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Motivation: Mobile MPTCP Deployment

Implementation and standardization

0-RTT techniques have caveats

• TFO can lead to duplicate connections at the server

• TLS 0-RTT Data is prone to replay attacks

SOCKS Requests can optionally be made idempotent

• Replays become nearly impossible

• Makes TF0 and TLS 0-RTT Data safe to use

Clients request and then spend idempotence tokens

• Tokens are numbers in a 32-bit modular space

• A token can only be spent on one SOCKS Request

• Clients attempt to spend tokens in order

Proxies grant token windows

• Windows are contiguous ranges of tokens

• Only tokens inside the window are tracked

• New tokens are generated by shifting the window

Idempotence Mechanism

Thanks to: 45G

“Bond” Cellular and WiFi for higher throughput

• Need proxy: most servers don’t deploy MPTCP

SOCKS v5 has high RTT overhead

• Problem exacerbated by high latency between phone 

and tower

Take advantage of TFO and TLS 1.3

• Fewer RTTs, but need special consideration

Proliferation of non-standard proxies, e.g Shadowsocks

• Unreviewed in terms of security
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Time taken to receive a data response

• No worse than TCP

• Outperforms TCP if TFO is 

unavailable at the server 

(see figure)
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• Send as much information upfront as possible

• Leverage 0-RTT authentication schemes

• Extensible: all messages can carry options
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Other Features

• TFO on the proxy-server leg: Clients can explicitly request that 

the proxy connect to the server using TFO.

• MPTCP Proxy Bypass: Clients can be informed if the server 

supports MPTCP; they can then contact the server directly.

• MPTCP Scheduler: Applications requiring low latency can 

request that application data be duplicated across all subflows.

Code: https://github.com/45G

• SOCKS v6 prototype

• Message library

IETF Draft: draft-olteanu-intarea-socks-6


