
Poster Print Size:
This poster template is 44” high by
44” wide. It can be used to print any
poster with a 1:1 aspect ratio.

Placeholders:
The various elements included in
this poster are ones we often see in
medical, research, and scientific
posters. Feel free to edit, move,
add, and delete items, or change
the layout to suit your needs.
Always check with your conference
organizer for specific requirements.

Image Quality:
You can place digital photos or logo
art in your poster file by selecting
the Insert, Picture command, or by
using standard copy & paste. For
best results, all graphic elements
should be at least 150-200 pixels
per inch in their final printed size.
For instance, a 1600 x 1200 pixel
photo will usually look fine up to 8“-
10” wide on your printed poster.

To preview the print quality of
images, select a magnification of
100% when previewing your poster.
This will give you a good idea of
what it will look like in print. If you
are laying out a large poster and
using half-scale dimensions, be sure
to preview your graphics at 200% to
see them at their final printed size.

Please note that graphics from
websites (such as the logo on your
hospital's or university's home page)
will only be 72dpi and not suitable
for printing.

[This sidebar area does not print.]

Change Color Theme:
This template is designed to use the
built-in color themes in the newer
versions of PowerPoint.

To change the color theme, select
the Design tab, then select the
Colors drop-down list.

The default color theme for this
template is “Office”, so you can
always return to that after trying
some of the alternatives.

Printing Your Poster:
Once your poster file is ready, visit
www.genigraphics.com to order a
high-quality, affordable poster print.
Every order receives a free design
review and we can deliver as fast as
next business day within the US and
Canada.

Genigraphics® has been producing
output from PowerPoint® longer
than anyone in the industry; dating
back to when we helped Microsoft®
design the PowerPoint® software.

US and Canada: 1-800-790-4001

Email: info@genigraphics.com

[This sidebar area does not print.]

Mapping memory
access using

controlled channel

Radu-Alexandru Mantu, BCS

Mihai Chiroiu, PhD

CONTACT

Radu-Alexandru Mantu
Email: andru.mantu@gmail.com
Phone: 0729 589 162

Mihai Chiroiu
Email: mihai.chiroiu@cs.pub.ro

ABSTRACT
Recent strides in research based on side channel
attacks reveal that data obtained by means of an
untrusted operating system can empower an
attacker to extract large bodies of sensitive
information even from protected applications.

We improve upon existing attacks by eliminating
the prerequisite of manually analyzing the
binaries involved at runtime. We introduce an
automated method of determining the expected
behavior of a program when exposed to certain
external factors.

INTRODUCTION OUR WORK

RESULTS

REFERENCES

Our efforts were dedicated toward these three tasks:
1) Implementing a kernel tracing system capable of handling complex,

multi-threaded applications that can spawn subordinated processes.
2) Creating and implementing a model that still has access to the

binaries but streamlines the analysis process to create testing
references for the main model.

3) Creating and implementing the model that generated the results
previously mentioned.

Our method of offline analysis yields a directed graph where the nodes
represent the totality of detected accessed addresses and the edges represent
immediate transitions from one address to another (see Figures 2, 3). This
graph is constructed in stages by extracting previously unknown information
from new traces.

We obtain these traces by exposing the application to varying input that we
know will produce a certain effect in the execution flow (e.g. pressing a button
will lead to the application connecting to a database). When integrating the
newly obtained information in the graph, we can specify what function this
sequence has within the application. Our system can thus categorize the
nodes (addresses) by the functionality which they represent and even by the
files mapped at those addresses, if any. This last bit of information is
guaranteed to be provided by the modified kernel.

The strategy involved in the training process is to obtain progressively more
complex traces. For instance, the first trace should offer a foundation for
future additions: opening and closing the target application. Next, we obtain a
trace for a specific function of the application and our system will separate the
new, unique path from the base path. Finally, we can explore cases where the
application is terminated unexpectedly during the execution of the added
function and create new junctures in its path. Once the training phase is
complete, we can follow the execution path of a test memory access trace and
identify the invoked functions.

During the past few years we have seen the emergence of systems able of
provisioning user space applications with safety guarantees against a
compromised kernel by making use of trusted hardware such as Intel SGX [1].
Haven [2], the first platform to utilize this neoteric technology to shield
unmodified legacy applications, was demonstrated to be susceptible to side
channel attacks [3].

The core element of this attack is a modified kernel that is able to corrupt the
page table of a user space application. This action allows the attacker to
produce irregular exceptions that are normally covertly handled by the kernel
and that leave a trace of accessed memory areas.

The preexisting attack consists of two stages:
1) The offline analysis of the application’s binaries that reveals branching

execution paths that are dependent on the input.
2) The analysis of the trace yielded by the kernel’s intervention. This, in

conjunction with the knowledge gained from the offline analysis, can lead
to the recovery of the data used during runtime (see Figure 1).

Our objective is to eliminate the former of the two steps, removing the need
for the attacker to have access to the application’s binaries. We prove that the
same information that was gained from the offline analysis can be extracted
from the very traces used in the second analysis step.

[1] V. Costan, S. Devadas. Intel SGX Explained

[2] A. Baumann, M. Peinado, G. Hunt. Shielding Applications from an Untrusted Cloud with Haven

[3] Y. Xu, W. Cui, M. Peinado. Controlled-Channel Attacks: Deterministic Side Channels for Untrusted
Operating Systems

Figure 1. Recovered Images from InkTag [3]

Figure 2. Execution paths for the loading/closing of an application (green)
and a certain function (blue). Lighter shades represent areas mapped

to libc while darker shades represent areas mapped to the loader

Figure 3. Illustration of the sequentiality of the
memory accesses from Figure 2

