
Low RTT Usage

Basic Protocol

Design of SOCKS Version 6
Vladimir Olteanu, Dragoș Niculescu - University Politehnica of Bucharest

Motivation: Mobile MPTCP Deployment

Implementation and standardization

0-RTT techniques have caveats

• TFO can lead to duplicate connections at the server

• TLS 0-RTT Data is prone to replay attacks

SOCKS Requests can optionally be made idempotent

• Replays become nearly impossible

• Makes TF0 and TLS 0-RTT Data safe to use

Clients request and then spend idempotence tokens

• Tokens are numbers in a 32-bit modular space

• A token can only be spent on one SOCKS Request

• Clients attempt to spend tokens in order

Proxies grant token windows

• Windows are contiguous ranges of tokens

• Only tokens inside the window are tracked

• New tokens are generated by shifting the window

Idempotence Mechanism

Thanks to: 45G

“Bond” Cellular and WiFi for higher throughput

• Need proxy: most servers don’t deploy MPTCP

SOCKS v5 has high RTT overhead

• Problem exacerbated by high latency between phone 

and tower

Take advantage of TFO and TLS 1.3

• Fewer RTTs, but need special consideration

Proliferation of non-standard proxies, e.g Shadowsocks

• Unreviewed in terms of security

Client Server
Proxy

WiFi AP

Base Station

MPTCP Plain TCP

Client Proxy Client Proxy

SOCKS v5 SOCKS v6

Auth.methods

Method chosen

(Authentication)

Request

Reply

Data

Request + Auth.

+ Data

Auth. Reply

Operation Reply

TFO at proxy TFO at server Total RTT

TCP
- No 2P + 2S

- Yes P + S

SOCKS v6

No No 2P + 2S

Yes No P + 2S

Yes Yes P + S

Time taken to receive a data response

• No worse than TCP

• Outperforms TCP if TFO is 

unavailable at the server 

(see figure)

• TLS 1.3 adds no RTT 

overhead if using 0-RTT 

session resumption

Client Proxy Server

SYN + Req.

+ Data

SYN

S + A

+Auth. Reply S + A

Op. Reply

• Send as much information upfront as possible

• Leverage 0-RTT authentication schemes

• Extensible: all messages can carry options

TFO No TFO

Data

Data

Data

Other Features

• TFO on the proxy-server leg: Clients can explicitly request that 

the proxy connect to the server using TFO.

• MPTCP Proxy Bypass: Clients can be informed if the server 

supports MPTCP; they can then contact the server directly.

• MPTCP Scheduler: Applications requiring low latency can 

request that application data be duplicated across all subflows.

Code: https://github.com/45G

• SOCKS v6 prototype

• Message library

IETF Draft: draft-olteanu-intarea-socks-6


