all hosts. Software diver-
sity seriously complicates the SCA dissemination problem:
Few of the hosts will be able to forward any particular type
of SCA. The problem is even worse for the super peer core:
These must be able to forward all SCAs and therefore must
run all possible versions of software.

Multi-hop routing is simulated by using average end-to-
end delay, as opposed to using a shortest-path algorithm.
Therefore, these results are expected averages; we cannot
predict the extremes. This is particularly important for tar-
geted attacks.

Worm outbreaks create significant traffic loads, causing
packet losses(e.g., see [14]. Here we do not account for this
type of behavior; we are more interested in the relative vari-
ation of the hijacker’s success rate rather than the absolute
value.

Finally, worm hijacking and SCA creation are assumed
instantaneous. We expect the cost of hijacking to be similar
to that of SCA creation, and so the comparison is fair.

a. Impact of Speed

b. Impact of Hit-list Size

SCA+Detector hijacking —+— i
SCA hijacking —<—

T T T
100 -Auto-Worm —+— q

Worm —=<—
80 - -

100 rAuto-Worm —+—
Worm —<—

80 Detector Hijacking X

Total Machines Infected(%)
Total Machines Infected(%)

0.5 1 15 2 0.1

Auto-Worm Speed

Figure 3: Worm vs Auto-Worm

We believe that these drawbacks do not hinder the qual-
itative observations resulting from our experiments: Worm
speed and creating hit-lists matter greatly in online war-
fare. This pushes an attacker towards flash worms or to-
wards niche attacks, where detectors are not present. SCA
verification delay is equally important. If SCA verification
delays are large, they will limit the effectiveness of SCA
protection. Finally, targeted attacks are relatively cheap to
mount and quite successful when using both detectors and
SCAs for hijacking. Therefore, SCAs have an important
and unwanted side effect, helping resource-poor attackers to
infect hosts of their choice.

S. DEFENSES

Automatic hijacking of exploits is already feasible; steps
must be taken to defend against this type of threats. Since
the only difference between auto-worms and targeted attacks
is the shellcode in the attack packets, we consider defenses
that tackle both types of attacks.

Defenses for hijacking must be built on top of current de-
fenses against exploits, which fall into two broad categories:

e Decrease software homogeneity with randomness.

e Use software homogeneity to cooperatively monitor
and guard against new vulnerabilities.

We now discuss each technique separately.

5.1 Reducing Software Homogeneity

One well-known way to limit the effectiveness of exploits
is to increase software diversity through randomness [3, 6,
25]. Techniques in this class do not need to be changed to
protect against hijacking. We describe here some of the main
results only to point out that the second class of defenses—
exploiting homogeneity—is necessary.

Address space randomization works by selecting random
base addresses for the stack, heap and code segments at
compile-time, link-time or even run-time [3,6,25]. Random-
izing base addresses of the code segment and even the or-
dering of functions within the code segment is used to avoid
“Ymp esp”-type attacks by making the location of any code
containing “jmp esp” unpredictable. Randomizing the heap
makes it much more difficult to predict addresses allocated
on the heap, even for idle processes. Randomizing syscall
numbers can also be helpful against arbitrary function ar-
gument attacks.

Certain application level attacks can be countered by us-
ing context-sensitive string evaluation [18]. SQL injection
can be mitigated with SQL randomization techniques [4].

1
Hit-list Size (%)

Targeted Machines Infected(%)

10 0.01 0.1 1

Verification Delay(s)

Figure 4. Targeted Attacks

Instruction Set Randomization adds entropy to the in-
struction set, making code-injection attacks difficult [11].

These techniques are combined with techniques for mark-
ing the stack and heap as non-executable, which are al-
ready being implemented in mainstream operating systems
(OpenBSD’s WX, Microsoft XP SP2’s Data Execution
Protection). If these techniques are enabled, neither hi-
jacking nor SCA-generation are possible for arbitrary code
execution attacks.

Unfortunately, randomization and W@X techniques are
not a panacea. It has been shown that the amount of en-
tropy available on current 32-bit architectures (16-20 bits)
for address-space randomization does not offer protection
against a brute force attack [19], and that stack-overflow
attacks can be exploited even if WX is enabled, by using
a variant of the “return to libc” attack [19]. Instruction
set randomization can also be broken in some cases, by us-
ing an attack that incrementally discovers the key used for
randomization [23].

5.2 Using Software Homogeneity

Harnessing software homogeneity, it is possible to safe-
guard members of an application community using distrib-
uted detection and fast dissemination of vulnerability in-
formation [7,21]. Clearly, existing taint-tracking detectors
can be used for hijacking, increasing the aggressiveness of
exploits even in the absence of SCAs. We believe that ac-
tive alert mechanisms such as SCAs are highly needed, given
that techniques based on randomization have limited effec-
tiveness. In this section, we discuss how alert distribution
mechanisms can be enhanced, in order to minimize their
negative effects in terms of hijacking.

SCAs are an active alert mechanism. If SCAs can in-
deed outrun the fastest worms, then SCA hijacking into
auto-worms does not greatly matter, as the newly gener-
ated worm cannot outrun the existing SCAs. Thus the per-
formance of distribution networks for SCAs is critical. The
effects of SCA hijacking can be minimized by ensuring that
all hosts receive the SCA as simultaneously as possible.

In the current peer-to-peer model [7], SCA dissemination
must trade-off the need to alert everybody (almost) simul-
taneously against vulnerability to denial of service attacks.
Since hosts or detectors are not trusted, SCA propagation is
pruned by the verification process, such that fake SCAs are
dropped early to minimize DoS effects. The effectiveness of
pruning depends on the maximum number of overlay hops
the SCA travels, being more effective as the number of hops
increases. However, the danger of hijacking is minimized if
all the hosts receive the SCA within one round trip time (by

using IP multicast, for instance), in a single overlay hop. It
is unclear what the proper trade-off is in this model, or if
such a trade-off even exists.

Large software vendors may be able to build special-purpose
distribution networks that validate and spread an SCA to
a large number of their own servers before finally alerting
end recipients as simultaneously as possible, perhaps using
auxiliary distribution channels such as the broadcast TV
network. In this paper we do not explore this possibility, fo-
cusing instead on ways to enhance the current peer-to-peer
model. While large companies may be able to use other
models, small companies and open-source are probably con-
strained by economics to peer-to-peer style solutions.

Our proposed solution is to add a degree of trust to the
SCA dissemination infrastructure, and it has two variants
that can be used in tandem. The first proposal is not to for-
ward SCAs to end-hosts, but to protect them using network
level filters (therefore trusting ISPs). The second proposal
is to trust detector nodes to some extent, and “simulate”
synchronous SCA distribution.

Limited Dissemination of SCAs
One option is to send SCAs only to ISPs. Thus, a smaller
number of (hopefully more trusted) machines will receive
the SCA. Each ISP will then apply measures to protect its
customers against spreading worms.

A naive approach would be to have ISPs provide end-hosts
with filters that drop worm attack messages when SCAs are
received and verified. Although such filters do not provide
explicit information about the vulnerability, they might still
be used for hijacking. Thus we need a better alternative.

We slightly modify the previous approach: The ISP in-
stalls the filter locally, instead of forwarding it to the host. If
the task of maintaining personalized filters for a large num-
ber of customers is feasible, this solution eliminates the need
for end-hosts to receive SCAs. It implies that the end-hosts
trust the ISP not to drop their packets arbitrarily; however,
ISPs can do this even in the absence of SCAs. A drawback
of this approach is that it does not protect small networks
(i.e., LANs, community networks, etc.), only limiting global
worm propagation. Considering that other infection vectors
such as email viruses are available for a worm, this flaw is
worth considering; it can be mitigated by applying in small
scale networks the two-phase dissemination scheme we de-
scribe next.

Two-Phase Dissemination
To counter the effects of SCA hijacking, we can provide hosts
with credible information that there exists an exploitable
vulnerability, while at the same time avoiding disclosing
complete information about it.

One simple idea is to disguise one type of SCA as another
type of SCA which is more difficult to hijack (e.g. arbitrary
code execution can be transformed into arbitrary execution
control). This technique is unlikely to be effective, as it
would require code-scrambling techniques that do not pos-
sess enough entropy to fool the hijacker.

An alternative approach is the following: whenever a new
exploit is detected, the first phase of alert delivers a pre-
liminary warning to all the vulnerable hosts. These hosts
must take preventive action until the exploit is confirmed
by the SCA, such as pausing traffic to the vulnerable ser-
vice. The second phase actually delivers the SCA, but only
after enough time has elapsed to ensure that the vast ma-

jority of hosts have received the warning. Upon receipt of
the SCAs, the hosts will either create filters if the SCA is
valid, or take some punitive action against the detector if
the preliminary warning was fake. In effect, this simulates
simultaneous delivery of SCAs.

We propose two types of warnings. The first is inspired by
a category of cryptographic protocols termed Zero Knowl-
edge Proofs (ZKPs, see definition by Goldreich [9]). Using
ZKP protocols, the SCA detector can prove to the vulner-
able end-host or forwarder that a piece of software is vul-
nerable (which is NP-hard to determine in the general case)
without disclosing more information about the exploit than
necessary. However, ZKP protocols involve multiple-rounds
and are therefore time consuming, being too expensive for
our setting. The practical version we propose is for the pre-
liminary warning to be a modified SCA which would not
exploit the service, but rather cause a crash. Whenever a
host receives a warning that causes a crash in its SCA val-
idator, it can infer that there is a non-negligible probability
that the bug is exploitable and can take preventative action.
Creating such warnings can be done by having the detector
insert random entries into the the payload, by overwriting
either the jump addresses (arbitrary execution control vul-
nerabilities) or instruction opcodes (arbitrary code execu-
tion vulnerabilities). This type of warning only adds a small
amount of trust in detectors (i.e., that the software flaw ad-
vertised by the SCA is exploitable) but it has a side-effect,
allowing a culprit that also uses detectors to use the speed
of the SCA network to find the exploit as soon as possible.

The second type of warning uses commitments: these al-
low a sender (the detector) to commit to some data (the
SCA) and send the commitment to the receiver (the vulner-
able end-hosts or forwarders) without disclosing the details
of the SCA. After some time has elapsed, the sender reveals
the secret to the receiver. A correct commitment scheme
ensures that the sender cannot claim to have committed to
another value. The danger with this scheme is that it creates
the opportunity for DoS attacks, since anybody can create
such warnings. However, the originator of the SCA can be
held accountable for its contents, and therefore malicious
detectors can be excluded from the network. This is reason-
able if the number of detectors is relatively small and they
are “known” by the core dissemination infrastructure (i.e.,
with PKI).

6. SUMMARY

In this paper, we have outlined an important side effect
of automated exploit defenses, hijacking, which allows an
attacker to transform an existing exploit into a worm or
exploit that works to the benefit of the attacker. This is
worthwhile from the point of view of the hijacker, who need
not undertake the difficult task of finding and exploiting a
vulnerability. The hijacker can prepare while waiting for
somebody else to discover an exploit, and hijack it either to
target directly a group of machines or to infect a fraction of
the vulnerable hosts with an auto-worm. Hijacking changes
the threat landscape: an attacker that has an exploit can ei-
ther target very selectively or create a flash worm. However,
any attack between these two extremes will not survive.

We have provided evidence that hijacking is indeed pos-
sible, not only for resource-rich hijackers that are able to
run detectors, but also for small scale hijackers that lever-
age Self-Certifying Alerts. There appears to be a tight re-

lationship between what can be described accurately using
an SCA and what can be hijacked.

We have explored the ensuing race through simulation,
showing that if the hijacked worm is fast or uses hit-lists,
it outruns the initial worm to a larger fraction of hosts.
Results show that such an auto-worm is competitive with
the SCA dissemination mechanism when verification delays
are on the order of seconds.

Finally, we have listed possible defenses against hijacking,
ranging from operating system design to alert mechanism
design. These defenses appear viable, but bundling these
initial attempts into a complete solution is challenging. We
believe that devising efficient worm defense techniques that
are resilient to hijacking remains an important open prob-
lem.

7. ACKNOWLEDGMENTS

We would like to thank Jon Crowcroft and Manuel Costa
for numerous insightful discussions on this topic and for pro-
viding us with simulation tools and data; Andrea Bittau and
Brad Karp for discussions and reviews on previous versions
of this paper; and the anonymous referees for their detailed
feedback. Costin Raiciu is supported by a UCL Departmen-
tal Studentship. Mark Handley and David Rosenblum hold
Wolfson Research Merit Awards from the Royal Society.

8. REFERENCES

[1] Findjmp2. http://www.derkeiler.com/
Mailing-Lists/Securiteam/2005-02/0067 .html.

[2] Generic connectback shellcode for win32.
http://wuw.hick.org/code/skape/shellcode/
win32/connectback.c.

[3] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address
obfuscation: an efficient approach to combat a broad
range of memory error exploits. In USENIX Security
Symposium, 2003.

[4] S. W. Boyd and A. D. Keromytis. Sqlrand: Preventing
sql injection attacks. In ACNS, 2004.

[5] F. Castaneda, E. C. Sezer, and J. Xu. Worm vs.
worm: preliminary study of an active counter-attack
mechanism. In ACM workshop on Rapid
malcode(WORM), 2004.

[6] M. Chew and D. Song. Mitigating buffer overflows by
operating system randomization. Technical Report
CMU-CS-02-197, Department of Computer Science,
Carnegie Mellon University, 2002.

[7] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,

L. Zhou, L. Zhang, and P. Barham. Vigilante:
end-to-end containment of internet worms. In SOSP,
2005.

[8] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. Revirt: Enabling intrusion analysis
through virtual-machine logging and replay. SIGOPS
Oper. Syst. Rev., 36(SI), 2002.

[9] O. Goldreich. Foundations of Cryptography, volume
Basic Tools. Cambridge University Press, 2001.

[10] H. W. Hethcote. The mathematics of infectious
diseases. SIAM Rev., 42(4):599-653, 2000.

[11] G. Kc, A. Keromytis, and V. Prevelakis. Countering
code-injection attacks with instruction-set
randomization. In Proc. of the 10th ACM Conference
on Computer and Communications Security, Oct 2003.

[12] H.-A. Kim and B. Karp. Autograph: Toward
automated, distributed worm signature detection. In
USENIX Security Symposium, 2004.

[13] V. Kiriansky, D. Bruening, and S. P. Amarasinghe.
Secure execution via program shepherding. In
USENIX Security Symposium, 2002.

[14] D. Moore, V. Paxson, S. Savage, C. Shannon,

S. Staniford, and N. Weaver. The spread of the
sapphire/slammer worm. Technical report,
CAIDA/SDSC/UCSD, 2003.

[15] J. Newsome, B. Karp, and D. X. Song. Polygraph:
Automatically generating signatures for polymorphic
worms. In IEEE Symposium on Security and Privacy,
2005.

[16] J. Newsome and D. X. Song. Dynamic taint analysis
for automatic detection, analysis, and
signaturegeneration of exploits on commodity
software. In NDSS, 2005.

[17] V. Paxson. Bro: A system for detecting network
intruders in real-time. Comput. Networks, 31(23-24),
1999.

[18] T. Pietraszek and C. Berghe. Defending against
injection attacks through context-sensitive string
evaluation. In Lecture Notes in Computer Science,
volume 3858, Oct 2006.

[19] H. Shacham, M. Page, B. Pfaff, E.-J. Goh,

N. Modadugu, and D. Boneh. On the effectiveness of
address-space randomization. In CCS ’04: Proceedings
of the 11th ACM conference on Computer and
communications security, pages 298-307, New York,
NY, USA, 2004. ACM Press.

[20] S. Sidiroglou and A. D. Keromytis. Countering
network worms through automatic patch generation.
IEEE Security and Privacy, 3(6), 2005.

[21] S. Sidiroglou, M. E. Locasto, and A. D. Keromytis.
Software self-healing using collaborative application.
In NDSS, 2006.

[22] A. Smirnov and T. Chiueh. Dira: Automatic
detection, identification and repair of control-hijacking
attacks. In NDSS, 2005.

[23] N. Sovarel and N. Paul. Where’s the FEEB?: The
effectiveness of instruction set randomization. In
USENIX Security, 2005.

[24] S. Staniford, V. Paxson, and N. Weaver. How to own
the internet in your spare time. In USENIX Security
Symposium, 2002.

[25] J. Xu, Z. Kalbarczyk, and R. Iyer. Transparent
runtime randomization for security. Technical Report
UILU-ENG-03-2207, University of Illinois at
Urbana-Champaign, May 2003.

[26] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee.
How to model an internetwork. In INFOCOM, 1996.

