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SEMANTIC SEGMENTATION O

INTRODUCTION

e The ability to interpret a scene and pinpoint its location 1s of growing
interest in the domain of aerial images.

e We propose a novel multi-stage multi-task neural network that 1s able
to handle segmentation and localization at the same time, 1n a single
forward pass.

MULTI-STAGE MULTI-TASK A

e Our proposed architecture follows a modular stage-wide strategy:
Stage 1 1s designed for semantic segmentation. Our network pre-
dicts pixelwise class labels. We argue that roads can be used as a unique
footprint of an urban area, therefore we train MSMT-Stage-1 for road
detection.
Stage 2 provides a precise location using two branches. One branch
uses a regression network, while the other 1s used to predict a location
map trained as a segmentation task.
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e Qur architecture uses encoder-decoder modules at each stage, having the
same encoder structure re-used.

e LocDecoder-R-2 predicts location as two real valued numbers for longi-
tude and latitude. LocDecoder-S-128 predicts a localization map of size
128x128 on the whole area of possible locations. White pixels denote
probable locations of the input image.

OUR LOCALIZATION DATASET
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e The figure portraits the data distribution of our aerial image localization
dataset. Each grey disk depicts a region of 500 meters radius around the
training (blue centers) and testing (red centers) data.

More details about our work: https://sites.google.com/site/aerialimageunderstanding/
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e [For the task of semantic segmentation in aerial images, we report state-

of-the-art results on the publicly available Inria dataset [3].

The training set contains 180 color image tiles of size 5000 x 5000,
covering a surface of 1500 x 1500 square meters each (at a 30 cm spatial

resolution).

Figure below presents from left to right, in order, the RGB input image,
the predlctlon of our MSMT—Stage 1 model and the ground truth

e The dataset covers various regions such as Austin (1) Chlcago (2) Kit-
sap County (3), West Tyrol (4), Vienna (5). We report pixelwise results
on each region set as well as Overall (6) Accuracy and IoU.

Method L @ & @ ) (6
MLP [3] IoU 61.20 61.30 51.50 57.95 72.13 64.67
Acc. 9420 9043 9892 96.66 91.87 9442
Mask R-CNN [2] IoU 65.63 48.07 54.38 70.84 64.40 59.53
Acc. 94.09 85.56 97.32 98.14 &87.40 92.49
SegNet MTL [1] IoU 76.76 67.06 73.30 6691 76.68 73.00
Acc. 9321 99.25 9784 91.71 96.61 95.73
MSMT-Stage-1 IoU 7539 6793 6635 74.07 77.12 73.31
Acc. 9599 92.02 99.24 97.78 92.49 96.06

LLOCALIZATION AND ALIGNME

We apply a refinement step after geo.

The original error was among the hig]
(40.38m), down to 0.32m after alignment.

ocalization.

nest using the segmentation method

For MSMT with LocDecoder-S-128 averages are computed only for the

92.7% of cases when it does not leave the localization map blank.

Figure depicts the RGB input image, dot segmentation generated by
MSMT LocDecoder-S-128, segmented roads (green) at the predicted lo-
cation on top of ground truth roads (white), before and after alignment.
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[LOCALIZATION ERROR ANALY!

e For MSMT with LocCombined, we combined the two localization
branches: while the segmentation net 1s on average much more precise,
the regression head 1s used 1f the segmentation produces a blank map.

Method Before After

Mean Median Mean  Median
MSMT with LocDecoder-R-2 88.92 53.90 57.97 1.60
MSMT with LocDecoder-S-128 9.03 6.85 1.89 0.75
MSMT with LocCombined 26.93 1.27 18.42 0.78

e Using our segmentation method, 96.84% of test locations have an error
of less than 20m without alignment.

e After alignment, 94.56% of the test locations are within 2.5m of the
ground truth location and 97.58% are within 5 meters, which matches
an approximate figure for a commercial GPS.
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